JP3470311B2 - Ceramic coating life estimation method and remaining life evaluation system - Google Patents

Ceramic coating life estimation method and remaining life evaluation system

Info

Publication number
JP3470311B2
JP3470311B2 JP09070698A JP9070698A JP3470311B2 JP 3470311 B2 JP3470311 B2 JP 3470311B2 JP 09070698 A JP09070698 A JP 09070698A JP 9070698 A JP9070698 A JP 9070698A JP 3470311 B2 JP3470311 B2 JP 3470311B2
Authority
JP
Japan
Prior art keywords
layer
high temperature
ceramic layer
ceramic
resistant alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09070698A
Other languages
Japanese (ja)
Other versions
JPH11271211A (en
Inventor
真人 中山
克夫 和田
実 佐藤
裕喜 鹿又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP09070698A priority Critical patent/JP3470311B2/en
Publication of JPH11271211A publication Critical patent/JPH11271211A/en
Application granted granted Critical
Publication of JP3470311B2 publication Critical patent/JP3470311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高温部材にコーテ
ィングされたセラミック層及び耐食合金層の劣化損傷度
からセラミックコーティングの寿命を推定する方法及び
余寿命を評価するシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the life of a ceramic coating and a system for evaluating the remaining life of a ceramic layer and a corrosion-resistant alloy layer coated on a high temperature member, based on the degree of deterioration damage.

【0002】[0002]

【従来の技術】近年、高温機器の使用温度は、年々上昇
の傾向にあり、構造部材に対して苛酷になってきてい
る。例えば、高温ガスタービンのタービン入口温度は、
高効率化あるいは環境問題の観点等から高温化が図られ
ており、従来の金属材料では対応できなくなってきてい
る。そこで、タービン翼の材料に超合金の一方向凝固材
あるいは単結晶材を用い、さらに、その表面にセラミッ
ク層及び耐食合金層により構成された熱遮へいコーティ
ング(例えば、ASME paper 97−GT−5
31等に記載)を施工し、燃焼ガスの高温化に対処する
検討がなされている。高温ガスタービンにおける高温部
材の余寿命を診断する場合には、従来、高温部材の表面
の組織をレプリカに取り、経年劣化の度合をその組織変
化から把握し、高温部材の強度低下等からその余寿命を
診断する方法がある。この方法は、特開平7−1270
9号公報等に開示されている。しかしながら、熱遮へい
コーティングにより覆われたタービン翼の最表面はセラ
ミック層であるので、このレプリカ法を用いることはで
きない。現在のところ、セラミック層がはく離もしくは
離脱して初めてその寿命を認識している状況である。ま
た、セラミック層のはく離・離脱に対する寿命をガスタ
ービン稼働前に予め推定することも行われていないのが
現状である。ASME paper 97−GT−36
3では、このセラミック層の寿命を推定するための検討
が行われている。
2. Description of the Related Art In recent years, the operating temperature of high-temperature equipment tends to increase year by year, and the structural members are becoming severer. For example, the turbine inlet temperature of a hot gas turbine is
Higher temperatures are being pursued from the standpoints of higher efficiency and environmental issues, and conventional metal materials are no longer able to cope with this. Therefore, a unidirectionally solidified material or a single crystal material of a superalloy is used as the material of the turbine blade, and the surface thereof is further provided with a thermal barrier coating composed of a ceramic layer and a corrosion resistant alloy layer (for example, ASME paper 97-GT-5).
31), etc., to deal with the high temperature of the combustion gas. Conventionally, when diagnosing the remaining life of a high temperature member in a high temperature gas turbine, a replica of the surface structure of the high temperature member is taken, the degree of aging deterioration is grasped from the change in the structure, and the residual strength of the high temperature member is reduced. There is a method of diagnosing life. This method is disclosed in JP-A-7-1270.
No. 9 publication and the like. However, since the outermost surface of the turbine blade covered with the thermal barrier coating is a ceramic layer, this replica method cannot be used. At present, the life is recognized only when the ceramic layer is peeled or separated. In addition, it is the current situation that the life of the ceramic layer against peeling and separation is not estimated in advance before the gas turbine is operated. ASME paper 97-GT-36
3, the study for estimating the life of this ceramic layer is conducted.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、セラ
ミック層及び耐食合金層がコーティングされた高温部材
において、セラミック層のはく離損傷に対するセラミッ
クコーティングの寿命を推定すること、及び、セラミッ
ク層がはく離する以前にセラミックコーティングの余寿
命を評価することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to estimate the life of a ceramic coating against delamination damage of the ceramic layer in a high temperature member coated with a ceramic layer and a corrosion resistant alloy layer, and to delaminate the ceramic layer. Before that, it is to evaluate the remaining life of the ceramic coating.

【0004】[0004]

【課題を解決するための手段】上記課題は、実機高温部
材と同仕様のセラミック層及び耐食合金層をコーティン
グした試験片を用いて、実機運転条件と同じ温度で高温
炉内はく離試験を行い、数値解析によって求めた実機高
温機器の運転期間中にセラミック層に負荷される熱応力
値と比較し、セラミック層と耐食合金層の界面に経年的
に生じる酸化物層がセラミック層のはく離損傷を誘発す
る限界の厚さを求めることによって、解決される。ま
た、現在稼働中の実機高温機器のセラミック層と耐食合
金層の界面に生じている酸化物層の厚さを実機高温機器
の運転条件から予測し、前述したセラミック層のはく離
損傷を誘発する限界の酸化物層厚さと現在の酸化物層厚
さを比較し、セラミック層のはく離損傷に対する余寿命
を実機高温機器の稼働中に評価することによって、解決
される。
[Means for Solving the Problems] The above-mentioned problem is that, using a test piece coated with a ceramic layer and a corrosion-resistant alloy layer having the same specifications as the actual machine high temperature member, a delamination test in a high temperature furnace is conducted at the same temperature as the actual machine operating condition, Compared with the thermal stress value applied to the ceramic layer during the operation period of the actual high temperature equipment obtained by numerical analysis, the oxide layer that aged over the interface between the ceramic layer and the corrosion resistant alloy layer induces the peeling damage of the ceramic layer. It is solved by finding the limit thickness to do. In addition, the thickness of the oxide layer generated at the interface between the ceramic layer and the corrosion-resistant alloy layer of the actual high-temperature equipment currently in operation is predicted from the operating conditions of the actual high-temperature equipment, and the above-mentioned limit for inducing delamination damage of the ceramic layer. This problem is solved by comparing the oxide layer thickness of the present invention with the current oxide layer thickness and evaluating the remaining life of the ceramic layer against delamination damage while the actual high temperature equipment is in operation.

【0005】通常、高温部材にコーティングされたセラ
ミックコーティングには、何層型であれ、セラミック層
と耐食合金層の界面が存在する。この界面が高温雰囲気
に曝されると、高温雰囲気に含まれる酸素元素は、セラ
ミック層を通って耐食合金層の表面に経年的に酸化物層
を形成し、それに伴って実機運転中のセラミック層に発
生する熱応力が増大する。そこで、本発明では、実機高
温部材と同仕様のセラミック層及び耐食合金層をコーテ
ィングした試験片を高温大気中に曝露して、セラミック
層と耐食合金層の界面に生じる酸化物層の生成に関して
の加速試験を行い、その後、この酸化物層の厚さに対す
るセラミック層のはく離強度を測定し、前述の数値解析
によって求めた熱応力値と比較することによって、セラ
ミック層のはく離損傷に対する寿命を推定することがで
きる。また、セラミック層と耐食合金層の界面に経年的
に生じる酸化物層は、実機高温機器の運転条件(温度、
時間、雰囲気)によって予測することができるので、セ
ラミック層のはく離損傷を誘発する限界の酸化物層厚さ
と現在の酸化物層厚さを比較することにより、その余寿
命を実機高温機器の稼働中に評価することができる。
Usually, in a ceramic coating coated on a high temperature member, there is an interface between the ceramic layer and the corrosion resistant alloy layer, regardless of the number of layers. When this interface is exposed to a high-temperature atmosphere, the oxygen element contained in the high-temperature atmosphere passes through the ceramic layer and forms an oxide layer on the surface of the corrosion-resistant alloy layer over time. The thermal stress generated in the is increased. Therefore, in the present invention, a test piece coated with a ceramic layer and a corrosion resistant alloy layer having the same specifications as the actual machine high temperature member is exposed to a high temperature atmosphere to generate an oxide layer at the interface between the ceramic layer and the corrosion resistant alloy layer. An accelerated test is performed, and then the peel strength of the ceramic layer with respect to the thickness of the oxide layer is measured and compared with the thermal stress value obtained by the above-mentioned numerical analysis to estimate the life of the ceramic layer against peel damage. be able to. In addition, the oxide layer formed at the interface between the ceramic layer and the corrosion-resistant alloy layer over time is the operating condition (temperature,
It can be predicted by the time and atmosphere), so by comparing the current oxide layer thickness with the limit oxide layer thickness that induces delamination damage of the ceramic layer, the remaining life is measured during operation of the actual high temperature equipment. Can be evaluated.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は、本発明の一実施形態によるセ
ラミックコーティング寿命推定方法のフローを示す。実
機高温機器、例えば、高温ガスタービンにおいては、図
2に示すように、タービン翼1の表面には耐熱性に優
れ、熱伝導率の低い主に遮熱を目的としたセラミック層
Aと、基材Cと、耐食性に優れ、また、セラミック層A
と基材Cの接合を助ける中間層的な役割をする耐食合金
層Bが施されている。このタービン翼1が高温環境下に
供されると、セラミック層Aと耐食合金層Bの界面に
は、高温雰囲気に含まれる酸素元素によって経年的に酸
化物層Xが形成される。この酸化物層Xが形成されてく
ると、セラミック層Aと耐食合金層Bの界面近傍に発生
する熱応力値、あるいはセラミック層Aのはく離強度は
変化する。本実施形態では、この酸化物層Xの厚さに対
応するセラミック層Aと耐食合金層Bの界面近傍に発生
する熱応力値とセラミック層Aのはく離強度の大小を比
較して、セラミック層Aのはく離損傷に対するセラミッ
クコーティングの寿命を推定する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a flow of a ceramic coating life estimation method according to an embodiment of the present invention. In an actual high-temperature device, for example, a high-temperature gas turbine, as shown in FIG. 2, the surface of the turbine blade 1 has excellent heat resistance and has a low thermal conductivity, a ceramic layer A mainly for heat shielding, and a base layer. Material C, excellent corrosion resistance, and ceramic layer A
A corrosion-resistant alloy layer B is provided, which acts as an intermediate layer to help bond the base material C and the base material C together. When this turbine blade 1 is subjected to a high temperature environment, an oxide layer X is formed at the interface between the ceramic layer A and the corrosion resistant alloy layer B with the oxygen element contained in the high temperature atmosphere over time. When the oxide layer X is formed, the thermal stress value generated near the interface between the ceramic layer A and the corrosion-resistant alloy layer B or the peel strength of the ceramic layer A changes. In the present embodiment, the thermal stress value generated in the vicinity of the interface between the ceramic layer A and the corrosion resistant alloy layer B corresponding to the thickness of the oxide layer X and the peel strength of the ceramic layer A are compared, and the ceramic layer A is compared. Estimate the life of ceramic coatings against flaking damage.

【0007】図1において、実機高温部材に用いる材
料、例えば、セラミック層A、耐食合金層B、及び基材
Cが選定されると(s1)、まず最初に、これらの材料
特性データを取得する(s2)。材料特性データは、主
に後で述べる数値解析(s5)(s8−2)に用いる。
したがって、材料特性データは、数値解析に必要な熱的
物性値及び機械的特性値を室温から実機高温部材の使用
温度領域にわたって取得することが必要である。また、
セラミック層Aに関しては、繰り返し疲労特性(s10
−2)についてもデータ化しておくことが必要である。
次に、選定したセラミック層A、耐食合金層B、及び基
材Cからなる材料を実機高温機器に施工する(s3)。
続いて、実機高温機器については、実機環境下の稼働境
界条件を用いて(s4)、運転中に高温部材に発生する
熱応力を数値解析する(s5)。数値解析は、有限要素
法、境界要素法等汎用の解析法を用いて、セラミック層
A、酸化物層X、及び耐食合金層Bの界面近傍の形状を
模擬した要素分割モデルに前述の材料特性データを入力
して行う。実機高温部材に発生する熱応力は、図3に示
すように、特にセラミック層Aと耐食合金層Bの界面凸
凹部近傍のはく離損傷を誘発する応力σyについて注目
し、セラミック層Aと耐食合金層Bの界面に経年的に生
じる酸化物層Xの厚さに対して解析を行う。図3におい
て、実機高温部材に発生する最大発生熱応力は、セラミ
ック層Aと耐食合金層Bの界面に生じる酸化物層Xが成
長するにつれて増加する(s6)。すなわち、酸化物層
Xが成長することによって、セラミック層Aと耐食合金
層Bの界面近傍におけるはく離損傷を誘発する応力σy
が増加することを示している。ここで、実機環境下の稼
働境界条件、特に運転温度は、設計温度と比較して各々
の実機高温部材によって異なるため、ある期間実機高温
機器を運転した後のデータをその境界条件として修正す
ることが望ましい。
In FIG. 1, when the materials used for the actual high temperature member, for example, the ceramic layer A, the corrosion resistant alloy layer B, and the base material C are selected (s1), first, the material characteristic data of these are obtained. (S2). The material property data is mainly used for numerical analysis (s5) (s8-2) described later.
Therefore, as the material property data, it is necessary to acquire thermal physical property values and mechanical property values required for numerical analysis from room temperature to the operating temperature range of the actual high temperature member. Also,
Regarding the ceramic layer A, the repeated fatigue characteristics (s10
Regarding -2), it is necessary to convert it into data.
Next, the material consisting of the selected ceramic layer A, corrosion resistant alloy layer B, and base material C is applied to an actual high temperature device (s3).
Subsequently, for the actual high temperature device, the thermal stress generated in the high temperature member during operation is numerically analyzed using the operating boundary condition under the actual environment (s4) (s5). The numerical analysis uses a general-purpose analysis method such as the finite element method and the boundary element method, and the material characteristics described above are applied to the element division model that simulates the shapes in the vicinity of the interfaces of the ceramic layer A, the oxide layer X, and the corrosion resistant alloy layer B. Do this by entering data. As shown in FIG. 3, the thermal stress generated in the actual high temperature member is particularly focused on the stress σy that induces the peeling damage in the vicinity of the bumps and dips on the interface between the ceramic layer A and the corrosion-resistant alloy layer B. The thickness of the oxide layer X generated at the interface of B over time is analyzed. In FIG. 3, the maximum generated thermal stress generated in the actual machine high temperature member increases as the oxide layer X generated at the interface between the ceramic layer A and the corrosion resistant alloy layer B grows (s6). That is, as the oxide layer X grows, the stress σy that induces delamination damage near the interface between the ceramic layer A and the corrosion-resistant alloy layer B.
Is increasing. Here, the operating boundary conditions under the actual machine environment, especially the operating temperature, differ depending on each actual machine high temperature member compared to the design temperature, so correct the data after operating the actual machine high temperature equipment for a certain period as the boundary conditions. Is desirable.

【0008】一方、セラミック層A及び耐食合金層Bを
基材Cにコーティングする場合、実機高温部材に施工す
る仕様と同様に、同材料の基材Cで作製したTBC(サ
ーマル バリア コーティング)試験片2(図7に示
す)にも施工する(s7)。施工した後、高温炉内はく
離試験を行う(s8)。はく離試験は、このTBC試験
片2を図7に示す高温大気炉3の高温大気中雰囲気にお
いて曝露し、セラミック層Aと耐食合金層Bの界面に酸
化物層Xを形成させた試験片を用いる。この場合、セラ
ミック層Aと耐食合金層Bの界面に様々な厚さの酸化物
層Xを形成させることが主目的であるため、セラミック
コーティングの仕様、すなわち、セラミック層A及び耐
食合金層B等の材質、コーティング施工条件、厚さが実
機高温部材と同一であれば、高温雰囲気環境、曝露温度
条件等が実機高温機器と多少異なっても問題はない。こ
れは、セラミック層Aと耐食合金層Bの界面に生じる酸
化物層Xの生成に関しての加速試験を行うために、TB
C試験片2の曝露温度をセラミック層A、特にセラミッ
ク層Aと耐食合金層Bの界面近傍におけるセラミック層
Aの焼結特性が大きく変化しない範囲であれば、実機高
温部材の温度よりも高く設定してよいことを意味する。
その後、高温大気中雰囲気で曝露したTBC試験片2を
所定の寸法に加工し、セラミック層Aのはく離強度を測
定する(s8−1)。この測定は、図7に示す高温真空
炉4内で行い、測定温度を実機高温部材の使用温度と一
致させることが重要である。しかしながら、実機高温部
材のセラミック層A、耐食合金層B、及び基材Cには、
図2に示すように、一方に加熱面、他方に冷却面が存在
し、これらの間には温度勾配が生じているのに対して、
高温真空炉4内はく離試験では、試験片2’を均一加熱
するため、これらの間には温度勾配が生じない。したが
って、セラミック層Aと耐食合金層Bの界面近傍におけ
る温度が実機高温部材と一致するように測定温度を設定
する。また、実機高温部材の稼働時における温度分布と
試験片2’のはく離強度測定時における温度分布が異な
るため、試験片2’の高温真空炉4内はく離試験時にセ
ラミック層Aと耐食合金層Bの界面に発生する熱応力を
高温真空炉4内境界条件で別途数値解析し(s8−
2)、その解析結果からセラミック層Aのはく離強度測
定データに修正を加える。この数値解析も、前述と同様
に有限要素法、境界要素法等汎用の解析法を用いて、セ
ラミック層A、酸化物層X、及び耐食合金層Bの界面近
傍の形状を模擬した要素分割モデルに材料特性データを
入力して行う。高温真空炉4内はく離試験時の試験片
2’に発生する熱応力は、図3と同様に、特にセラミッ
ク層Aと耐食合金層Bの界面凸凹部近傍のはく離損傷を
誘発する応力σyについて注目し、セラミック層Aと耐
食合金層Bの界面に経年的に生じる酸化物層Xの厚さに
対して解析を行う。(s8−1)及び(s8−2)か
ら、図4に示すように、セラミック層Aのはく離強度と
セラミック層Aと耐食合金層Bの界面に生じる酸化物層
Xの厚さの関係の測定結果を得る(s9)。方向Yに沿
ったセラミック層Aのはく離強度は、セラミック層Aと
耐食合金層Bの界面に生じる酸化物層Xが成長するにつ
れて低下する。すなわち、図4では、酸化物層Xが成長
することによって、セラミック層Aと耐食合金層Bの界
面近傍における方向Yの残存強度は低下することを示し
ている。
On the other hand, when the ceramic layer A and the corrosion-resistant alloy layer B are coated on the base material C, the TBC (thermal barrier coating) test piece made of the base material C of the same material is used as in the case of the specifications applied to the actual high temperature member. 2 (shown in FIG. 7) is also applied (s7). After the construction, a peeling test in a high temperature furnace is performed (s8). In the peeling test, the TBC test piece 2 is exposed in the high temperature atmosphere of the high temperature atmospheric furnace 3 shown in FIG. 7, and the test piece in which the oxide layer X is formed at the interface between the ceramic layer A and the corrosion resistant alloy layer B is used. . In this case, since the main purpose is to form the oxide layer X having various thicknesses at the interface between the ceramic layer A and the corrosion resistant alloy layer B, the specifications of the ceramic coating, that is, the ceramic layer A and the corrosion resistant alloy layer B, etc. As long as the material, coating conditions, and thickness of the same are the same as those of the actual high temperature member, there is no problem even if the high temperature atmosphere environment, exposure temperature condition, etc. are slightly different from those of the actual high temperature device. In order to perform an accelerated test on the formation of the oxide layer X generated at the interface between the ceramic layer A and the corrosion resistant alloy layer B, TB
The exposure temperature of the C test piece 2 is set higher than the temperature of the actual high temperature member within a range in which the sintering characteristics of the ceramic layer A, particularly the ceramic layer A in the vicinity of the interface between the ceramic layer A and the corrosion resistant alloy layer B do not change significantly. Means that you can do it.
Then, the TBC test piece 2 exposed in a high temperature atmosphere is processed into a predetermined size, and the peel strength of the ceramic layer A is measured (s8-1). This measurement is performed in the high temperature vacuum furnace 4 shown in FIG. 7, and it is important to make the measured temperature match the operating temperature of the actual high temperature member. However, the ceramic layer A, the corrosion-resistant alloy layer B, and the base material C of the actual machine high temperature member are
As shown in FIG. 2, there is a heating surface on one side and a cooling surface on the other side, and there is a temperature gradient between them, whereas
In the peeling test in the high temperature vacuum furnace 4, since the test piece 2'is heated uniformly, no temperature gradient occurs between them. Therefore, the measurement temperature is set so that the temperature in the vicinity of the interface between the ceramic layer A and the corrosion resistant alloy layer B coincides with that of the actual high temperature member. Further, since the temperature distribution during operation of the actual high temperature member and the temperature distribution during measurement of the peel strength of the test piece 2 ′ are different, the ceramic layer A and the corrosion-resistant alloy layer B of the test piece 2 ′ during the peel test in the high temperature vacuum furnace 4 are different. The thermal stress generated at the interface is separately numerically analyzed under the boundary conditions in the high temperature vacuum furnace 4 (s8-
2) From the analysis result, the peel strength measurement data of the ceramic layer A is corrected. This numerical analysis also uses the general-purpose analysis method such as the finite element method and the boundary element method as described above, and the element division model simulating the shapes in the vicinity of the interfaces of the ceramic layer A, the oxide layer X, and the corrosion resistant alloy layer B. Enter the material property data in. Similar to FIG. 3, the thermal stress generated in the test piece 2 ′ during the peeling test in the high temperature vacuum furnace 4 is particularly focused on the stress σy that induces the peeling damage in the vicinity of the bumps and dips at the interface between the ceramic layer A and the corrosion resistant alloy layer B. Then, the thickness of the oxide layer X, which occurs over time at the interface between the ceramic layer A and the corrosion-resistant alloy layer B, is analyzed. From (s8-1) and (s8-2), as shown in FIG. 4, measurement of the relationship between the peel strength of the ceramic layer A and the thickness of the oxide layer X generated at the interface between the ceramic layer A and the corrosion-resistant alloy layer B. A result is obtained (s9). The peel strength of the ceramic layer A along the direction Y decreases as the oxide layer X generated at the interface between the ceramic layer A and the corrosion resistant alloy layer B grows. That is, FIG. 4 shows that the residual strength in the direction Y near the interface between the ceramic layer A and the corrosion-resistant alloy layer B decreases due to the growth of the oxide layer X.

【0009】次に、以上の数値解析及び測定の結果を用
いて、セラミック層Aのはく離損傷に対するセラミック
コーティングの寿命を推定する。すなわち、図3に示す
酸化物層Xの厚さに対応するセラミック層Aと耐食合金
層Bの界面近傍に発生する熱応力値と図4に示す酸化物
層Xの厚さに対応するセラミック層Aのはく離強度の大
小を比較する(s10)。図5に、これらの比較(実
線)を示す。セラミック層Aのはく離損傷は、セラミッ
ク層Aと耐食合金層Bの界面に生じる酸化物層Xが成長
することによって、セラミック層Aと耐食合金層Bの界
面近傍における方向Yの残存強度が低下し、その界面近
傍に発生する熱応力より低くなった時点で生じる。その
直前のセラミック層Aと耐食合金層Bの界面に生じてい
る酸化物層Xの厚さがセラミック層Aにはく離損傷が生
じない限界の酸化物層Xの厚さとなる(s11)。一
方、実機高温機器のセラミック層Aと耐食合金層Bの界
面に生じる酸化物層Xの厚さは、実機高温機器の総運転
時間(s12)、運転温度(s13)、高温雰囲気から
表面拡散則によって求めることができるので、これらの
諸条件を設計時の境界条件として用いれば、実機高温機
器を設計する段階でセラミック層Aのはく離損傷に対す
る寿命を正確かつ容易に推定することができる(s1
4)。ここで、表面拡散則について、金属の酸化物皮膜
の厚さと時間の関係、すなわち、酸化速度は、低温、中
間温度、高温の場合に分類される。 ・低温の場合 対数則 X=Ke・ln(a・t+1) ・中間温度の場合 直線則 X=Kl・t 三乗則 X3=3Kc・t ・高温の場合 放物線則 X2=2Kp・t X:酸化物皮膜の厚さ,t:時間,a:定数,ln:自
然対数Ke、Kl、Kc、Kp:酸化速度定数 なお、拡散反応が律速する場合には、上式中のKsuf
fixは、 -E/RT K=A・e T:温度,A:定数,E:拡散に要する活性化エネルギ
ー,R:定数によって表される。
Next, the life of the ceramic coating against the peeling damage of the ceramic layer A is estimated using the results of the above numerical analysis and measurement. That is, the thermal stress value generated near the interface between the ceramic layer A and the corrosion resistant alloy layer B corresponding to the thickness of the oxide layer X shown in FIG. 3 and the ceramic layer corresponding to the thickness of the oxide layer X shown in FIG. The peel strength of A is compared (S10). FIG. 5 shows these comparisons (solid line). The peeling damage of the ceramic layer A is caused by the growth of the oxide layer X generated at the interface between the ceramic layer A and the corrosion resistant alloy layer B, and the residual strength in the direction Y near the interface between the ceramic layer A and the corrosion resistant alloy layer B decreases. , When the thermal stress becomes lower than the thermal stress generated near the interface. Immediately before that, the thickness of the oxide layer X formed at the interface between the ceramic layer A and the corrosion-resistant alloy layer B becomes the limit thickness of the oxide layer X at which peeling damage does not occur in the ceramic layer A (s11). On the other hand, the thickness of the oxide layer X generated at the interface between the ceramic layer A and the corrosion resistant alloy layer B of the actual high temperature equipment is the total operating time (s12) of the actual high temperature equipment, the operating temperature (s13), the high temperature atmosphere, and the surface diffusion law. Therefore, if these various conditions are used as boundary conditions at the time of design, the life of the ceramic layer A against peeling damage can be accurately and easily estimated at the stage of designing an actual high temperature device (s1).
4). Here, regarding the surface diffusion law, the relationship between the thickness of the metal oxide film and the time, that is, the oxidation rate, is classified into low temperature, intermediate temperature, and high temperature.・ Log law at low temperature X = Ke ・ ln (a ・ t + 1) ・ Linear law at intermediate temperature X = Kl ・ t Cubic law X 3 = 3Kc ・ t ・ High temperature parabolic law X 2 = 2Kp ・ t X : Thickness of oxide film, t: Time, a: Constant, ln: Natural logarithm Ke, Kl, Kc, Kp: Oxidation rate constant If the diffusion reaction is rate limiting, Ksuf in the above equation
fix is represented by -E / RT K = A · e T: temperature, A: constant, E: activation energy required for diffusion, and R: constant.

【0010】起動停止回数が多い実機高温機器の場合は
(s10−1)、先に述べた材料特性データのセラミッ
ク層Aに関する繰り返し疲労特性(s10−2)を用い
て、セラミック層Aのはく離損傷に対する寿命を推定す
る。すなわち、図5に示すように、セラミック層Aの繰
り返し疲労特性から実機高温機器の起動停止回数に応じ
てセラミック層Aと耐食合金層Bの界面近傍におけるセ
ラミック層Aの残存強度を修正し、酸化物層Xの厚さに
対応するセラミック層Aと耐食合金層Bの界面近傍に発
生する熱応力値との交点からそれぞれの限界酸化層厚さ
を求め(点線)、実機高温機器の起動停止回数も含めた
セラミック層Aのはく離損傷に対する寿命を推定する。
図5は、セラミック層Aと耐食合金層B等の材質、コー
ティング施工条件、厚さが同一で、かつ高温雰囲気環
境、運転温度条件等の仕様が同じ実機高温機器であって
も、起動停止回数Nによってセラミック層Aのはく離損
傷に対する寿命が変わることを示している。
In the case of an actual high temperature device having a large number of start and stop times (s10-1), the peeling damage of the ceramic layer A is performed using the cyclic fatigue characteristics (s10-2) of the ceramic layer A of the material property data described above. Estimate the lifespan for. That is, as shown in FIG. 5, the residual strength of the ceramic layer A in the vicinity of the interface between the ceramic layer A and the corrosion resistant alloy layer B is corrected from the repeated fatigue characteristics of the ceramic layer A according to the number of times the actual high temperature equipment is started and stopped, and oxidation is performed. The critical oxide layer thickness is calculated from the intersection of the thermal stress value generated near the interface between the ceramic layer A and the corrosion-resistant alloy layer B corresponding to the thickness of the physical layer X (dotted line), and the number of times the actual high temperature equipment is started and stopped The life including the peeling damage of the ceramic layer A including the above is estimated.
FIG. 5 shows the number of times of starting and stopping even in the case of an actual high-temperature device in which the materials such as the ceramic layer A and the corrosion-resistant alloy layer B, the coating conditions and the thickness are the same, and the specifications such as the high temperature atmosphere environment and the operating temperature condition are the same. It is shown that N changes the life of the ceramic layer A against peeling damage.

【0011】実際に実機高温機器を稼働させると、設計
時に設定した境界条件とは多少異なった境界条件下に曝
されることがある。この場合、実際のセラミック層Aの
はく離損傷に対する寿命も設計時に設定した寿命とは異
なってくると考えられる。そこで、実機高温機器をある
期間運転した後に取得した実機環境下の稼働境界条件、
特に総運転時間及び運転温度のデータを用いて現在の酸
化物層Xの厚さを表面拡散則によって求めれば、セラミ
ック層Aのはく離損傷を誘発する限界酸化層厚さと比較
することにより、その余寿命を実機高温機器の稼働中に
評価することができる。現在までの起動停止等の運転履
歴情報については、定格運転状態時、緊急燃料遮断時を
含めた実機高温機器の総運転時間、運転温度、起動停止
回数等の運転実績データが必要である。実機高温機器の
運転期間中にセラミック層Aのはく離損傷に対する余寿
命を算出するには、現時点までの実機高温機器の運転履
歴情報が大変重要である。
When an actual high temperature device is actually operated, it may be exposed to boundary conditions that are slightly different from the boundary conditions set at the time of design. In this case, it is considered that the actual life of the ceramic layer A against peeling damage is different from the life set at the time of design. Therefore, operating boundary conditions under the actual machine environment acquired after operating the actual machine high temperature device for a certain period,
In particular, if the current thickness of the oxide layer X is determined by the surface diffusion law using the data of the total operating time and the operating temperature, it is possible to compare the thickness of the oxide layer X with the critical oxide layer thickness that induces the peeling damage of the ceramic layer A. The service life can be evaluated while the actual high temperature equipment is in operation. For the operation history information such as the start and stop up to the present, the operation record data such as the total operation time of the actual high temperature equipment including the rated operation state and the emergency fuel cutoff, the operation temperature, the number of start and stop is necessary. In order to calculate the remaining life for the peeling damage of the ceramic layer A during the operation period of the actual high temperature equipment, the operation history information of the actual high temperature equipment up to the present time is very important.

【0012】図6は、本発明の他の実施形態によるセラ
ミックコーティング余寿命評価システムを示す。図中、
aはセラミック層A、耐食合金層B、及び基材Cの材料
特性値を収納したデータベース、bはこれらの熱的物性
値及び機械的特性値を実機環境下の稼働境界条件で運転
中の実機高温部材に発生する熱応力を数値解析する熱応
力数値解析部、cはセラミック層Aのはく離強度の測定
データベース、dは高温真空炉4内境界条件で高温真空
炉4内はく離試験時の試験片2’に発生する熱応力を数
値解析し、cのセラミック層Aのはく離強度測定値に加
算するはく離強度数値解析部、また、eはセラミック層
Aの繰り返し疲労特性を用いて、セラミック層Aと耐食
合金層Bの界面近傍に発生する熱応力値とセラミック層
Aのはく離強度の大小を比較する比較部、fはこの比較
結果からセラミック層Aにはく離損傷が生じる限界の酸
化物層Xの厚さを算出し、セラミックコーティングの余
寿命を評価する余寿命評価部である。
FIG. 6 shows a ceramic coating remaining life evaluation system according to another embodiment of the present invention. In the figure,
a is a database that stores the material property values of the ceramic layer A, the corrosion resistant alloy layer B, and the base material C, and b is the actual machine that is operating under the operating boundary conditions under the actual machine environment. Numerical analysis part of thermal stress for numerically analyzing thermal stress generated in high temperature member, c is a measurement database of peeling strength of the ceramic layer A, d is a test piece at the peeling test in the high temperature vacuum furnace 4 under the boundary condition in the high temperature vacuum furnace 4. Numerical analysis of the thermal stress generated in 2 ', and the peeling strength numerical analysis part for adding to the peeling strength measurement value of the ceramic layer A of c, and e using the cyclic fatigue characteristics of the ceramic layer A, A comparison part for comparing the thermal stress value generated in the vicinity of the interface of the corrosion-resistant alloy layer B with the peel strength of the ceramic layer A, and f is the thickness of the oxide layer X, which is the limit at which peel damage occurs in the ceramic layer A from this comparison result. Calculate This is a remaining life evaluation part for evaluating the remaining life of the ceramic coating.

【0013】熱応力数値解析部bは、データベースaに
収納したセラミック層A、耐食合金層B、及び基材Cの
材料特性データを用いて、熱的物性値及び機械的特性値
を実機環境下の稼働境界条件で運転中の実機高温部材に
発生する熱応力を数値解析する。一方、実機高温部材に
施工する仕様と同様のセラミック層A及び耐食合金層B
をコーティングしたTBC試験片2は、図7に示すよう
に、高温大気炉3で曝露された後、例えば、4点曲げ試
験片2’に加工され、高温真空炉4内はく離試験に供さ
れる。高温真空炉4内はく離試験は4点曲げ試験機5で
行われ、セラミック層Aのはく離強度測定データを測定
データベースcに収納する。収納されたセラミック層A
のはく離強度測定データは測定データベースcからはく
離強度数値解析部dに送られる。はく離強度数値解析部
dでは、試験片2’の高温真空炉4内はく離試験時にセ
ラミック層Aと耐食合金層Bの界面に発生する熱応力を
高温真空炉4内境界条件で別途数値解析し、その解析結
果の熱応力解析値をセラミック層Aのはく離強度データ
に加算し、セラミック層Aのはく離強度データが修正さ
れる。セラミック層Aと耐食合金層Bの界面近傍に発生
する熱応力値とセラミック層Aのはく離強度は比較部e
に送られ、それらのデータの大小を比較する。その比較
結果は余寿命評価部fに与えられる。余寿命評価部fで
は、セラミック層A、耐食合金層B、及び基材Cの材料
特性データを収納したデータベースaから送られるセラ
ミック層Aの繰り返し疲労特性データを基に、実機高温
機器の起動停止回数に応じたセラミック層Aのはく離強
度の低下量が換算され、セラミック層Aにはく離損傷が
生じる限界の酸化物層Xの厚さを算出する。一方、実機
高温機器をある期間運転した後に取得した実機環境下の
稼働境界条件、特に総運転時間及び運転温度のデータを
用いて現在の酸化物層Xの厚さを表面拡散則によって求
める。そこで、セラミック層Aのはく離損傷を誘発する
限界の酸化物層厚さと現在の酸化物層厚さを比較するこ
とによって、セラミック層Aのはく離損傷に対する余寿
命を評価する。これにより、実機高温機器が稼働中であ
って、セラミック層Aがはく離する以前にセラミックコ
ーティングの余寿命を正確かつ容易に評価することがで
きる。
The thermal stress numerical analysis section b uses the material property data of the ceramic layer A, the corrosion resistant alloy layer B and the base material C stored in the database a to obtain the thermal physical property values and mechanical property values under the actual environment. Numerical analysis of the thermal stress generated in the actual high temperature member under the operating boundary conditions. On the other hand, the ceramic layer A and the corrosion resistant alloy layer B, which have the same specifications as those used for the actual high temperature member
As shown in FIG. 7, the TBC test piece 2 coated with is exposed to a high temperature atmospheric furnace 3 and then processed into, for example, a four-point bending test piece 2 ′, and is subjected to a peeling test in a high temperature vacuum furnace 4. . The peeling test in the high temperature vacuum furnace 4 is performed by the four-point bending tester 5, and the peeling strength measurement data of the ceramic layer A is stored in the measurement database c. Stored ceramic layer A
The peeling strength measurement data is sent from the measurement database c to the peeling strength numerical analysis section d. In the peel strength numerical analysis section d, the thermal stress generated at the interface between the ceramic layer A and the corrosion resistant alloy layer B during the peel test in the high temperature vacuum furnace 4 of the test piece 2 ′ is separately numerically analyzed under the boundary conditions in the high temperature vacuum furnace 4, The thermal stress analysis value of the analysis result is added to the peel strength data of the ceramic layer A, and the peel strength data of the ceramic layer A is corrected. The thermal stress value generated near the interface between the ceramic layer A and the corrosion-resistant alloy layer B and the peel strength of the ceramic layer A are compared with each other.
Sent to and compare the magnitude of those data. The comparison result is given to the remaining life evaluation unit f. In the remaining life evaluation section f, based on the repeated fatigue property data of the ceramic layer A sent from the database a that stores the material property data of the ceramic layer A, the corrosion resistant alloy layer B, and the base material C, the start and stop of the actual high temperature equipment is performed. The reduction amount of the peeling strength of the ceramic layer A according to the number of times is converted, and the thickness of the oxide layer X at which the peeling damage to the ceramic layer A is generated is calculated. On the other hand, the current thickness of the oxide layer X is determined by the surface diffusion law using the operating boundary conditions under the actual environment, particularly the total operating time and the operating temperature, obtained after operating the actual high temperature equipment for a certain period of time. Therefore, by comparing the current oxide layer thickness with the critical oxide layer thickness that induces the peeling damage of the ceramic layer A, the remaining life of the ceramic layer A against the peeling damage is evaluated. As a result, it is possible to accurately and easily evaluate the remaining life of the ceramic coating before the ceramic layer A is peeled off while the actual high temperature equipment is in operation.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば、
セラミック層及び耐食合金層がコーティングされた高温
部材において、実機高温機器を設計する段階でセラミッ
ク層のはく離損傷に対するセラミックコーティングの寿
命を正確かつ容易に推定することができる。また、実機
高温機器の稼働中に、セラミック層がはく離する以前に
セラミックコーティングの余寿命を正確かつ容易に評価
することができる。また、酸化物層がセラミック層のは
く離損傷を誘発する限界の厚さをセラミック層の繰り返
し疲労特性及び起動停止回数に基づいて修正することに
より、精度の高いセラミックコーティングの寿命推定及
び余寿命の評価を行うことができる。
As described above, according to the present invention,
In a high temperature member coated with a ceramic layer and a corrosion resistant alloy layer, it is possible to accurately and easily estimate the life of the ceramic coating against peeling damage of the ceramic layer at the stage of designing an actual high temperature device. Further, the remaining life of the ceramic coating can be accurately and easily evaluated before the ceramic layer is peeled off during the operation of the actual high temperature equipment. Also, by correcting the critical thickness at which the oxide layer induces delamination damage of the ceramic layer based on the cyclic fatigue characteristics of the ceramic layer and the number of start-stop cycles, it is possible to accurately estimate the life of the ceramic coating and evaluate the remaining life. It can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態によるセラミックコーティ
ング寿命推定方法のフロー図
FIG. 1 is a flow chart of a ceramic coating life estimation method according to an embodiment of the present invention.

【図2】高温ガスタービンのタービン翼及びタービン翼
表面近傍の概略図
FIG. 2 is a schematic view of a turbine blade of a high-temperature gas turbine and the vicinity of the surface of the turbine blade.

【図3】最大発生熱応力と酸化物層の厚さの関係を示す
FIG. 3 is a diagram showing the relationship between the maximum generated thermal stress and the thickness of the oxide layer.

【図4】セラミック層のはく離強度と酸化物層の厚さの
関係を示す図
FIG. 4 is a diagram showing the relationship between the peel strength of a ceramic layer and the thickness of an oxide layer.

【図5】酸化物層の厚さに対応する発生熱応力値とセラ
ミック層のはく離強度の大小を比較する図
FIG. 5 is a diagram comparing the generated thermal stress value corresponding to the thickness of the oxide layer and the peel strength of the ceramic layer.

【図6】本発明の他の実施形態によるセラミックコーテ
ィング余寿命評価システム
FIG. 6 is a ceramic coating remaining life evaluation system according to another embodiment of the present invention.

【図7】高温真空炉内はく離試験を示す図FIG. 7 is a diagram showing a peeling test in a high temperature vacuum furnace.

【符号の説明】[Explanation of symbols]

1…高温ガスタービンのタービン翼、2…実機高温部材
に施工する仕様と同様のセラミック層及び耐食合金層を
コーティングしたTBC試験片、2’…高温大気炉で曝
露されたTBC試験片から切り出した4点曲げ試験片、
3…高温大気炉、4…高温真空炉、5…4点曲げ試験機 σy:セラミック層のはく離損傷を誘発する熱応力、
Y:セラミック層及び耐食合金層の積層厚さ方向、A:
セラミック層、B:耐食合金層、C:基材、X:酸化物
層 a:セラミック層、耐食合金層、及び基材の材料特性値
を収納したデータベース、b:熱応力数値解析部、c:
セラミック層のはく離強度の測定データベース、d:は
く離強度数値解析部、e:熱応力値とセラミック層のは
く離強度の大小を比較する比較部、f:セラミックコー
ティングの余寿命を評価する余寿命評価部
DESCRIPTION OF SYMBOLS 1 ... Turbine blade of high temperature gas turbine, 2 ... TBC test piece coated with ceramic layer and corrosion resistant alloy layer similar to the specifications to be applied to actual high temperature member, 2 '... Cut out from TBC test piece exposed in high temperature atmospheric furnace 4-point bending test piece,
3 ... High temperature atmosphere furnace, 4 ... High temperature vacuum furnace, 5 ... 4-point bending tester σy: Thermal stress that induces delamination damage of ceramic layer,
Y: direction of thickness of laminated ceramic layer and corrosion resistant alloy layer, A:
Ceramic layer, B: Corrosion resistant alloy layer, C: Base material, X: Oxide layer a: Ceramic layer, Corrosion resistant alloy layer, and database storing material characteristic values of the base material, b: Thermal stress numerical analysis section, c:
Ceramic layer peel strength measurement database, d: Peel strength numerical analysis section, e: Comparison section for comparing thermal stress value and peel strength of ceramic layer, f: Remaining life evaluation section for evaluating remaining life of ceramic coating

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 実 宮城県仙台市青葉区一番町三丁目7番1 号 東北電力株式会社内 (72)発明者 鹿又 裕喜 宮城県仙台市青葉区一番町三丁目7番1 号 東北電力株式会社内 (56)参考文献 特開 平7−12709(JP,A) 特開 平7−83821(JP,A) 特開 平5−256848(JP,A) 特開 平10−282048(JP,A) 特開 平6−180281(JP,A) 特開 平8−160035(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 17/00 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Minoru Sato 3-7-1, Ichibancho, Aoba-ku, Sendai-shi, Miyagi Tohoku Electric Power Co., Inc. (72) Inventor Hiroki Kamata Ichibancho, Aoba-ku, Sendai-shi, Miyagi 3-7-1 Tohoku Electric Power Co., Inc. (56) Reference JP 7-12709 (JP, A) JP 7-83821 (JP, A) JP 5-256848 (JP, A) Special Kaihei 10-282048 (JP, A) JP-A-6-180281 (JP, A) JP-A-8-160035 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 17 / 00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高温部材にコーティングされたセラミッ
ク層及び耐食合金層が高温雰囲気に曝露され、セラミッ
ク層と耐食合金層の界面に経年的に酸化物層が形成され
る高温機器において、実機高温部材と同仕様のセラミッ
ク層及び耐食合金層をコーティングした試験片を高温大
気中に曝露してセラミック層と耐食合金層の界面に酸化
物層を生成し、曝露試験後、この酸化物層の厚さに対す
るセラミック層のはく離強度を測定し、その後、数値解
析によって求めた熱応力値とセラミック層のはく離強度
の大小の比較からセラミック層と耐食合金層の界面に経
年的に生じる酸化物層がセラミック層のはく離損傷を誘
発する限界の厚さを求めることを特徴とするセラミック
コーティング寿命推定方法。
1. A high temperature device in which a ceramic layer and a corrosion resistant alloy layer coated on the high temperature member are exposed to a high temperature atmosphere and an oxide layer is formed at the interface between the ceramic layer and the corrosion resistant alloy layer over time. The test piece coated with a ceramic layer and a corrosion resistant alloy layer of the same specifications as above is exposed to a high temperature atmosphere to form an oxide layer at the interface between the ceramic layer and the corrosion resistant alloy layer, and after the exposure test, the thickness of this oxide layer The peel strength of the ceramic layer was measured, and then the thermal stress value obtained by numerical analysis was compared with the peel strength of the ceramic layer. A method for estimating the life of a ceramic coating, which comprises determining a limit thickness that induces flaking damage.
【請求項2】 請求項1において、酸化物層がセラミッ
ク層のはく離損傷を誘発する限界の厚さは、セラミック
層の繰り返し疲労特性及び実機高温機器の起動停止回数
に基づいて修正することを特徴とするセラミックコーテ
ィング寿命推定方法。
2. The limit thickness at which the oxide layer induces delamination damage to the ceramic layer according to claim 1, is modified based on the cyclic fatigue property of the ceramic layer and the number of times of starting and stopping the actual high temperature equipment. Method for estimating ceramic coating life.
【請求項3】 請求項1において、実機高温機器の酸化
物層がセラミック層のはく離損傷を誘発する限界の厚さ
を求めるに際し、その算出は、実機高温機器の総運転時
間、運転温度、起動停止回数の運転三条件によって規定
されることを特徴とするセラミックコーティング寿命推
定方法。
3. The method according to claim 1, wherein when determining the limit thickness at which the oxide layer of the actual high-temperature equipment induces delamination damage of the ceramic layer, the calculation is performed by calculating the total operating time, operating temperature, and start-up of the actual high-temperature equipment. A method for estimating the life of a ceramic coating, characterized by being defined by three operating conditions of the number of stops.
【請求項4】 高温部材にコーティングされたセラミッ
ク層及び耐食合金層が高温雰囲気に曝露され、セラミッ
ク層と耐食合金層の界面に経年的に酸化物層が形成され
る高温機器において、実機高温部材と同仕様のセラミッ
ク層及び耐食合金層をコーティングした試験片を高温大
気中に曝露してセラミック層と耐食合金層の界面に酸化
物層を生成し、曝露試験後、この酸化物層の厚さに対す
るセラミック層のはく離強度を測定し、その後、数値解
析によって求めた熱応力値とセラミック層のはく離強度
の大小の比較からセラミック層と耐食合金層の界面に経
年的に生じる酸化物層がセラミック層のはく離損傷を誘
発する限界の厚さを求め、現在稼働中の実機高温機器の
セラミック層と耐食合金層の界面に生じている酸化物層
の厚さを実機高温機器の運転条件から予測し、セラミッ
ク層のはく離損傷を誘発する限界の酸化物層厚さと現在
の酸化物層厚さを比較し、セラミック層のはく離損傷に
対する余寿命を実機高温機器の稼働中に評価することを
特徴とするセラミックコーティング余寿命評価システ
ム。
4. An actual high temperature member in a high temperature device in which a ceramic layer and a corrosion resistant alloy layer coated on a high temperature member are exposed to a high temperature atmosphere and an oxide layer is formed at the interface between the ceramic layer and the corrosion resistant alloy layer over time. The test piece coated with a ceramic layer and a corrosion resistant alloy layer of the same specifications as above is exposed to a high temperature atmosphere to form an oxide layer at the interface between the ceramic layer and the corrosion resistant alloy layer, and after the exposure test, the thickness of this oxide layer The peel strength of the ceramic layer was measured, and then the thermal stress value obtained by numerical analysis was compared with the peel strength of the ceramic layer. Determining the limit thickness that induces delamination damage, the thickness of the oxide layer formed at the interface between the ceramic layer and the corrosion-resistant alloy layer of the actual high temperature equipment currently in operation is determined by the actual high temperature equipment. Predicted from the operating conditions of the reactor and compared the current oxide layer thickness with the limit oxide layer thickness that induces the peeling damage of the ceramic layer, and the remaining life against the peeling damage of the ceramic layer was measured during operation of the actual high temperature equipment. Ceramic coating residual life evaluation system characterized by evaluation.
【請求項5】 請求項4において、酸化物層がセラミッ
ク層のはく離損傷を誘発する限界の厚さは、セラミック
層の繰り返し疲労特性及び実機高温機器の起動停止回数
に基づいて修正することを特徴とするセラミックコーテ
ィング余寿命評価システム。
5. The thickness according to claim 4, wherein the limit thickness at which the oxide layer induces delamination damage of the ceramic layer is modified based on the cyclic fatigue characteristics of the ceramic layer and the number of times of starting and stopping the actual high temperature equipment. Ceramic coating remaining life evaluation system.
【請求項6】 請求項4において、実機高温機器の酸化
物層がセラミック層のはく離損傷を誘発する限界の厚さ
を求めるに際し、その算出は、実機高温機器の総運転時
間、運転温度、起動停止回数の運転三条件によって規定
されることを特徴とするセラミックコーティング余寿命
評価システム。
6. The method according to claim 4, wherein when determining the limit thickness at which the oxide layer of the actual high temperature equipment induces delamination damage of the ceramic layer, the calculation is performed by calculating the total operating time, operating temperature and start-up of the actual high temperature equipment. A ceramic coating remaining life evaluation system characterized by being defined by three operating conditions of the number of stops.
JP09070698A 1998-03-20 1998-03-20 Ceramic coating life estimation method and remaining life evaluation system Expired - Fee Related JP3470311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09070698A JP3470311B2 (en) 1998-03-20 1998-03-20 Ceramic coating life estimation method and remaining life evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09070698A JP3470311B2 (en) 1998-03-20 1998-03-20 Ceramic coating life estimation method and remaining life evaluation system

Publications (2)

Publication Number Publication Date
JPH11271211A JPH11271211A (en) 1999-10-05
JP3470311B2 true JP3470311B2 (en) 2003-11-25

Family

ID=14005981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09070698A Expired - Fee Related JP3470311B2 (en) 1998-03-20 1998-03-20 Ceramic coating life estimation method and remaining life evaluation system

Country Status (1)

Country Link
JP (1) JP3470311B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558144A (en) * 2013-10-31 2014-02-05 西北工业大学 Method for predicting service life of environmental barrier coatings (EBC)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4801295B2 (en) * 2001-08-31 2011-10-26 財団法人電力中央研究所 Temperature estimation method for thermal barrier coating
JP7068134B2 (en) * 2018-10-22 2022-05-16 東芝エネルギーシステムズ株式会社 How to estimate the life of the thermal barrier coating
CN111581861B (en) * 2020-04-15 2024-05-28 华南理工大学 Continuous damage prediction method and system for high-temperature oxidation corrosion of high-chromium steel member
EP4239313A4 (en) * 2020-12-03 2024-04-17 JFE Steel Corporation Delayed fracture characteristic evaluation method and program
KR102535511B1 (en) * 2021-12-22 2023-05-26 성균관대학교산학협력단 Integrity evaluation apparatus and method of bonding materials for high temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558144A (en) * 2013-10-31 2014-02-05 西北工业大学 Method for predicting service life of environmental barrier coatings (EBC)

Also Published As

Publication number Publication date
JPH11271211A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
JPH06180281A (en) Method and device for predicting deterioration and damage to structural member
JP3470311B2 (en) Ceramic coating life estimation method and remaining life evaluation system
CN113466041A (en) Turbine blade seepage mechanical property test evaluation method
Cernuschi et al. Non-destructive thermographic monitoring of crack evolution of thermal barrier coating coupons during cyclic oxidation aging
US7654734B2 (en) Methods and devices for evaluating the thermal exposure of a metal article
Gheno et al. Alumina failure and post-failure oxidation in the NiCoCrAlY alloy system at high temperature
JP2009092478A (en) Method of evaluating degradation in heat-resistant steel and method of evaluating degradation in turbine
EP1426759B1 (en) A non-destructive testing method of determining the depletion of a coating
JPH09195795A (en) Remaining life evaluation method for gas turbine stationary blade and device thereof
US7150798B2 (en) Non-destructive testing method of determining the service metal temperature of a component
US10634629B2 (en) Techniques for using oxide thickness measurements for predicting crack formation and growth history in high-temperature metallic components
JP4460806B2 (en) Life management method of high-temperature parts of gas turbine
JP4105911B2 (en) Metal element content prediction method and metal element content decrease timing prediction method
CN114566236A (en) Prediction method and system for high-temperature endurance/creep life of high-temperature alloy containing coating
JP2003004548A (en) Method of estimating metal temperature of high- temperature member
JP3331459B2 (en) Ceramic coating remaining life evaluation diagnostic system
Reimche et al. Non-destructive determination of local damage and material condition in high-performance components: High-frequency eddy current and induction thermography techniques
JP2005339249A (en) Repair plan support method and apparatus for plant equipment member
JPH08160035A (en) Method and apparatus for controlling life of high temperature part of gas turbine
JPH0712709A (en) Deterioration diagnostic method and device for gas turbine coating vane
Zilberstein et al. Validation of multi-frequency eddy current MWM sensors and MWM-Arrays for coating production quality and refurbishment assessment
Woodford Performance-based creep strength and intrinsic ductility for a cast nickel-based superalloy
JP2001215176A (en) Maintenance and control support system of coating member
JP2003315252A (en) Life evaluating method for heat shield coating
JP3432364B2 (en) Material strength evaluation method for metal materials

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees