JP3470210B2 - Motor control device - Google Patents

Motor control device

Info

Publication number
JP3470210B2
JP3470210B2 JP16186795A JP16186795A JP3470210B2 JP 3470210 B2 JP3470210 B2 JP 3470210B2 JP 16186795 A JP16186795 A JP 16186795A JP 16186795 A JP16186795 A JP 16186795A JP 3470210 B2 JP3470210 B2 JP 3470210B2
Authority
JP
Japan
Prior art keywords
rotating body
rotation speed
motor
magnetic bearing
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16186795A
Other languages
Japanese (ja)
Other versions
JPH0919177A (en
Inventor
厚 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP16186795A priority Critical patent/JP3470210B2/en
Publication of JPH0919177A publication Critical patent/JPH0919177A/en
Application granted granted Critical
Publication of JP3470210B2 publication Critical patent/JP3470210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/02Relieving load on bearings using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0457Details of the power supply to the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/40Application independent of particular apparatuses related to environment, i.e. operating conditions
    • F16C2300/62Application independent of particular apparatuses related to environment, i.e. operating conditions low pressure, e.g. elements operating under vacuum conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Stopping Of Electric Motors (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、電動機の制御装置、
さらに詳しくは、たとえば磁気軸受型真空ポンプなどに
おいて磁気軸受手段により非接触支持された回転体を駆
動するための高周波電動機の制御装置に関する。 【0002】 【従来の技術】磁気軸受型真空ポンプでは、磁気軸受手
段により非接触支持された回転体が高周波電動機により
高速で回転駆動されるようになっている。電動機は、回
転体に設けられたロータ部とその周囲に配設されたステ
ータ部とからなる。回転体の周囲には、磁気軸受手段を
構成する電磁石および位置センサ、回転体の回転数を検
出する回転数センサ、停電時や回転体を停止させるとき
など磁気軸受手段による支持がなくなったときに回転体
を支持するためのタッチダウン軸受などが設けられてい
る。電動機の制御装置は、電動機の駆動とその回転数の
制御を行うためのインバータ、ならびに電動機の停止時
に回生制動により発電される電力を磁気軸受手段および
インバータに供給するためのコンバータを備えている。
インバータは、電動機のステータ部に駆動信号を出力
し、回転数センサからの回転数検出信号に基づいて駆動
信号の周波数を制御することにより、電動機の回転数を
制御するようになっている。そして、電動機の停止時に
は、インバータは、電動機のすべり量が一定になるよう
に、回転数センサからの回転数検出信号に基づいて電動
機への駆動信号の周波数を制御し、これにより回生制動
を行わせるようになっている。なお、この明細書におい
て、すべり量とは、電動機のロータ部の実回転数とイン
バータの駆動信号の周波数との差をいうものとする。 【0003】停電などにより電動機への通電が停止する
と、回転体はわずかに減速しながら回転を継続する。そ
の間、コンバータにより、回転体の有する回転運動エネ
ルギが電力に変換されて、磁気軸受手段とインバータに
供給される。そして、磁気軸受手段は、コンバータから
供給される電力により、回転体の非接触支持を継続す
る。一方、インバータは、コンバータから供給される電
力により、すべり量が一定になるように駆動信号の周波
数を制御して、回生制動を継続させ、電動機を徐々に減
速させる。回転体がある程度減速してその運動エネルギ
が減少すると、コンバータから磁気軸受手段とインバー
タに供給される電力も減少する。そして、コンバータか
ら供給される電力によって磁気軸受手段が回転体を非接
触支持できなくなった時点で、回転体はタッチダウン軸
受で支持され、さらに減速して、やがて停止する。 【0004】 【発明が解決しようとする課題】上記の従来の電動機の
制御装置では、電動機の停止時にすべり量を一定にして
回生制動を行っているため、次のような問題があった。
すなわち、すべり量が一定であると、図3のグラフに示
すように、通電停止直後の回転体の回転数が高い状態で
は発電量が大きく、回転数が低下すると発電量が極端に
低下し、比較的高い回転数で磁気軸受手段に供給される
電力が非常に小さくなって、回転体を磁気軸受手段で非
接触支持できなくなる。このため、回転体が比較的高い
回転数の状態でタッチダウン軸受に受けられてタッチダ
ウンすることになり、タッチダウン軸受の寿命が短くな
るという問題があった。これを避けるためには、バッテ
リなどの補助電力手段を設けて、回転体の回転数が十分
に低下するまで補助電力手段によって磁気軸受手段を作
動させる必要があるが、そうすると補助電力手段のメン
テナンスが面倒であるという問題が生じる。 【0005】この発明の目的は、上記の問題を解決し、
電動機の停止時に回転体の回転数が十分に低下するまで
比較的長時間にわたり磁気軸受手段に所望の電力を供給
して、磁気軸受手段で回転体を非接触支持できる電動機
の制御装置を提供することにある。 【0006】 【課題を解決するための手段】この発明による電動機の
制御装置は、磁気軸受手段により非接触支持される回転
体に設けられたロータ部とその周囲に配設されたステー
タ部とを有する高周波電動機の回転数を、上記回転体の
回転数を検出する回転数センサからの回転数検出信号に
基づいて、インバータで制御し、上記電動機の停止時
に、上記回転体の有する運動エネルギを変換手段により
電力に変換し、上記変換手段の出力電力を上記磁気軸受
手段に供給するとともに上記インバータを介して上記電
動機に供給する電動機の制御装置において、上記インバ
ータが、上記電動機が停止する際に、上記変換手段の出
力電力量がほぼ一定になるように、上記電動機に出力す
る駆動信号の周波数を上記回転数センサからの回転数検
出信号よりも徐々に低くすることを特徴とするものであ
る。 【0007】 【作用】電動機を停止させるときに、インバータは、図
2に示すように、通電停止直後の回転体の回転数が高い
ときは、すべり量を小さくし、回転体の回転数が低下す
るにつれてすべり量を徐々に大きくすることにより、変
換手段の出力電力量がほぼ一定になるように電動機への
駆動信号の周波数を制御する。このため、回転体の回転
数が十分に低くなるまで比較的長時間にわたって一定の
発電量が得られ、これが磁気軸受手段に供給されて、十
分に低い回転数まで回転体が磁気軸受手段で非接触支持
される。 【0008】 【実施例】以下、図面を参照して、この発明の実施例に
ついて説明する。 【0009】図1は、磁気軸受型真空ポンプの主要部を
概略的に示している。 【0010】真空ポンプは、ケーシング(1) と、その内
側に鉛直に配置された軸状の回転体(2) とを備えてい
る。回転体(2) は、ケーシング(1) に設けられたアキシ
アル磁気軸受部(3) および上下2組のラジアル磁気軸受
部(4)(5)により非接触支持され、内蔵型高周波電動機
(6) により高速回転させられる。電動機(6) は、回転体
(2) に設けられたロータ部(6a)と、その周囲のケーシン
グ(1) に配設されたステータ部(6b)とを備えており、ス
テータ部(6b)が電動機制御装置(7) に接続されている。
また、回転体(2) の回転数を検出する回転数センサ(8)
がケーシング(1) に設けられ、これからの回転数検出信
号が電動機制御装置(7) に入力する。ケーシング(1) の
上下2箇所に、磁気軸受部(3)(4)(5) による回転体(2)
の支持がなくなったときに回転体(2) を受けるためのタ
ッチダウン軸受(10)(11)が設けられている。タッチダウ
ン軸受(10)(11)は、たとえばアンギュラ玉軸受により構
成されている。 【0011】アキシアル磁気軸受部(3) は、回転体(2)
をアキシアル方向(上下方向)に支持するためのもので
あり、回転体(2) の中間部のフランジ部(2a)を上下両側
から挟むように配置された1対の環状の電磁石(アキシ
アル電磁石)(3a)を備えている。上下のアキシアル電磁
石(3a)は、回転体(2) のフランジ部(2a)を磁力により吸
引して回転体(2) をアキシアル方向に非接触支持するも
のであり、磁気軸受制御回路(12)に接続されている。ケ
ーシング(1) に、回転体(2) のアキシアル方向の位置を
検出するためのアキシアル位置センサ(13)が設けられて
いる。このセンサ(13)は、回転体位置検出回路(14)に接
続されている。ラジアル磁気軸受部(4)(5)は、回転体
(2) をラジアル方向(水平方向)に支持するためのもの
である。上側のラジアル磁気軸受部(4) は、回転体(2)
を互いに直交する2つのラジアル方向の両側から挟むよ
うに配置された4個の電磁石(ラジアル電磁石)(4a)を
備えている。下側のラジアル磁気軸受部(5) も、同様の
4個のラジアル電磁石(5a)を備えている。ラジアル電磁
石(4a)(5a)は、回転体(2) を磁力により吸引してこれを
ラジアル方向に非接触支持するものであり、前述の磁気
軸受制御回路(12)に接続されている。上側のラジアル磁
気軸受部(4) の近傍に、回転体(2) の上部の互いに直交
する2つのラジアル方向の位置を検出するための2対の
ラジアル位置センサ(15)が設けられている。下側のラジ
アル磁気軸受部(5) の近傍に、回転体(2) の下部の互い
に直交する2つのラジアル方向の位置を検出するための
2対のラジアル位置センサ(16)が設けられている。これ
らのラジアル位置センサ(15)(16)は、前述の回転体位置
検出回路(14)に接続されている。磁気軸受部(3)(4)(5)
、位置センサ(13)(15)(16)、回転体位置検出回路(14)
および磁気軸受制御回路(12)により、回転体(2) を非接
触支持するための磁気軸受手段が構成されている。 【0012】回転体位置検出回路(14)は、アキシアル位
置センサ(13)の出力に基づいて回転体(2) のアキシアル
方向の位置を検出するとともに、上下のラジアル位置セ
ンサ(15)(16)の出力に基づいて回転体(2) のラジアル方
向の位置を検出するためのものである。磁気軸受制御回
路(12)は、回転体位置検出回路(14)の出力に基づいて、
回転体(2) の位置が所定の目標位置となるようにアキシ
アル電磁石(3a)およびラジアル電磁石(4a)(5a)を制御す
るものである。 【0013】電動機制御装置(7) は、インバータ(17)お
よびコンバータ(変換手段)(18)を備えている。回転数
センサ(8) の出力である回転数検出信号がインバータ(1
7)に入力し、インバータ(17)は、電動機(6) の停止時
に、コンバータ(18)の出力電力量がほぼ一定になるよう
に、電動機(6) への駆動信号の周波数を回転数センサ
(8) からの回転数検出信号よりも徐々に低くするように
なっている。他は、前記従来例の場合と同様である。 【0014】停電などにより電動機(6) への通電が停止
すると、前記従来例の場合とほぼ同様に、回転体(2) は
磁気軸受部(3)(4)(5) により非接触支持された状態で、
徐々に減速しながら回転を継続する。そして、コンバー
タ(18)から磁気軸受制御回路(12)に供給される電力が非
常に小さくなって、磁気軸受部(3)(4)(5) が作動しなく
なったときに、回転体(2) はタッチダウン軸受(10)(11)
で支持され、やがて停止する。この場合、インバータ(1
7)は、図2に示すように、通電停止直後の回転体(2) の
回転数が高いときは、すべり量を小さくし、回転体(2)
の回転数が低下するにつれてすべり量を徐々に大きくす
ることにより、コンバータ(18)の出力電力量がほぼ一定
になるように電動機(6) への駆動信号の周波数を制御す
る。このため、回転体(2) の回転数が十分に低くなるま
で比較的長時間にわたって一定の発電量が得られ、十分
に低い回転数まで回転体(2) が磁気軸受部(3)(4)(5) で
非接触支持される。そして、回転体(2) の回転数が十分
に低くなってから回転体(2) がタッチダウンするため、
タッチダウン軸受(10)(11)の寿命がのび、ポンプの損傷
を防ぐことができる。 【0015】 【発明の効果】この発明の電動機の制御装置によれば、
上述のように、電動機の停止時に、回転体の回転数が十
分に低下するまで比較的長時間にわたり磁気軸受手段に
所望の電力を供給して、磁気軸受手段で回転体を非接触
支持することができる。このため、回転体がタッチダウ
ン軸受で受けられるときには、回転体の回転数は十分に
小さくなっており、タッチダウン軸受の寿命がのびる。
そして、回転体の回転数が十分に小さくなるまで、変換
手段から供給される電力によって磁気軸受手段を作動さ
せることができるので、バッテリなどの補助電力手段を
設ける必要がなく、そのためのメンテナンスが不要であ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor control device,
More specifically, the present invention relates to a control device for a high-frequency motor for driving a rotating body that is supported in a non-contact manner by magnetic bearing means in a magnetic bearing vacuum pump or the like. 2. Description of the Related Art In a magnetic bearing type vacuum pump, a rotating body which is supported in a non-contact manner by magnetic bearing means is driven to rotate at a high speed by a high frequency motor. The electric motor includes a rotor section provided on a rotating body and a stator section disposed around the rotor section. Around the rotating body, an electromagnet and a position sensor constituting the magnetic bearing means, a rotation speed sensor for detecting the rotating speed of the rotating body, and when the support by the magnetic bearing means is lost, such as during a power failure or when stopping the rotating body. A touch-down bearing or the like for supporting the rotating body is provided. The motor control device includes an inverter for driving the motor and controlling the rotation speed thereof, and a converter for supplying electric power generated by regenerative braking when the motor is stopped to the magnetic bearing means and the inverter.
The inverter outputs a drive signal to a stator portion of the motor, and controls the frequency of the drive signal based on a rotation speed detection signal from a rotation speed sensor, thereby controlling the rotation speed of the motor. When the motor stops, the inverter controls the frequency of the drive signal to the motor based on the rotation speed detection signal from the rotation speed sensor so that the slip amount of the motor is constant, thereby performing regenerative braking. It is made to be. In this specification, the slip amount refers to a difference between the actual rotation speed of the rotor of the electric motor and the frequency of the drive signal of the inverter. When the power supply to the motor is stopped due to a power failure or the like, the rotating body continues to rotate while slightly decelerating. In the meantime, the rotary kinetic energy of the rotating body is converted into electric power by the converter and supplied to the magnetic bearing means and the inverter. Then, the magnetic bearing means continues the non-contact support of the rotating body by the electric power supplied from the converter. On the other hand, the inverter controls the frequency of the drive signal so that the slip amount becomes constant by the power supplied from the converter, continues regenerative braking, and gradually decelerates the motor. When the rotating body decelerates to some extent and its kinetic energy decreases, the power supplied from the converter to the magnetic bearing means and the inverter also decreases. Then, when the magnetic bearing means cannot support the rotating body in a non-contact manner by the power supplied from the converter, the rotating body is supported by the touch-down bearing, further decelerates, and eventually stops. [0004] In the above-mentioned conventional motor control device, the regenerative braking is performed with the slip amount kept constant when the motor is stopped. Therefore, the following problems arise.
That is, when the slip amount is constant, as shown in the graph of FIG. 3, the power generation amount is large when the rotation speed of the rotating body is high immediately after the stop of energization, and the power generation amount decreases extremely when the rotation speed decreases, The electric power supplied to the magnetic bearing means at a relatively high rotation speed becomes very small, and the rotating body cannot be supported in a non-contact manner by the magnetic bearing means. For this reason, the rotating body is received by the touch-down bearing at a relatively high rotation speed and touch-down occurs, and there is a problem that the life of the touch-down bearing is shortened. In order to avoid this, it is necessary to provide auxiliary power means such as a battery and operate the magnetic bearing means by the auxiliary power means until the rotation speed of the rotating body is sufficiently reduced. The problem that it is troublesome arises. An object of the present invention is to solve the above problems,
Provided is a motor control device capable of supplying desired electric power to a magnetic bearing means for a relatively long time until the rotation speed of a rotating body is sufficiently reduced when the motor stops, and supporting the rotating body in a non-contact manner by the magnetic bearing means. It is in. A motor control device according to the present invention comprises a rotor provided on a rotating body which is supported in a non-contact manner by magnetic bearing means and a stator provided around the rotor. The number of rotations of the high-frequency motor is controlled by an inverter based on a number-of-rotations detection signal from a number-of-rotations sensor that detects the number of rotations of the rotator, and the kinetic energy of the rotator is converted when the motor stops. Means for converting the power to the power, the output power of the conversion means is supplied to the magnetic bearing means and the motor is supplied to the motor via the inverter.In the control device of the motor, when the inverter stops the motor, The frequency of the drive signal output to the electric motor is changed to a rotation speed detection signal from the rotation speed sensor so that the output power amount of the conversion means is substantially constant. It is characterized in that it is gradually lowered. When the motor is stopped, the inverter reduces the slip amount and reduces the rotation speed of the rotating body when the rotation speed of the rotating body is high immediately after the power supply is stopped, as shown in FIG. By gradually increasing the amount of slip as the power is increased, the frequency of the drive signal to the electric motor is controlled so that the output power of the converter becomes substantially constant. For this reason, a constant power generation amount is obtained for a relatively long time until the rotation speed of the rotating body becomes sufficiently low, and this power is supplied to the magnetic bearing means. Contact supported. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 schematically shows a main part of a magnetic bearing type vacuum pump. The vacuum pump includes a casing (1) and a shaft-like rotating body (2) vertically disposed inside the casing (1). The rotating body (2) is supported in a non-contact manner by an axial magnetic bearing part (3) provided in the casing (1) and two sets of upper and lower radial magnetic bearing parts (4) and (5).
(6) High-speed rotation. The motor (6) is a rotating body
(2), and a stator (6b) disposed in a casing (1) around the rotor (6a), and the stator (6b) is connected to the motor control device (7). It is connected.
A rotation speed sensor (8) that detects the rotation speed of the rotating body (2)
Is provided in the casing (1), and a rotational speed detection signal from this is input to the motor control device (7). Rotating body (2) with magnetic bearings (3) (4) (5) at upper and lower locations of casing (1)
Touch-down bearings (10) and (11) are provided for receiving the rotating body (2) when the support is lost. The touchdown bearings (10) and (11) are constituted by, for example, angular contact ball bearings. The axial magnetic bearing (3) comprises a rotating body (2)
A pair of annular electromagnets (axial electromagnets) are arranged to support the rotating body (2) in the axial direction (vertical direction) and sandwich the flange (2a) at the middle part of the rotating body (2) from both upper and lower sides. (3a) is provided. The upper and lower axial electromagnets (3a) attract the flange portion (2a) of the rotating body (2) by magnetic force to support the rotating body (2) in a non-contact manner in the axial direction.The magnetic bearing control circuit (12) It is connected to the. The casing (1) is provided with an axial position sensor (13) for detecting the position of the rotating body (2) in the axial direction. This sensor (13) is connected to a rotating body position detection circuit (14). The radial magnetic bearings (4) and (5) are
(2) for supporting in the radial direction (horizontal direction). The upper radial magnetic bearing (4) is the rotating body (2)
Are provided so as to be sandwiched from both sides in two radial directions orthogonal to each other. The lower radial magnetic bearing portion (5) also includes four similar radial electromagnets (5a). The radial electromagnets (4a) and (5a) attract the rotating body (2) by magnetic force and support the rotating body (2) in a radially non-contact manner, and are connected to the magnetic bearing control circuit (12). Near the upper radial magnetic bearing (4), two pairs of radial position sensors (15) for detecting positions in two radial directions orthogonal to each other on the upper part of the rotating body (2) are provided. Two pairs of radial position sensors (16) are provided near the lower radial magnetic bearing portion (5) to detect the positions of two lower orthogonal portions in the radial direction of the rotating body (2). . These radial position sensors (15) and (16) are connected to the rotating body position detection circuit (14) described above. Magnetic bearings (3) (4) (5)
, Position sensor (13) (15) (16), rotating body position detection circuit (14)
The magnetic bearing control circuit (12) constitutes magnetic bearing means for supporting the rotating body (2) in a non-contact manner. The rotating body position detecting circuit (14) detects the axial position of the rotating body (2) based on the output of the axial position sensor (13), and detects the upper and lower radial position sensors (15) (16). This is for detecting the position of the rotating body (2) in the radial direction based on the output of the rotating body. The magnetic bearing control circuit (12), based on the output of the rotating body position detection circuit (14),
The axial electromagnet (3a) and the radial electromagnets (4a) (5a) are controlled so that the position of the rotating body (2) becomes a predetermined target position. The motor control device (7) includes an inverter (17) and a converter (conversion means) (18). The rotation speed detection signal output from the rotation speed sensor (8) is
7), the inverter (17) detects the frequency of the drive signal to the motor (6) so that the output power of the converter (18) becomes almost constant when the motor (6) is stopped.
The rotational speed detection signal is gradually lowered from (8). Others are the same as in the case of the conventional example. When the power supply to the motor (6) is stopped due to a power failure or the like, the rotating body (2) is supported in a non-contact manner by the magnetic bearings (3), (4) and (5), as in the case of the conventional example. In the state
Continue rotation while gradually decelerating. Then, when the power supplied from the converter (18) to the magnetic bearing control circuit (12) becomes extremely small and the magnetic bearing portions (3), (4), (5) stop operating, the rotating body (2) ) Is a touchdown bearing (10) (11)
It is supported by and stops soon. In this case, the inverter (1
7) As shown in FIG. 2, when the rotation speed of the rotating body (2) is high immediately after the energization is stopped, the slip amount is reduced and the rotating body (2)
By gradually increasing the slip amount as the rotation speed of the motor (6) decreases, the frequency of the drive signal to the electric motor (6) is controlled so that the output power of the converter (18) becomes substantially constant. For this reason, a constant power generation amount is obtained for a relatively long time until the rotation speed of the rotating body (2) becomes sufficiently low, and the rotating body (2) is moved to the magnetic bearing portions (3) (4) until the rotation speed becomes sufficiently low. ) (5) Non-contact support. And since the rotating body (2) touches down after the rotating speed of the rotating body (2) becomes sufficiently low,
The life of the touchdown bearings (10) and (11) is extended, and damage to the pump can be prevented. According to the motor control device of the present invention,
As described above, when the motor is stopped, the desired power is supplied to the magnetic bearing means for a relatively long time until the rotation speed of the rotating body is sufficiently reduced, and the rotating body is supported in a non-contact manner by the magnetic bearing means. Can be. For this reason, when the rotating body is received by the touch-down bearing, the rotating speed of the rotating body is sufficiently small, and the life of the touch-down bearing is extended.
Further, since the magnetic bearing means can be operated by the electric power supplied from the conversion means until the rotation speed of the rotating body becomes sufficiently small, there is no need to provide an auxiliary power means such as a battery, and thus no maintenance is required. It is.

【図面の簡単な説明】 【図1】この発明の実施例を示す磁気軸受型真空ポンプ
の主要部の概略構成図である。 【図2】図1の実施例の電動機の制御装置における回転
体の回転数とすべり量および発電量との関係を示すグラ
フである。 【図3】従来の電動機の制御装置における回転体の回転
数とすべり量および発電量との関係を示すグラフであ
る。 【符号の説明】 (2) 回転体 (3) アキシアル磁気軸受部 (4)(5) ラジアル磁気軸受部 (6) 高周波電動機 (6a) ロータ部 (6b) ステータ部 (7) 電動機制御装置 (8) 回転数センサ (10)(11) タッチダウン軸受 (12) 磁気軸受制御回路 (13) アキシアル位置センサ (14) 回転体位置検出回路 (15)(16) ラジアル位置センサ (17) インバータ (18) コンバータ(変換手段)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of a main part of a magnetic bearing vacuum pump showing an embodiment of the present invention. FIG. 2 is a graph showing the relationship between the number of rotations of a rotating body, the amount of slip, and the amount of power generation in the motor control device of the embodiment of FIG. FIG. 3 is a graph showing the relationship between the rotational speed of a rotating body and the amount of slip and power generation in a conventional motor control device. [Description of Signs] (2) Rotating body (3) Axial magnetic bearing (4) (5) Radial magnetic bearing (6) High-frequency motor (6a) Rotor (6b) Stator (7) Motor controller (8) ) Rotation speed sensor (10) (11) Touchdown bearing (12) Magnetic bearing control circuit (13) Axial position sensor (14) Rotating body position detection circuit (15) (16) Radial position sensor (17) Inverter (18) Converter (conversion means)

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02P 3/18 101 F16C 32/04 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) H02P 3/18 101 F16C 32/04

Claims (1)

(57)【特許請求の範囲】 【請求項1】磁気軸受手段により非接触支持される回転
体に設けられたロータ部とその周囲に配設されたステー
タ部とを有する高周波電動機の回転数を、上記回転体の
回転数を検出する回転数センサからの回転数検出信号に
基づいて、インバータで制御し、上記電動機の停止時
に、上記回転体の有する運動エネルギを変換手段により
電力に変換し、上記変換手段の出力電力を上記磁気軸受
手段に供給するとともに上記インバータを介して上記電
動機に供給する電動機の制御装置において、 上記インバータが、上記電動機が停止する際に、上記変
換手段の出力電力量がほぼ一定になるように、上記電動
機に出力する駆動信号の周波数を上記回転数センサから
の回転数検出信号よりも徐々に低くすることを特徴とす
る電動機の制御装置。
(57) [Claim 1] The number of rotations of a high frequency motor having a rotor portion provided on a rotating body non-contact supported by magnetic bearing means and a stator portion provided around the rotor portion is determined. Based on a rotation speed detection signal from a rotation speed sensor that detects the rotation speed of the rotating body, controlled by an inverter, and when the electric motor is stopped, the kinetic energy of the rotating body is converted into electric power by a conversion unit, In the motor control device, which supplies the output power of the conversion means to the magnetic bearing means and supplies the output power to the motor via the inverter, the inverter controls the output power of the conversion means when the motor stops. The frequency of the drive signal output to the electric motor is made gradually lower than the rotation speed detection signal from the rotation speed sensor so that the rotation speed becomes substantially constant. Control device.
JP16186795A 1995-06-28 1995-06-28 Motor control device Expired - Lifetime JP3470210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16186795A JP3470210B2 (en) 1995-06-28 1995-06-28 Motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16186795A JP3470210B2 (en) 1995-06-28 1995-06-28 Motor control device

Publications (2)

Publication Number Publication Date
JPH0919177A JPH0919177A (en) 1997-01-17
JP3470210B2 true JP3470210B2 (en) 2003-11-25

Family

ID=15743476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16186795A Expired - Lifetime JP3470210B2 (en) 1995-06-28 1995-06-28 Motor control device

Country Status (1)

Country Link
JP (1) JP3470210B2 (en)

Also Published As

Publication number Publication date
JPH0919177A (en) 1997-01-17

Similar Documents

Publication Publication Date Title
US6617734B2 (en) Magnetic bearing control device
JP2014149080A (en) High speed flywheel on magnetic bearings
JP2001508155A (en) Backup bearing for acceleration grounding
JP3677826B2 (en) Magnetic bearing device
JP3470210B2 (en) Motor control device
JP4136385B2 (en) Magnetic bearing type turbo molecular pump
JP3069704B2 (en) Turbo molecular pump braking control device
JP2009303284A (en) Flywheel-type uninterruptible power supply device and its controlling method
JP2000257634A (en) Magnetic bearing device
JPS60190697A (en) Control system of magnetic bearing in turbo molecular pump
JPH1084656A (en) Rotating machine for magnetic levitation
JP4353017B2 (en) Magnetic bearing device
JP3772979B2 (en) Braking control device for rotating machine
JP3624271B2 (en) Magnetic bearing device
JP2791515B2 (en) Controller for magnetic bearing
JP3470216B2 (en) Flywheel type power storage device
JPH10184586A (en) Turbo-molecular pump
JPH1047346A (en) Magnetic bearing device
JP3414918B2 (en) Rotary electric machine with magnetic bearing
JPH1070866A (en) Nonbearing type rotating machine
JP3622041B2 (en) Superconducting bearing device
JP2546625Y2 (en) Magnetic bearing control device
JP2006009759A (en) Turbo-molecular pump device
JP2958598B2 (en) Power storage device
JPH09257036A (en) Magnetic bearing device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030722

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

EXPY Cancellation because of completion of term