JP3468414B2 - Method and system for treating organic and persistent water by ozone - Google Patents

Method and system for treating organic and persistent water by ozone

Info

Publication number
JP3468414B2
JP3468414B2 JP36993798A JP36993798A JP3468414B2 JP 3468414 B2 JP3468414 B2 JP 3468414B2 JP 36993798 A JP36993798 A JP 36993798A JP 36993798 A JP36993798 A JP 36993798A JP 3468414 B2 JP3468414 B2 JP 3468414B2
Authority
JP
Japan
Prior art keywords
tank
gas
liquid
reaction separation
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36993798A
Other languages
Japanese (ja)
Other versions
JP2000189981A (en
Inventor
金夫 千葉
Original Assignee
千葉 ともえ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千葉 ともえ filed Critical 千葉 ともえ
Priority to JP36993798A priority Critical patent/JP3468414B2/en
Publication of JP2000189981A publication Critical patent/JP2000189981A/en
Application granted granted Critical
Publication of JP3468414B2 publication Critical patent/JP3468414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、食品加工場等から
発生する、有機性、難分解性排水の処理方法及びシステ
ムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and system for treating organic and hardly decomposable wastewater generated from food processing plants and the like.

【0002】[0002]

【従来の技術】従来、排水処理工程でのオゾンの使用方
法は、有機汚泥水中へ散気菅もしくはエゼクター方式に
より2〜3mmφの径を持つ高濃度オゾンガスを混合可
溶化させ、またオゾンガス気泡を圧入混合させ、汚泥の
濃縮性を高め汚泥の沈降性の増大を行っている。また前
記方法による空気との混合を図り、微生物の活性化を行
っている。
2. Description of the Related Art Conventionally, ozone has been used in wastewater treatment processes by mixing and solubilizing high-concentration ozone gas having a diameter of 2 to 3 mmφ into organic sludge water by an air diffuser or an ejector method, and injecting ozone gas bubbles. By mixing them, the sludge's thickening property is enhanced and the sludge's sedimentation property is increased. The microorganisms are activated by mixing with air by the above method.

【0003】[0003]

【発明が解決しようとする課題】上述したように、散気
管方式、エゼクター方式によるオゾンガスの気泡の球径
は2〜3mmφと大きく浮力も大きい。そのため水中で
の接触滞留時間が短く、また容積に対し表面積が小さく
流入排水等との接触面積が小さいので、流入排水等への
オゾンガスの溶解効率が低く、高濃度のオゾンガスが必
要となる。さらに排オゾンの処理設備等多くのエネルギ
ーと時間が必要であったと共に、流入原水の曝気効率も
悪く、硫化水素等の悪臭対策に対する設備等も必要であ
る。また、流入原水の前処理効率も悪く、曝気槽への流
入水の負荷を低減するために、大量の薬剤を必要とし、
その分産業廃棄物の量も増大しているという不都合もあ
った。
As described above, the bubble diameter of the ozone gas bubbles by the diffuser system and the ejector system is as large as 2-3 mmφ and the buoyancy is also large. Therefore, the contact residence time in water is short, the surface area is small relative to the volume, and the contact area with the inflowing wastewater is small, so that the dissolution efficiency of ozone gas into the inflowing wastewater is low and a high concentration ozone gas is required. Furthermore, a lot of energy and time such as a treatment facility for exhaust ozone are required, the aeration efficiency of the inflowing raw water is poor, and facilities for countermeasures against malodor such as hydrogen sulfide are required. In addition, the pretreatment efficiency of the inflow raw water is poor, and a large amount of chemicals is required to reduce the load of the inflow water on the aeration tank.
There was also the inconvenience that the amount of industrial waste increased accordingly.

【0004】本発明は、上記の問題に鑑みなされたもの
であり、本発明の目的は有機性、難分解性排水の負荷を
短時間で大量に低減し、脱臭する方法及びシステムを提
供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method and system for deodorizing by reducing a large amount of load of organic and persistent water in a short time. It is in.

【0005】[0005]

【課題を解決するための手段】本発明は、有機性、難分
解性排水の処理方法及びシステムに関するものであり、
特に有機性、難分解性排水の負荷を短時間で大量に低減
し、脱臭する方法に関するものであり、本発明の上記目
的は、方法の発明においては、混合調整槽に有機性、難
分解性排水を供給し、気液攪拌混合装置を接続された反
応分離槽に前記有機性、難分解性排水を前記混合調整槽
から供給し、前記反応分離槽から前記気液攪拌混合装置
に前記有機性、難分解性排水を送ると共に、前記気液攪
拌混合装置にオゾンガスを供給して気液濃縮混合するこ
とにより気液混合液とし、前記気液混合液を前記反応分
離槽に渦流回転拡散するように還流し酸化生成物と液
体とを分離して、前記分離された液体を前記混合調整槽
へ返送し、新たに前記混合調整槽に供給される有機性、
難分解性排水と前記混合調整槽で攪拌混合されるように
し、オゾンによる有機性、難分解性排水の処理方法であ
って、前記気液攪拌混合装置を複数設け、前記反応分離
槽の内側に回転反応分離筒を配置し、前記反応分離槽と
前記回転反応分離筒との間にパンチング板を配置し、前
記回転反応分離筒の内側にパンチング板を配置し、前記
有機性、難分解性排水が前記反応分離槽と前記回転反応
分離筒との間のパンチング板と、前記回転反応分離筒内
のパンチング板とを通過するようにし、有機性、難分解
性排水が、前記回転反応分離筒の内側に接続される前記
気液攪拌混合装置と、前記回転反応分離筒の外側に接続
される前記気液攪拌混合装置とによってオゾンガスと
液濃縮混合され、渦流回転拡散するように送られること
により達成される。
SUMMARY OF THE INVENTION The present invention relates to a method and system for treating organic, hardly decomposable wastewater,
In particular, it relates to a method for reducing the load of organic, hardly decomposable wastewater in a short period of time and for deodorizing, and the above-mentioned object of the present invention is, in the invention of the method, that the mixing adjustment tank is organic, hardly decomposable Waste water is supplied to the reaction separation tank to which a gas-liquid stirring / mixing device is connected.The organic and hardly decomposable waste water is supplied from the mixing adjustment tank, and the reaction / separation tank is connected to the gas-liquid stirring / mixing apparatus to the organic liquid. , Sending hardly-decomposable wastewater and supplying ozone gas to the gas-liquid stirring and mixing device to concentrate and mix the gas-liquid to form a gas-liquid mixed solution, and to swirl the gas-liquid mixed solution into the reaction separation tank by vortex rotation diffusion. refluxed, by separating the oxidation product and a liquid, and returning the separated liquid into the mixing adjustment tank, organic supplied to newly the mixing adjusting tank,
It is a method of stirring hardly mixed with the hardly decomposable waste water in the mixing adjustment tank, and is a method of treating organic, hardly decomposed waste water with ozone, wherein a plurality of the gas-liquid stirring and mixing devices are provided, and inside the reaction separation tank. A rotary reaction separation cylinder is arranged, and the reaction separation tank is
A punching plate is placed between the rotary reaction separation cylinder and
A punching plate is placed inside the rotary reaction separation cylinder, and the organic and persistent decomposition wastewater is mixed with the reaction separation tank and the rotary reaction.
A punching plate between the separation cylinder and the rotary reaction separation cylinder
Perforated with a punching plate, organic, difficult to decompose
Sex drainage, the rotation and the gas-liquid agitation mixing apparatus which the reaction is connected to the inside of the separating cylinder, ozone gas and gas by said gas-liquid agitation and mixing apparatus connected to the outside of the rotating reaction separating cylinder
It is achieved by liquefying and concentrating and sending by vortex rotary diffusion .

【0006】或いは、原水調整槽、混合調整槽、生物処
理槽、及び沈殿槽を備えた活性汚泥処理システムを用い
た有機性廃棄物処理方法において、混合調整槽に有機
性、難分解性排水を供給し、気液攪拌混合装置を接続さ
れた反応分離槽に前記有機性、難分解性排水を前記混合
調整槽から供給し、前記反応分離槽から前記気液攪拌混
合装置に前記有機性、難分解性排水を送ると共に、前記
気液攪拌混合装置にオゾンガスを供給して気液濃縮混合
することにより気液混合液とし、前記気液混合液を前記
反応分離槽に渦流回転拡散するように還流し酸化生成
物と液体とを分離して、前記分離された液体を前記混合
調整槽へ返送し、新たに前記混合調整槽に前記原水調整
槽から供給される有機性、難分解性排水と前記分離され
た液体とを前記混合調整槽で攪拌混合されるようにして
前記有機性、難分解性排水の負荷を低減し、前記負荷を
低減された有機性、難分解性排水を前記生物処理槽に送
り生物処理した後に沈殿槽へ供給し、前記沈殿槽の下部
に溜まった汚泥を気液攪拌混合装置を接続された反応分
離槽に供給し、前記反応分離槽から前記気液攪拌混合装
置に前記汚泥を送ると共に、前記気液攪拌混合装置にオ
ゾンガスを供給して混合することにより気液混合液と
し、前記気液混合液を前記反応分離槽に還流して酸化生
成物と液体とを分離して汚泥の減量/脱臭を行うように
し、オゾンによる有機性、難分解性排水の処理方法であ
って、前記混合調整槽からの前記有機性、難分解性排水
を供給される前記反応分離槽に接続される前記気液攪拌
混合装置を複数設け、当該反応分離槽の内側に回転反応
分離筒を配置し、当該反応分離槽と当該回転反応分離筒
との間にパンチング板を配置し、当該回転反応分離筒の
内側にパンチング板を配置し、前記有機性、難分解性排
が、当該反応分離槽と当該回転反応分離筒との間のパ
ンチング板と、当該回転反応分離筒内のパンチング板と
を通過するようにし、有機性、難分解性排水が、前記回
転反応分離筒の内側に接続される前記気液攪拌混合装置
と、前記回転反応分離筒の外側に接続される前記気液攪
拌混合装置とによってオゾンガスと気液濃縮混合され
渦流回転拡散するように送られることにより達成され
る。
Alternatively, in an organic waste treatment method using an activated sludge treatment system equipped with a raw water adjusting tank, a mixing adjusting tank, a biological treatment tank, and a sedimentation tank, the mixing adjusting tank is provided with an organic or hardly decomposable wastewater. Supplying the organic, hardly decomposable wastewater to the reaction separation tank connected to the gas-liquid agitation mixing device from the mixing adjustment tank, from the reaction separation tank to the gas-liquid agitation mixing device the organic, difficult Along with sending decomposable waste water, ozone gas is supplied to the gas-liquid stirring and mixing apparatus to concentrate and mix gas-liquid to form a gas-liquid mixed solution, and the gas-liquid mixed solution is refluxed to the reaction separation tank so as to be swirled and rotationally diffused Then , the oxidation product and the liquid are separated, the separated liquid is returned to the mixing and adjusting tank, and the organic and hardly decomposable waste water is newly supplied to the mixing and adjusting tank from the raw water adjusting tank. Mixing the separated liquid The load of the organic, hardly decomposed wastewater is reduced by stirring and mixing in a conditioning tank, and the organic, hardly decomposed wastewater with the reduced load is sent to the biological treatment tank to perform biological treatment, and then a sedimentation tank. The sludge accumulated in the lower part of the settling tank to the reaction separation tank connected to the gas-liquid stirring and mixing device, and sending the sludge from the reaction separation tank to the gas-liquid stirring and mixing device, Ozone gas is supplied to the liquid stirring and mixing device to mix it to form a gas-liquid mixed liquid, and the gas-liquid mixed liquid is refluxed to the reaction separation tank to separate the oxidation product and the liquid to reduce sludge weight / deodorization. A method for treating organic and hardly decomposable wastewater with ozone, wherein the gas-liquid stirring is connected to the reaction separation tank supplied with the organic and hardly decomposable wastewater from the mixing adjustment tank. Providing multiple mixing devices, Place the rotating reaction separating cylinder on the side, the reaction separation tank and the rotary reaction separating cylinder
A punching plate is placed between the
A punching plate is placed on the inner side, and the organic and non-decomposable wastewater flows between the reaction separation tank and the rotary reaction separation cylinder.
A punching plate and a punching plate in the rotary reaction separation cylinder.
And the organic and hardly decomposable wastewater is passed through the gas-liquid stirring / mixing device connected to the inside of the rotary reaction separation cylinder and the gas-liquid stirring / mixing device connected to the outside of the rotary reaction separation cylinder. Ozone gas and gas-liquid concentration mixture are mixed by the device ,
It is achieved by being sent in a vortex rotationally diffusive manner .

【0007】又、システムの発明においては、原水調整
槽、混合調整槽、生物処理槽、及び沈殿槽を備えた活性
汚泥処理システムにおいて、前記混合調整槽に繋がる反
応分離槽と、前記反応分離槽の内側に配置される回転分
離筒と、前記反応分離槽に周設され、前記回転反応分離
筒の内側と、前記回転分離筒の外側とに接続された複数
の気液攪拌混合装置にオゾンを供給して混合するオゾン
供給装置と、前記反応分離槽に有機性、難分解性排水を
前記混合調整槽から供給する手段と、前記反応分離槽及
び前記気液攪拌混合装置の間で前記有機性、難分解性排
水及びオゾン混合液を相互に供給/還流する供給/還流
手段と、オゾン処理された前記有機性、難分解性排水を
前記混合調整槽へ返送する手段と、前記オゾン処理され
た有機性、難分解性排水と前記原水調整槽から新たに送
られてくる有機性、難分解性排水とを攪拌混合して、前
記有機性、難分解性排水の負荷を低減させて後に、前記
生物処理槽へ前記負荷を低減させた排水を供給する手段
とを具備したオゾンによる有機性、難分解性排水の処理
システムであって、複数の気液攪拌混合装置を接続さ
れ、回転反応分離筒を内蔵した前記反応分離槽に有機
性、難分解性排水を供給し、前記反応分離槽から前記気
液攪拌混合装置に前記有機性、難分解性排水を送ると共
に、前記気液攪拌混合装置にオゾンガスを供給して気液
濃縮混合することにより気液混合液とし、前記気液混合
液を前記反応分離槽に渦流回転拡散するように還流し、
酸化生成物と液体とを分離し、前記有機性、難分解性排
水の負荷/脱臭を低減するようになっている反応分離槽
を第1反応分離槽及び第2反応分離槽として二つ直列に
接続し、前記第1反応分離槽では前記気液混合液が前記
第1反応分離槽内の回転反応分離筒の内側から外側へ当
該回転反応分離筒内のパンチング板を通過して、当該回
転反応分離筒から溢れて、当該反応分離槽と当該回転反
応分離筒との間のパンチング板を通過して渦流回転拡散
して流れるようにし、前記第2反応分離槽では前記第1
反応分離槽から送られてくる前記気液混合液が前記第2
反応分離槽内の回転反応分離筒の外側から内側へ当該反
応分離槽と当該回転反応分離筒との間のパンチング板を
通過して当該回転反応分離筒内に溢れて、当該回転反応
分離筒内のパンチング板を通過して渦流回転拡散して流
れるように構成した前記反応分離槽を組み込んだことに
よって達成される。
Further, in the invention of the system, in an activated sludge treatment system comprising a raw water adjusting tank, a mixing adjusting tank, a biological treatment tank, and a sedimentation tank, a reaction separation tank connected to the mixing adjusting tank, and the reaction separation tank. Of ozone to a plurality of gas-liquid agitating and mixing devices that are provided around the rotary separation cylinder arranged inside the rotary separation cylinder and the reaction separation tank, and are connected to the inside of the rotary reaction separation cylinder and the outside of the rotary separation cylinder. An ozone supply device for supplying and mixing, a means for supplying organic and hardly decomposable wastewater to the reaction separation tank from the mixing adjustment tank, and the organic material between the reaction separation tank and the gas-liquid agitation mixing device. A supply / reflux means for mutually supplying / refluxing the hardly decomposable wastewater and the ozone mixed liquid, a means for returning the ozone-treated organic and hardly decomposable wastewater to the mixing adjustment tank, and the ozone-treated Organic, persistent The load on the biological treatment tank is reduced by mixing the wastewater and the organic and refractory wastewater newly sent from the raw water adjusting tank with stirring to reduce the load of the organic and refractory wastewater. Of organic and persistent decomposition wastewater by ozone equipped with means to supply wastewater with reduced waste
A system that connects multiple gas-liquid agitation mixing devices.
In the reaction separation tank with a built-in rotary reaction separation cylinder,
Water is supplied from the reaction separation tank.
When the organic and persistent water is sent to the liquid stirring and mixing device,
In addition, ozone gas is supplied to the gas-liquid stirring / mixing device,
A gas-liquid mixed solution is obtained by concentrating and mixing, and the gas-liquid mixing is performed.
The liquid is refluxed in the reaction separation tank so as to be swirled and rotationally diffused,
Separates oxidation products and liquids,
Reaction separation tank designed to reduce water load / deodorization
As a first reaction separation tank and a second reaction separation tank in series
Connected, and in the first reaction separation tank, the gas-liquid mixture is
From the inside to the outside of the rotary reaction separation cylinder in the first reaction separation tank
After passing through the punching plate in the rotary reaction separation cylinder,
The reaction separation tank and the rotation reaction
Vortex flow diffusion through a punching plate between the separation cylinder
The first reaction in the second reaction separation tank.
The gas-liquid mixture sent from the reaction separation tank is the second
From the outside to the inside of the rotary reaction separation cylinder in the reaction separation tank,
A punching plate between the reaction separation tank and the rotary reaction separation cylinder
It passes and overflows into the rotation reaction separation cylinder, and the rotation reaction
Flows through a punching plate in a separation cylinder, vortex-rotationally diffuses
This is achieved by incorporating the reaction separation tank configured as described above .

【0008】又、原水調整槽、混合調整槽、生物処理
槽、沈殿槽、及び脱水機を備えた活性汚泥処理システム
において、前記混合調整槽に繋がる反応分離槽と、前記
反応分離槽の内側に配置される回転分離筒と、前記反応
分離槽に周設され、前記回転反応分離筒の内側と、前記
回転分離筒の外側とに接続された複数の気液攪拌混合装
置にオゾンを供給して混合するオゾン供給装置と、前記
反応分離槽に有機性、難分解性排水を前記混合調整槽か
ら供給する手段と、前記反応分離槽及び前記気液攪拌混
合装置の間で前記有機性、難分解性排水及びオゾン混合
液を相互に供給/還流する供給/還流手段と、オゾン処
理された前記有機性、難分解性排水を前記混合調整槽へ
返送する手段と、前記オゾン処理された有機性、難分解
性排水と前記原水調整槽から新たに送られてくる有機
性、難分解性排水とを攪拌混合して、前記有機性、難分
解性排水の負荷を低減させて後に、前記生物処理槽へ前
記負荷を低減させた排水を供給する手段とを具備し、前
記生物処理槽で処理された排水を前記沈殿槽へ供給する
手段と、前記沈殿槽に繋がる反応分離槽と、前記反応分
離槽に周設された気液攪拌混合装置にオゾンを供給して
混合する前記オゾン供給装置と、前記反応分離槽に前記
沈殿槽下部に溜まった汚泥を前記沈殿槽から供給する手
段と、前記反応分離槽及び前記気液攪拌混合装置の間で
前記汚泥及びオゾン混合液を相互に供給/還流する供給
/還流手段と、オゾン処理された前記汚泥を前記脱水機
へ供給する手段とを具備したオゾンによる有機性、難分
解性排水の処理システムであって、複数の気液攪拌混合
装置を接続され、回転反応分離筒を内蔵した前記反応分
離槽に有機性、難分解性排水を供給し、前記反応分離槽
から前記気液攪拌混合装置に前記有機性、難分解性排水
を送ると共に、前記気液攪拌混合装置にオゾンガスを供
給して気液濃縮混合することにより気液混合液とし、前
記気液混合液を前記反応分離槽に渦流回転拡散するよう
に還流し、酸化生成物と液体とを分離し、前記有機性、
難分解性排水の負荷/脱臭を低減するようになっている
反応分離槽を第1反応分離槽及び第2反応分離槽として
二つ直列に接続し、前記第1反応分離槽では前記気液混
合液が前記第1反応分離槽内の回転反応分離筒の内側か
ら外側へ当該回転反応分離筒内のパンチング板を通過し
て、当該回転反応分離筒から溢れて、当該反応分離槽と
当該回転反応分 離筒との間のパンチング板を通過して渦
流回転拡散して流れるようにし、前記第2反応分離槽で
は前記第1反応分離槽から送られてくる前記気液混合液
が前記第2反応分離槽内の回転反応分離筒の外側から内
側へ当該反応分離槽と当該回転反応分離筒との間のパン
チング板を通過して当該回転反応分離筒内に溢れて、当
該回転反応分離筒内のパンチング板を通過して渦流回転
拡散して流れるように構成した前記反応分離槽を組み込
んだことによって達成される。
In an activated sludge treatment system equipped with a raw water adjusting tank, a mixing adjusting tank, a biological treatment tank, a sedimentation tank, and a dehydrator, a reaction separation tank connected to the mixing adjusting tank and an inside of the reaction separation tank are provided. By supplying ozone to a plurality of gas-liquid agitating and mixing devices which are provided around the rotary separation cylinder and the reaction separation tank, which are arranged around the rotary separation cylinder and are connected to the inside of the rotary reaction separation cylinder and the outside of the rotary separation cylinder. The ozone supply device for mixing, a means for supplying organic, hardly decomposable wastewater to the reaction separation tank from the mixing adjustment tank, and the organic, hardly decomposed between the reaction separation tank and the gas-liquid stirring mixing device. Supply / reflux means for mutually supplying / refluxing the organic wastewater and the ozone mixed liquid, means for returning the ozone-treated organic and hardly decomposable wastewater to the mixing adjustment tank, and the ozone-treated organic, Persistent wastewater and raw water conditioning Wastewater with a reduced load to the biological treatment tank after stirring and mixing organic and refractory wastewater that is newly sent from the tank to reduce the load of the organic and refractory wastewater. And a means for supplying wastewater treated in the biological treatment tank to the precipitation tank, a reaction separation tank connected to the precipitation tank, and gas-liquid stirring provided around the reaction separation tank. The ozone supply device for supplying and mixing ozone to the mixing device, the means for supplying the sludge accumulated in the lower part of the precipitation tank to the reaction separation tank from the precipitation tank, the reaction separation tank and the gas-liquid agitation mixing device wherein the sludge and feeding / recirculation means for mutually supply / reflux ozone mixture, organic the sludge which has been ozonated due to ozone and means for supplying to the dehydrator, flame fraction between
A desolvable wastewater treatment system that mixes multiple gas-liquid agitators
The reaction component connected to the device and containing a rotary reaction separator
By supplying organic and non-decomposable wastewater to the separation tank, the reaction separation tank
From the gas-liquid agitation mixing device to the organic, persistent decomposition wastewater
And the ozone gas to the gas-liquid stirring and mixing device.
Supply it and concentrate it to form a gas-liquid mixture.
The gas-liquid mixture should be swirled and diffused into the reaction separation tank.
Reflux to separate the oxidation product and the liquid, said organic,
It is designed to reduce the load / deodorization of persistent water.
The reaction separation tank as the first reaction separation tank and the second reaction separation tank
Two of them are connected in series, and the gas-liquid mixture is mixed in the first reaction separation tank.
Whether the liquid mixture is inside the rotary reaction separation cylinder in the first reaction separation tank
To the outside through the punching plate in the rotary reaction separation cylinder.
Overflows from the rotary reaction separation cylinder,
Vortex passes through the punched plate between the rotary reaction minute away barrel
In the second reaction separation tank,
Is the gas-liquid mixed liquid sent from the first reaction separation tank
Is inside from the outside of the rotary reaction separation cylinder in the second reaction separation tank
To the side, the pan between the reaction separation tank and the rotary reaction separation cylinder
After passing through the pendant plate and overflowing into the rotary reaction separation cylinder,
Vortex rotation through the punching plate in the rotary reaction separation cylinder
Built-in reaction separation tank configured to diffuse and flow
It is achieved by've got.

【0009】[0009]

【発明の実施の形態】図1は本発明のオゾンによる有機
性、難分解性排水の負荷の低減/脱臭方法及び装置を組
み込んだ排水処理システムのフローを示す図である。有
機性、難分解性排水(以下、原水とする)は原水調整槽
2へ送られ、ここで以後の過程で処理する原水の処理量
を調整する。原水調整槽2から原水は混合調整槽6へ送
られる。原水が何も入っていない混合調整槽6へ流入す
る時、流入した原水はそのまま一次負圧型反応分離槽3
1へ送られ、一次負圧型反応分離槽31及び二次負圧型
反応分離槽41でオゾン処理された後に再び混合調整槽
6へと送られる。混合調整槽6でオゾン処理された原水
と原水調整槽2からの原水が混合される。一次負圧型反
応分離槽31及び二次負圧型反応分離槽41でオゾン処
理された原水(以下、オゾン処理水とする)はオゾンが
溶解されているために、原水と混合することによって効
率よくオゾン処理され、その結果として原水中の有機
性、難分解性排水は酸化分解、脱臭され次の生物処理槽
(曝気槽)61で処理を容易に行える程度にまで原水の
負荷を低下させることができる。生物処理槽(曝気槽)
61で処理された処理水は、沈殿槽62へ送られる。沈
殿槽62では処理水中に存在する微生物のフロックを沈
殿させるための槽である。この槽の上澄み液は放流さ
れ、沈殿物は定期的に取り出され脱水機63にかけられ
て水分が取り除かれたケーキとされ、処理される。以上
が、オゾンによる有機性、難分解性排水の負荷の低減/
脱臭方法及び装置を組み込んだ排水処理システムの大ま
かな流れである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the flow of a waste water treatment system incorporating the method and apparatus for reducing the load on organic, hardly decomposable waste water by ozone according to the present invention. The organic and hardly decomposable wastewater (hereinafter referred to as raw water) is sent to the raw water adjusting tank 2 where the amount of raw water to be treated in the subsequent process is adjusted. Raw water is sent from the raw water adjusting tank 2 to the mixing adjusting tank 6. When the raw water flows into the mixing and adjusting tank 6 that does not contain any raw water, the raw water that has flowed in remains as it is in the primary negative pressure type reaction separation tank 3
1, is subjected to ozone treatment in the primary negative pressure type reaction separation tank 31 and the secondary negative pressure type reaction separation tank 41, and is then sent to the mixing adjustment tank 6 again. Raw water that has been subjected to ozone treatment in the mixing and adjusting tank 6 and raw water from the raw water adjusting tank 2 are mixed. Raw water treated with ozone in the primary negative pressure type reaction separation tank 31 and the secondary negative pressure type reaction separation tank 41 (hereinafter referred to as ozone-treated water) has ozone dissolved therein. It is possible to reduce the load of the raw water to such an extent that the treated organic wastewater in the raw water is oxidatively decomposed and deodorized as a result, and can be easily treated in the next biological treatment tank (aeration tank) 61. . Biological treatment tank (aeration tank)
The treated water treated in 61 is sent to the settling tank 62. The settling tank 62 is a tank for precipitating flocs of microorganisms existing in the treated water. The supernatant liquid in this tank is discharged, and the precipitate is taken out periodically and put on a dehydrator 63 to obtain a cake from which water is removed, and processed. The above is the reduction of the load of organic and persistent decomposition wastewater by ozone /
It is a rough flow of a wastewater treatment system incorporating a deodorizing method and device.

【0010】図2は図1の沈殿槽の汚泥を負圧型反応分
離槽を用いて処理する工程を含むようにした場合の排水
処理システムのフローを示す図である。沈殿槽62で生
じる汚泥を負圧型反応分離槽71、72でオゾン酸化処
理し、汚泥の減量及び脱臭を行うようにしたものであ
る。
FIG. 2 is a diagram showing the flow of the waste water treatment system in the case where the sludge of the settling tank of FIG. 1 is treated by using a negative pressure type reaction separation tank. The sludge generated in the settling tank 62 is subjected to ozone oxidation treatment in the negative pressure type reaction separation tanks 71 and 72 so that the sludge can be reduced and deodorized.

【0011】ここで、本発明のオゾンによる有機性、難
分解性排水の負荷の低減/脱臭方法及び装置の主要部で
ある、混合調整槽6、一次負圧型反応分離槽31、二次
負圧型反応分離槽41、そして生物処理槽(曝気槽)6
1の部分について図3及び図4を参照して詳細に説明す
る。図3は原水調整槽2、混合調整槽6、一次負圧型反
応分離槽31、二次負圧型反応分離槽41、そして生物
処理槽(曝気槽)61の部分の側面断面図であり、図4
は図3の平面断面図である。
Here, the mixing adjustment tank 6, the primary negative pressure type reaction separation tank 31, and the secondary negative pressure type, which are the main parts of the method and apparatus for reducing the load and deodorization of the organic and hardly decomposable wastewater by ozone of the present invention. Reaction separation tank 41, and biological treatment tank (aeration tank) 6
The part 1 will be described in detail with reference to FIGS. 3 and 4. FIG. 3 is a side sectional view of the raw water adjusting tank 2, the mixing adjusting tank 6, the primary negative pressure type reaction separation tank 31, the secondary negative pressure type reaction separation tank 41, and the biological treatment tank (aeration tank) 61.
FIG. 4 is a plan sectional view of FIG. 3.

【0012】この装置は、オゾン発生装置21と、処理
する有機性、難分解性排水を溜める原水調整槽2、原水
と微細オゾンガスとを段階的に負圧混合し酸化分離させ
る一次負圧型反応分離槽31及び二次負圧型反応分離槽
41、原水とオゾン処理水とを接触混合させる混合調整
槽6(原水とオゾン処理水が混合されたものを以下、混
合水とする)、そして接触混合され負荷が低減された混
合水を生物処理する生物処理槽(曝気槽)61から成
る。一次回転反応分離筒32は、一次負圧型反応分離槽
31の内側に配置され、気液攪拌混合槽36A及び36
Bは一次回転反応分離筒32内側と接続され、気液攪拌
混合槽36C及び36Dは一次回転反応分離筒32外側
と接続されている。二つの負圧型反応分離槽に気液攪拌
混合槽と、各負圧型反応分離槽で生じる微細泡沫と浮上
分離されたオゾン酸化生成物を回収濃縮させる回収濃縮
槽11、及び回収濃縮槽11からの濃縮オゾン酸化生成
物を固液分離させるための濃縮汚泥貯留槽13が接続さ
れている。
This apparatus comprises an ozone generator 21, a raw water adjusting tank 2 for storing organic and hardly decomposable waste water to be treated, and a primary negative pressure type reaction separation in which raw water and fine ozone gas are mixed in a negative pressure stepwise to perform oxidative separation. The tank 31, the secondary negative pressure type reaction separation tank 41, the mixing adjustment tank 6 for contact-mixing the raw water and the ozone-treated water (hereinafter, the mixture of the raw water and the ozone-treated water is referred to as mixed water), and the contact-mixed It is composed of a biological treatment tank (aeration tank) 61 for biologically treating the mixed water with reduced load. The primary rotary reaction separation cylinder 32 is a primary negative pressure type reaction separation tank.
The gas-liquid stirring / mixing tanks 36A and 36 are arranged inside 31.
B is connected to the inside of the primary rotation reaction separation cylinder 32, and agitates gas and liquid.
Mixing tanks 36C and 36D are outside the primary rotary reaction separation cylinder 32.
Connected with. From the two negative pressure type reaction separation tanks, a gas-liquid stirring and mixing tank, a recovery concentration tank 11 for recovering and concentrating the fine bubbles generated in each negative pressure type reaction separation tank and the ozone oxidation products floated and separated, and from the recovery concentration tank 11 A concentrated sludge storage tank 13 for solid-liquid separation of the concentrated ozone oxidation product is connected.

【0013】本発明の特徴である微細オゾンガスを生成
し微細オゾンガスと流入原水との接触効率を高めるため
に、オゾン酸化水吸込口、気液吹出口、そして気液攪拌
混合槽が二つの負圧型反応分離槽それぞれに設置されて
いる。気液攪拌混合槽は、負圧型反応分離槽から有機
性、難分解性排液を吸い上げる管、オゾンガスが供給さ
れる管、オゾンガスと有機性、難分解性排液を攪拌混合
し凝縮させる部分、そして凝縮したオゾンガスと有機
性、難分解性排液を負圧型反応分離槽へ送るための管よ
り成るものである。各負圧型反応分離槽へ流入する原水
は気液攪拌混合槽へ吸込まれ、そこでオゾン発生装置2
1からのオゾンと、或は各負圧型反応分離槽でのオゾン
酸化反応の時に生じる排オゾンと撹拌、接触される。気
液攪拌混合された気液混合水は、凝縮され再び負圧型反
応分離槽へ送られ吹出される。ここで、気液混合水が吹
出される気液吹出口は、気液混合水を負圧型反応分離槽
内で渦流回転拡散させるために、渦を巻くような角度に
調整することが出来るように各負圧型反応分離槽内に設
置される。また、渦流回転速度がオゾン気泡の浮上速度
よりも大きくすることによって、負圧型反応分離槽内で
オゾンガスと原水との効率良い接触反応が可能となる。
In order to generate fine ozone gas, which is a feature of the present invention, and improve the contact efficiency between the fine ozone gas and the inflowing raw water, the ozone-oxidized water inlet, the gas-liquid outlet, and the gas-liquid agitation mixing tank have two negative pressure types. It is installed in each reaction separation tank. The gas-liquid stirring / mixing tank is a tube for sucking organic, hardly decomposable waste liquid from the negative pressure type reaction separation tank, a pipe to which ozone gas is supplied, a portion for stirring and mixing ozone gas and organic, hardly decomposable waste liquid, and condensing, Then, it is composed of a pipe for sending the condensed ozone gas and the organic and hardly decomposable waste liquid to the negative pressure type reaction separation tank. Raw water flowing into each negative pressure type reaction separation tank is sucked into the gas-liquid agitation mixing tank, where the ozone generator 2
The ozone from 1 or the exhaust ozone generated during the ozone oxidation reaction in each negative pressure type reaction separation tank is stirred and contacted. The gas-liquid mixed water mixed by gas-liquid stirring is condensed and again sent to the negative pressure type reaction separation tank and blown out. Here, the gas-liquid outlet from which the gas-liquid mixed water is blown out can be adjusted to a swirling angle so that the gas-liquid mixed water is swirled and rotationally diffused in the negative pressure type reaction separation tank. It is installed in each negative pressure type reaction separation tank. Further, by making the vortex flow rotation speed higher than the floating speed of ozone bubbles, it becomes possible to efficiently contact the ozone gas with the raw water in the negative pressure type reaction separation tank.

【0014】原水は原水流入管1より原水調整槽2へ送
られる。原水調整槽2では原水の処理量を調節し、適当
な量の原水を送水ポンプ3を用いて原水送水管4を経て
混合調整槽6へと送る。混合水管5は原水調整槽2から
の原水と後述する二次負圧型反応分離槽41から送られ
てくるオゾン処理水とを混合する。ここでは、混合調整
槽6が空の状態で、そこに新しく原水が流入する場合を
仮定して説明し、後で原水調整槽2と二次負圧型反応分
離槽41からのオゾン処理水とが混合される場合につい
て説明する。
Raw water is sent from a raw water inflow pipe 1 to a raw water adjusting tank 2. In the raw water adjusting tank 2, the amount of raw water to be treated is adjusted, and an appropriate amount of raw water is sent to the mixing adjusting tank 6 via the raw water feed pipe 4 using the water feed pump 3. The mixed water pipe 5 mixes the raw water from the raw water adjusting tank 2 with the ozone-treated water sent from the secondary negative pressure type reaction separation tank 41 described later. Here, description will be made assuming that the mixing adjustment tank 6 is empty and new raw water flows into the empty mixing adjustment tank 6, and the raw water adjustment tank 2 and the ozone-treated water from the secondary negative pressure type reaction separation tank 41 will be described later. The case where they are mixed will be described.

【0015】混合調整槽6へ送られた原水は、送水ポン
プ8で一次回転反応分離筒32へ送られ、更にオゾン酸
化水吸込口35Aより気液攪拌混合槽36Aへと送られ
る。また、オゾン発生装置21により発生したオゾンガ
スは、コンプレッサ−22によりオゾン管23Aを通っ
て気液攪拌混合装置36Aに圧送される。ここで、オゾ
ンガスと原水は混合攪拌されて微細なオゾンガス気泡と
なると共に、気液凝縮混合され、一次負圧型反応分離槽
31の内側に設けた、一次回転反応分離筒32の下方へ
送られ、気液吹出口37Aより吹出される。このオゾン
ガスと混合された気液混合水を、一次気液混合水とす
る。吹出された気液混合水は渦流回転拡散し、上述した
したように渦流回転速度をオゾン気泡の浮上速度よりも
大きくすることによって、負圧型反応分離槽内でオゾン
ガスと原水との効率良い接触反応が可能となる。このよ
うにして一次気液混合水はオゾンとの接触反応分離を行
い、段階的に穴の開いたパンチング板38を通り、一次
反応分離筒32方に送られる。一次反応分離筒32内の
パンチング板38を通過した一次気液混合水は、オゾン
酸化水吸込口35Bから気液攪拌混合槽36Bへ送られ
る。気液攪拌混合槽36Bで、吸込まれた一次気液混合
水は排オゾン管51Aからの排オゾンガスと混合され、
この気液混合水を二次気液混合水とする。二次気液混合
水は気液吹出口37Bから一次回転反応分離筒32の上
方へ吹出される。この気液吹出口37Bは、前記気液吹
出口37Aと同じく、渦を巻くように角度の調整がなさ
れている。二次気液混合水は渦流回転拡散しながら接触
反応分離を促進させる。
The raw water sent to the mixing adjusting tank 6 is sent to the primary rotary reaction separation cylinder 32 by the water sending pump 8 and further sent from the ozone oxidizing water suction port 35A to the gas-liquid stirring mixing tank 36A. Further, the ozone gas generated by the ozone generator 21 is pressure-fed by the compressor 22 to the gas-liquid stirring and mixing device 36A through the ozone pipe 23A. Here, the ozone gas and the raw water are mixed and stirred to form fine ozone gas bubbles, and are gas-liquid condensed and mixed, and are sent to the lower side of the primary rotary reaction separation cylinder 32 provided inside the primary negative pressure type reaction separation tank 31. It is blown out from the gas-liquid outlet 37A. The gas-liquid mixed water mixed with this ozone gas is referred to as primary gas-liquid mixed water. The blown gas-liquid mixed water is swirling and diffusing, and as described above, the swirling speed is made higher than the floating speed of ozone bubbles, so that the efficient contact reaction between ozone gas and raw water in the negative pressure type reaction separation tank. Is possible. In this way, the primary gas-liquid mixed water is subjected to contact reaction separation with ozone, and is sent to the primary reaction separation tube 32 through the punching plate 38 having holes in stages. The primary gas-liquid mixed water that has passed through the punching plate 38 in the primary reaction separation cylinder 32 is sent from the ozone-oxidized water suction port 35B to the gas-liquid stirring / mixing tank 36B. In the gas-liquid stirring and mixing tank 36B, the sucked primary gas-liquid mixed water is mixed with the exhaust ozone gas from the exhaust ozone pipe 51A,
Let this gas-liquid mixed water be secondary gas-liquid mixed water. The secondary gas-liquid mixed water is blown out above the primary rotary reaction separation cylinder 32 from the gas-liquid outlet 37B. The angle of the gas-liquid outlet 37B is adjusted so as to swirl like the gas-liquid outlet 37A. The secondary gas-liquid mixed water promotes catalytic reaction separation while rotating and diffusing in vortex flow.

【0016】一次回転反応分離筒32の上部から溢れ出
てきた気液混合水は、一次負圧型反応分離槽31と一次
回転反応分離筒32との間の中間に設けたパンチング板
39の上方部に溜まる。一方、オゾン酸化反応により発
生したオゾン酸化物は、渦流回転拡散作用、膨張、及び
オゾン酸化作用によって微細気泡に付着し、浮力によっ
て浮上分離される。浮上分離されたオゾン酸化物は泡沫
排オゾン回収塔25Aへと流れる。浮上分離された酸化
物の処理は、後に述べる回収濃縮槽11、消泡ポンプ2
6、そして泡沫排オゾン回収塔25Aとの間で消泡循環
により行われる。
The gas-liquid mixed water overflowing from the upper part of the primary rotary reaction separation cylinder 32 is located above the punching plate 39 provided in the middle between the primary negative pressure type reaction separation tank 31 and the primary rotary reaction separation cylinder 32. Accumulate in. On the other hand, the ozone oxide generated by the ozone oxidation reaction adheres to the fine bubbles by the vortex rotation diffusion effect, expansion, and ozone oxidation effect, and is floated and separated by the buoyancy. The floated and separated ozone oxide flows to the foam discharge ozone recovery tower 25A. The treatment of the floated and separated oxide is performed by the recovery concentration tank 11 and the defoaming pump 2 described later.
6, and the defoaming circulation is performed with the foam discharge ozone recovery tower 25A.

【0017】パンチング板39の上方に溜まった二次気
液混合水は、オゾン酸化水吸込口35Cより吸込まれ気
液攪拌混合槽36Cに送られる。気液攪拌混合槽36C
により、排オゾン管51Bからの微細排オゾンガスと気
液混合攪拌される。この気液混合水を三次気液混合水と
する。三次気液混合水は、気液吹出口37Cより一次負
圧型反応分離槽31へと吹出される。気液吹出口37C
は前記気液吹出口37Aと同じく、吹出す液体が渦を巻
くように角度の調節が行われる。三次気液混合水は渦流
回転攪拌され、さらにオゾンとの酸化反応を促進させ、
オゾン酸化物と反応分離作用を生じさせ浮上分離を行
う。
The secondary gas-liquid mixed water accumulated above the punching plate 39 is sucked through the ozone-oxidized water suction port 35C and sent to the gas-liquid stirring / mixing tank 36C. Gas-liquid stirring mixing tank 36C
As a result, the fine exhaust ozone gas from the exhaust ozone pipe 51B and the gas-liquid mixture are stirred. This gas-liquid mixed water is referred to as tertiary gas-liquid mixed water. The tertiary gas-liquid mixed water is blown from the gas-liquid outlet 37C to the primary negative pressure type reaction separation tank 31. Gas-liquid outlet 37C
As with the gas-liquid outlet 37A, the angle is adjusted so that the ejected liquid swirls. The tertiary gas-liquid mixed water is vortexed and agitated to further promote the oxidation reaction with ozone,
Floating separation is performed by causing a reaction separation action with ozone oxide.

【0018】浮上分離が行われた三次気液混合水は、一
次負圧型反応分離槽31と一次回転反応分離筒32との
間に設けたパンチング板39の下方部へ送られ、オゾン
酸化水吸込口35Dより吸込まれ気液攪拌混合槽36D
へ送られる。気液攪拌混合槽36Dでは、吸込まれた気
液混合水がオゾン発生装置21で発生しオゾン管23B
を通ってきたオゾンと気液混合される。この過程で生成
される気液混合水を、四次気液混合水とする。四次気液
混合水は、気液吹出口37Dより吹出される。気液吹出
口37Dもまた前記気液吹出口37Aと同じく、吹出す
液体が渦を巻くように角度の調節が行われる。四次気液
混合水は一次負圧型反応分離槽31の下方部へ吹出さ
れ、渦流回転攪拌され、さらにオゾンとの酸化反応を促
進させ、オゾン酸化物と反応分離作用を生じさせ浮上分
離を行う。一次反応分離槽31では気液混合液が一次反
応分離槽31内の回転反応分離筒32の内側から外側へ
流れるようになっている。
The tertiary gas-liquid mixed water having been subjected to the floating separation is sent to the lower part of the punching plate 39 provided between the primary negative pressure type reaction separation tank 31 and the primary rotary reaction separation cylinder 32, and the ozone oxidizing water is sucked in. Gas-liquid stirring and mixing tank 36D that is sucked in through the mouth 35D
Sent to. In the gas-liquid stirring / mixing tank 36D, the sucked gas-liquid mixed water is generated by the ozone generator 21, and the ozone pipe 23B is generated.
It is gas-liquid mixed with the ozone that has passed through. The gas-liquid mixed water generated in this process is referred to as the fourth gas-liquid mixed water. The fourth gas-liquid mixed water is blown out from the gas-liquid outlet 37D. Similarly to the gas-liquid outlet 37A, the gas-liquid outlet 37D is also adjusted in angle so that the liquid to be blown out swirls. The quaternary gas-liquid mixed water is blown out to the lower part of the primary negative pressure type reaction separation tank 31 and is vortex-rotated and agitated to further promote the oxidation reaction with ozone to cause a reaction separation action with ozone oxide to perform floating separation. . In the primary reaction separation tank 31, the gas-liquid mixed solution is
From inside to outside of the rotary reaction separation cylinder 32 in the reaction separation tank 31
It's flowing.

【0019】分離された液体は、一次負圧型反応分離槽
31下部に設けた送水管9を経て、二次負圧型反応分離
槽41へ送られる。二次負圧型反応分離槽41の構造は
上述した一次負圧型反応分離槽31と基本的に同じであ
る。濃縮余剰汚泥の一次負圧型反応分離槽31で処理さ
れた酸化処理水は、段階的に図1の二次負圧型反応分離
槽41内に描いた矢印に沿って二次回転反応分離筒42
に送られて渦流回転拡散させられる。この時処理水は、
気液攪拌混合槽43Aと43Dではオゾン発生装置21
からそれぞれオゾン管23Dと23Cを通ってきたオゾ
ンガスと、気液攪拌混合槽43Bと43Cでは排オゾン
ガスとそれぞれ気液攪拌混合される。これによりオゾン
ガスとの反応効率が高まり、溶菌作用、脱色作用、自己
酸化作用、脱臭作用が強制的に行われ、濃縮余剰汚泥を
90%以上減量させる。残りのオゾン酸化物は、濃縮性
も高く、従来法における脱水機により脱水処理される。
また、オゾンによる酸化を短時間で可能とするため、ま
たオゾン酸化処理水中の残留オゾンの曝気槽への直接流
出による過曝気、過溶菌作用を防止するために、流入原
水の水量及び負荷に対応した量の処理水を二次負圧型反
応分離槽41から流出管10を経て混合調整槽6へ送水
出来るように構成している。二次反応分離槽内41で
は、気液混合液が二次反応分離槽41内の回転反応分離
筒42の外側から内側へ流れるようになっている。
The separated liquid is sent to the secondary negative pressure type reaction separation tank 41 through the water supply pipe 9 provided in the lower part of the primary negative pressure type reaction separation tank 31. The structure of the secondary negative pressure type reaction separation tank 41 is basically the same as that of the above-mentioned primary negative pressure type reaction separation tank 31. Oxidized water treated in the primary negative pressure type reaction separation tank 31 of the concentrated excess sludge is gradually rotated along the arrow drawn in the secondary negative pressure type reaction separation tank 41 of FIG.
It is sent to and vortexed and rotated and diffused. At this time, the treated water is
In the gas-liquid stirring / mixing tanks 43A and 43D, the ozone generator 21 is used.
The ozone gas that has passed through the ozone pipes 23D and 23C from the above is respectively gas-liquid stirred and mixed with the exhaust ozone gas in the gas-liquid stirring and mixing tanks 43B and 43C. As a result, the reaction efficiency with ozone gas is enhanced, and the bacteriolytic action, decolorizing action, auto-oxidizing action and deodorizing action are forcibly performed, and the amount of concentrated excess sludge is reduced by 90% or more. The remaining ozone oxide has a high concentrating property and is dehydrated by a conventional dehydrator.
In addition, in order to enable oxidation by ozone in a short time, and to prevent over-aeration and over-lysing bacteria caused by direct outflow of residual ozone in ozone-oxidized water to the aeration tank, the amount and load of raw water inflow are supported. The amount of treated water is configured to be able to be fed from the secondary negative pressure type reaction separation tank 41 to the mixing adjustment tank 6 via the outflow pipe 10. In the secondary reaction separation tank 41
Is the rotary reaction separation of the gas-liquid mixture in the secondary reaction separation tank 41.
It flows from the outside to the inside of the cylinder 42.

【0020】上記の過程より生じる各反応分離槽からの
泡沫は、前記泡沫回収排オゾン塔25A、25Bにより
回収濃縮槽11に連結した消泡ポンプ26により消泡作
用を行いながら循環回収される。回収濃縮槽11ではオ
ゾン酸化生成物は濃縮化されて沈降するが、排オゾンに
よる脱臭効果作用によって、無臭性の凝集沈降性の高い
オゾン酸化生成物となる。この回収濃縮槽11で生じた
濃縮オゾン酸化生成物は、流出管12を経て濃縮汚泥貯
留槽13へ送られ固液分離された後に、脱水効率の高い
余剰汚泥とされる。
Foam from each reaction separation tank produced in the above process is circulated and recovered while performing a defoaming action by the defoaming pump 26 connected to the collecting and concentrating tank 11 by the foam collecting and discharging ozone towers 25A and 25B. In the recovery concentration tank 11, the ozone oxidation product is concentrated and settles, but due to the deodorizing effect of exhaust ozone, it becomes an odorless ozone oxidation product having a high aggregation and sedimentation property. The concentrated ozone oxidation product generated in the recovery concentration tank 11 is sent to the concentrated sludge storage tank 13 via the outflow pipe 12 and is subjected to solid-liquid separation, and is then made into excess sludge having high dehydration efficiency.

【0021】このようにオゾンガスの微細化による接触
効率、凝縮渦流回転拡散循環作用、排オゾン利用、流入
原水と酸化処理水との混合により、小容量のエネルギー
で大量の有機性、難分解性排水を、安全にそして安定し
て負荷の低減/脱臭を図ることが可能となる。
As described above, the contact efficiency due to the refinement of ozone gas, the condensing vortex flow rotation diffusion circulation action, the use of waste ozone, and the mixing of the inflowing raw water and the oxidation-treated water allow a large amount of organic and hardly decomposable drainage with a small amount of energy. The load can be reduced / deodorized safely and stably.

【0022】負圧型反応分離装置からのオゾン処理水は
混合調整槽6へ送られ、原水調整槽2からの原水とオゾ
ン処理水とが混合される。オゾン処理水はオゾンを十分
にそして均一に溶解している状態にあるため、混合調整
槽6でオゾン処理水と原水とが混合されることにより、
オゾン処理水中の残留オゾンが原水に対して反応し、原
水の酸化分解、殺菌、脱臭等を行う。残留オゾンはこの
ようにして有効に利用され、又原水の負荷を十分に下げ
ることが可能である。混合調整槽6では、一次及び二次
負圧型反応分離槽でのオゾン反応時に発生した排オゾン
ガスを収集して利用することができるように、排オゾン
管24と気液攪拌混合装置7を設置しても良い。この場
合、原水とオゾン処理水の混合水と排オゾンは気液攪拌
混合装置7へ送られて気液混合撹拌され、再び混合調整
槽6内へ送られる。このようにしてオゾンガス、オゾン
処理水、そして原水が混合される。
The ozone-treated water from the negative pressure type reaction separator is sent to the mixing and adjusting tank 6, and the raw water from the raw water adjusting tank 2 and the ozone-treated water are mixed. Since the ozone-treated water is in a state in which ozone is sufficiently and uniformly dissolved, by mixing the ozone-treated water with the raw water in the mixing adjustment tank 6,
Residual ozone in the ozone-treated water reacts with the raw water to oxidize, decompose, sterilize, and deodorize the raw water. The residual ozone can be effectively used in this way, and the load of raw water can be sufficiently reduced. The mixing adjustment tank 6 is provided with an exhaust ozone pipe 24 and a gas-liquid agitating / mixing device 7 so that exhaust ozone gas generated during ozone reaction in the primary and secondary negative pressure type reaction separation tanks can be collected and used. May be. In this case, the mixed water of the raw water, the ozone-treated water, and the discharged ozone are sent to the gas-liquid stirring / mixing device 7 where they are gas-liquid mixed and stirred, and again sent into the mixing adjustment tank 6. In this way, ozone gas, ozone-treated water, and raw water are mixed.

【0023】混合調整槽6で混合され、負荷を落とされ
た原水とオゾン処理水との混合水(以下、原水混合水と
する)は生物処理槽(曝気槽)61へ送られ、活性生物
処理法によって分解される。
The mixed water of the raw water and the ozone-treated water which has been mixed in the mixing adjustment tank 6 and whose load has been reduced (hereinafter referred to as raw water mixed water) is sent to the biological treatment tank (aeration tank) 61 for active biological treatment. Decomposed by law.

【0024】以上の工程において、生物処理槽(曝気
槽)61の微生物の分解能力によってオゾンガスの濃
度、オゾン処理水と混合調整槽6で混合する原水の量等
を変化させることができる。例えば、生物処理槽(曝気
槽)61での分解能力が限界に近い状態にある場合、混
合調整槽6から生物処理槽(曝気槽)61へ送る原水混
合水の負荷を低減させる必要がある。それには、各負圧
型反応分離槽でオゾン濃度を高くして酸化分解反応を促
進させて負荷を低減させ、混合調整槽6へ送るオゾン処
理水のオゾン濃度を高めるか、或は原水調整槽2から送
る原水の量を少なくするなどの処置を施せば良い。逆
に、生物処理槽(曝気槽)61での分解能力が十分にあ
る場合は、各負圧型反応分離槽でオゾン濃度を低くして
酸化分解反応を少し抑えて負荷を増加させ、混合調整槽
6へ送るオゾン処理水のオゾン濃度を低くするか、或は
原水調整槽2から送る原水の量を多くするなどの処置を
施せば良い。また、生物処理槽(曝気槽)61での負荷
を一定とするために上記の処置を取ることも可能であ
る。
In the above steps, the concentration of ozone gas, the amount of raw water to be mixed with the ozone-treated water in the mixing adjusting tank 6 and the like can be changed depending on the ability of the biological treatment tank (aeration tank) 61 to decompose microorganisms. For example, when the decomposition capacity of the biological treatment tank (aeration tank) 61 is close to the limit, it is necessary to reduce the load of the raw water mixed water sent from the mixing adjustment tank 6 to the biological treatment tank (aeration tank) 61. To this end, the ozone concentration is increased in each negative pressure type reaction separation tank to accelerate the oxidative decomposition reaction to reduce the load, and the ozone concentration of the ozone-treated water sent to the mixing adjustment tank 6 is increased, or the raw water adjustment tank 2 is used. Take measures such as reducing the amount of raw water sent from On the contrary, when the biological treatment tank (aeration tank) 61 has a sufficient decomposition ability, the ozone concentration is lowered in each negative pressure type reaction separation tank to slightly suppress the oxidative decomposition reaction to increase the load, and the mixing adjustment tank. The ozone concentration of the ozone-treated water sent to 6 may be lowered, or the amount of raw water sent from the raw water adjusting tank 2 may be increased. Further, it is possible to take the above-mentioned treatment in order to make the load on the biological treatment tank (aeration tank) 61 constant.

【0025】以上のように、易分解性の安定した低負荷
の排水、雑菌の抑制された排水、そして残留酸素の微細
気泡を含む排水は、微生物の活性化を図ることが出来る
ので、生物処理を効率よく行うことが出来る。また、こ
のような排水を曝気槽に送り込むことにより曝気槽への
負荷の変動を抑制でき、流入原水量の増大を少ないエネ
ルギーで安全且つ安定的に処埋することが出来る。
As described above, the easily degradable and stable low-load wastewater, the wastewater in which various germs are suppressed, and the wastewater containing fine bubbles of residual oxygen can activate the microorganisms, and thus can be treated by biological treatment. Can be done efficiently. Further, by feeding such wastewater to the aeration tank, it is possible to suppress fluctuations in the load on the aeration tank, and it is possible to safely and stably dispose of an increase in the amount of raw inflow water with less energy.

【0026】生物処理槽(曝気槽)61で処理された排
水は沈殿槽62へと送られる。前述したように、沈殿槽
62で生物処理槽(曝気槽)61から流れてきた微生物
のフロックが沈殿し、上澄みの液体はそのまま放流さ
れ、沈殿した微生物のフロック等の固体分は定期的に取
り出されて脱水処理された後に処分される。
The waste water treated in the biological treatment tank (aeration tank) 61 is sent to the settling tank 62. As described above, the flocs of the microorganisms flowing from the biological treatment tank (aeration tank) 61 are precipitated in the settling tank 62, the supernatant liquid is discharged as it is, and the solid components such as the flocs of the precipitated microorganisms are regularly taken out. It is then dehydrated and then disposed of.

【0027】この過程において、通常のように液体分を
放流し、固体分を脱水処理して廃棄しても良いが、図2
に示すように沈殿槽下部に溜まった汚泥を一次負圧型反
応分離槽71及び二次負圧型反応分離槽72へ送り、オ
ゾン酸化処理して後に脱水機にかけることもできる。こ
こで一次負圧型反応分離槽71及び二次負圧型反応分離
槽72の構造・動作は基本的に前述した一次負圧型反応
分離槽31及び二次負圧型反応分離槽32と同じであ
る。沈殿槽62から送られてくる汚泥をオゾンガスと気
液攪拌混合し、各負圧型反応分離槽内で渦流回転拡散さ
せ、浮上分離させることによって、オゾン酸化物と液体
とを分離し、又処理水の溶菌、脱色、脱臭を行い、汚泥
量を処理前と比べて1/10程度に減らすことができ
る。分離された固体分はその後脱水機63へ送られて脱
水処理によりケーキ状にされて処理される。オゾン酸化
された処理水は、負圧型反応分離槽に接続されている濃
縮汚泥貯溜槽へ返送され再利用される。
In this process, the liquid content may be discharged as usual and the solid content may be dehydrated and discarded, as shown in FIG.
As shown in, the sludge accumulated in the lower part of the settling tank can be sent to the primary negative pressure type reaction separation tank 71 and the secondary negative pressure type reaction separation tank 72, subjected to ozone oxidation treatment, and then subjected to a dehydrator. Here, the structure and operation of the primary negative pressure type reaction separation tank 71 and the secondary negative pressure type reaction separation tank 72 are basically the same as those of the primary negative pressure type reaction separation tank 31 and the secondary negative pressure type reaction separation tank 32 described above. The sludge sent from the settling tank 62 is gas-liquid agitated and mixed with ozone gas, swirled and rotationally diffused in each negative pressure type reaction separation tank, and floated to separate the ozone oxide and the liquid. It is possible to reduce the amount of sludge to about 1/10 as compared with that before the treatment by lysing, decolorizing and deodorizing. The separated solid content is then sent to the dehydrator 63 and processed into a cake by dehydration treatment. The ozone-oxidized treated water is returned to the concentrated sludge storage tank connected to the negative pressure type reaction separation tank for reuse.

【0028】以上は、本発明を説明するための一つの実
施形態であり、本発明はこの例のみに限定されるもので
ないことはもちろんである。
The above is one embodiment for explaining the present invention, and it goes without saying that the present invention is not limited to this example.

【0029】上述した気液混合攪拌装置により反応分離
槽内へ拡散される微細なオゾン気泡について、従来例と
対比した具体例により説明する。
The fine ozone bubbles diffused into the reaction separation tank by the gas-liquid mixing and stirring apparatus described above will be described by a concrete example in comparison with a conventional example.

【0030】(a)従来のオゾン気泡の大きさが「2〜
3mmφ」、本発明のオゾン気泡の大きさが「0.0l
mmφ」の場合、(b)従来のオゾン気泡の表面積S、
体積Pを計算すると、 S=4πr2=4×3.14×(2〜3)2 =50.24〜113.04mm2 P=4πr3/3=4×3.14×(2〜3)3/3 =33.49〜113.0mm3 (c)本発明のオゾン気泡の表面積S、体積Pを計算す
ると、 S=4πr2=4×3.14×(0.01)2=0.0l
256mm2 P=4πr3/3=4×3.14×(0.01)3/3 =0.0000041mm3 (d)表面積の増加は、 50.24÷0.01256=4,000倍 113.04÷0.01256=9,000倍 (e)径が2〜3mmφのオゾン気泡1個を0.01m
mφのオゾン気泡1個の体積と比較すると、径が2mm
φの場合は、 N=33.49÷0.0000041 =8,000,000個 径が3mmφの場合は、 N=113.04÷0.0000041 =27,000,000個 上記のように、前記の気液攪拌混合装置よりオゾン気泡
を濃縮余剰汚泥水中拡散すると、従来のものに比較し
て、表面積が4,000倍〜9,000倍に増大して水
との接触面積が著しく増大すると共に、微細な気泡のた
め浮力が小さく水中での滞留時間を長くさせると同時
に、水の流れを段階的に渦流状に回転流水を行うことに
より、さらに渦流による乱流波数により接触効率を高く
しまた、排オゾンの再利用により効果的に低いエネルギ
ーで短時間の有機性、難分解性排水のオゾン酸化分解作
用を可能とし、オゾン酸化量と流入原水の混合割合を調
製することにより、曝気槽での処理能力の向上を、安定
的に行うことが出来る。
(A) The size of conventional ozone bubbles is "2 to
3 mmφ ", the size of the ozone bubble of the present invention is" 0.01 "
mmφ ”, (b) the surface area S of a conventional ozone bubble,
When the volume P is calculated, S = 4πr 2 = 4 × 3.14 × (2 to 3) 2 = 50.24 to 113.04 mm 2 P = 4πr 3 /3=4×3.14×(2 to 3 ) 3/3 = 33.49~113.0mm 3 (c ) surface area S of the ozone bubbles of the present invention, when calculating the volume P, S = 4πr 2 = 4 × 3.14 × (0.01) 2 = 0. 0l
256 mm 2 P = 4πr 3 /3=4×3.14×(0.01) 3 /3=0.00000041 mm 3 (d) The increase in surface area is 50.24 ÷ 0.01256 = 4,000 times 113. 04 / 0.01256 = 9,000 times (e) 0.01 m of one ozone bubble with a diameter of 2 to 3 mm
Compared to the volume of one mφ ozone bubble, the diameter is 2 mm
In the case of φ, N = 33.49 ÷ 0.0000041 = 8,000,000 pieces When the diameter is 3 mmφ, N = 113.04 ÷ 0.0000041 = 27,000,000 pieces As described above, When ozone bubbles are diffused in the concentrated excess sludge water from the gas-liquid agitation mixing device of No. 1, the surface area is increased 4,000 to 9,000 times as compared with the conventional one, and the contact area with water is significantly increased. Buoyancy is small due to the fine bubbles, and the residence time in water is lengthened, and at the same time, the contact flow efficiency is increased by the turbulent wave number due to the vortex flow by rotating the water flow stepwise in a vortex shape. By reusing waste ozone, it is possible to effectively oxidize and decompose organic and refractory wastewater in a short time with low energy, and adjust the amount of ozone oxidation and the mixing ratio of raw water for exposure. The improvement of the processing capability of a bath, stably performed is possible.

【0031】[0031]

【発明の効果】以上のように本発明の方法及び装置によ
れば、一つ以上の気液攪拌混合装置を備えた負圧型反応
分離槽内での渦流回転拡散によって、原水に対し微細な
オゾン気泡の接触効率、滞留時間、そして溶解率が大き
くなり、オゾン酸化分解作用が効果的に効率良く行わ
れ、オゾン酸化分解による雑菌の処埋、及び難分解性物
質を可容化し易分解性物質とし、流入物質の負荷の低減
化の効率を高めることができ、更に原水中のオゾン濃度
を高めることができる。このようなオゾン処理水と原水
とを混合することによって、原水の負荷を生物活性処理
可能な程度に低減させることができる。その結果、オゾ
ン処理水中の残留酸素により生物を活性促進化させ、生
物処理槽(曝気槽)での処理効果を増大させると共に処
理量の増大を可能とし、濃縮沈殿の増大から生物活性処
理方法での最終沈降池においての処理量が増大される。
さらに、余剰汚泥及び濃縮オゾン酸化物の脱水効率が増
大し、小さなエネルギーで生物処理法の処理水質の向上
と処理量の増大が可能となる。
As described above, according to the method and apparatus of the present invention, fine ozone is added to raw water by vortex rotary diffusion in a negative pressure type reaction separation tank equipped with one or more gas-liquid stirring and mixing devices. The contact efficiency, residence time, and dissolution rate of air bubbles are increased, the ozone oxidative decomposition action is effectively performed efficiently, the miscellaneous bacteria are treated by ozone oxidative decomposition, and the easily decomposable substance is made to be easily degradable substance. Therefore, the efficiency of reducing the load of the inflowing substance can be increased, and the ozone concentration in the raw water can be further increased. By mixing such ozone-treated water and raw water, it is possible to reduce the load of raw water to the extent that biological activity can be treated. As a result, the residual oxygen in the ozone-treated water promotes the activity of the organisms, the treatment effect in the biological treatment tank (aeration tank) is increased, and the treatment amount can be increased. The throughput in the final settling basin is increased.
Further, the dehydration efficiency of the excess sludge and the concentrated ozone oxide is increased, and it becomes possible to improve the quality of treated water and increase the amount of treated water in the biological treatment method with a small amount of energy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のオゾンによる有機性、難分解性排水の
処理方法及びシステムの流れを表す図である。
FIG. 1 is a diagram showing the flow of a method and system for treating organic and hardly decomposable wastewater with ozone of the present invention.

【図2】本発明のオゾンによる有機性、難分解性排水の
処理方法及びシステムの流れを表す図である。
FIG. 2 is a diagram showing the flow of a method and system for treating organic and hardly decomposable wastewater with ozone of the present invention.

【図3】本発明の方法を実施するための装置の側面断面
図である。
FIG. 3 is a side cross-sectional view of an apparatus for performing the method of the present invention.

【図4】本発明の方法を実施するための装置の平面断面
図である。
FIG. 4 is a plan sectional view of an apparatus for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 原水流入管 2 原水調整槽 3 送水ポンプ 4 原水送水管 5 混合水管 6 混合調整槽 7 気液攪拌混合装置 8 送水ポンプ 9 送水管 10 流出管 11 回収濃縮槽 12 流出管 13 濃縮汚泥貯留槽 21 オゾン発生装置 22 コンプレッサー 23A−23D オゾン管 24 排オゾン管 25A−25B 泡沫回収排オゾン搭 26 消泡ポンプ 31 一次負圧型反応分離槽 32 一次回転反応分離筒 35A−35D オゾン酸化水吸込口 36A−36D 気液攪拌混合槽 37A−37D 気液吹出口 38 パンチング板 39 パンチング板 41 二次負圧型反応分離槽 42 二次回転反応分離筒 43A−43D 気液攪拌混合槽 51A−51B 排オゾン管 52A−52B 排オゾン管 61 生物処理槽(曝気槽) 71 一次負圧型反応分離槽 72 一次回転反応分離筒 1 Raw water inflow pipe 2 Raw water adjustment tank 3 water pump 4 Raw water transmission pipe 5 mixed water pipe 6 Mixing adjustment tank 7 Gas-liquid stirring and mixing device 8 water pump 9 water pipe 10 Outflow pipe 11 Recovery and concentration tank 12 Outflow pipe 13 Concentrated sludge storage tank 21 Ozone generator 22 Compressor 23A-23D Ozone Tube 24 Exhaust ozone pipe 25A-25B Foam recovery exhaust ozone tower 26 Defoaming pump 31 Primary negative pressure type reaction separation tank 32 Primary rotation reaction separation cylinder 35A-35D Ozone-oxidized water suction port 36A-36D Gas-liquid stirring mixing tank 37A-37D Gas-liquid outlet 38 Punching board 39 Punching board 41 Secondary negative pressure type reaction separation tank 42 Secondary rotation reaction separation cylinder 43A-43D Gas-liquid mixing tank 51A-51B Exhaust ozone pipe 52A-52B Exhaust ozone pipe 61 Biological treatment tank (aeration tank) 71 Primary negative pressure type reaction separation tank 72 Primary rotation reaction separation cylinder

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 1/78 C02F 3/12 C02F 11/06 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C02F 1/78 C02F 3/12 C02F 11/06

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 混合調整槽に有機性、難分解性排水を供
給し、気液攪拌混合装置を接続された反応分離槽に前記
有機性、難分解性排水を前記混合調整槽から供給し、前
記反応分離槽から前記気液攪拌混合装置に前記有機性、
難分解性排水を送ると共に、前記気液攪拌混合装置にオ
ゾンガスを供給して気液濃縮混合することにより気液混
合液とし、前記気液混合液を前記反応分離槽に渦流回転
拡散するように還流し酸化生成物と液体とを分離し
て、前記分離された液体を前記混合調整槽へ返送し、新
たに前記混合調整槽に供給される有機性、難分解性排水
と前記分離された液体とを前記混合調整槽で攪拌混合し
て負荷を低減するようにしたオゾンによる有機性、難分
解性排水の処理方法であって、 前記気液攪拌混合装置を複数設け、前記反応分離槽の内
側に回転反応分離筒を配置し、前記反応分離槽と前記回
転反応分離筒との間にパンチング板を配置し、前記回転
反応分離筒の内側にパンチング板を配置し、前記有機
性、難分解性排水が前記反応分離槽と前記回転反応分離
筒との間のパンチング板と、前記回転反応分離筒内のパ
ンチング板とを通過するようにし、 有機性、難分解性排水が、 前記回転反応分離筒の内側に
接続される前記気液攪拌混合装置と、前記回転反応分離
筒の外側に接続される前記気液攪拌混合装置とによって
オゾンガスと気液濃縮混合され、渦流回転拡散するよう
に送られることを特徴とするオゾンによる有機性、難分
解性排水の処理方法。
1. An organic, hardly decomposable wastewater is supplied to a mixing adjustment tank, and the organic, hardly decomposable wastewater is supplied from the mixing adjustment tank to a reaction separation tank to which a gas-liquid stirring and mixing device is connected. From the reaction separation tank to the gas-liquid stirring and mixing device, the organic property,
Along with sending hardly-decomposable wastewater, ozone gas is supplied to the gas-liquid stirring and mixing device to concentrate and mix gas-liquid to form a gas-liquid mixed liquid, and the gas-liquid mixed liquid is swirled in the reaction separation tank.
And refluxed to diffuse, by separating the oxidation product and a liquid, and returning the separated liquid into the mixing adjustment tank, organic supplied to newly the mixing adjusting tank, a hardly decomposable waste water A method for treating organic and hardly decomposable wastewater with ozone, which is configured to stir and mix the separated liquid in the mixing adjustment tank, wherein a plurality of gas-liquid stirring and mixing devices are provided, and A rotary reaction separation cylinder is placed inside the reaction separation tank, and
A punching plate is placed between the transfer reaction separation cylinder and
A punching plate is placed inside the reaction separation cylinder, and the organic and persistent decomposition wastewater is separated from the reaction separation tank by the rotary reaction separation.
The punching plate between the cylinder and the inner wall of the rotary reaction separation cylinder.
A gas-liquid stirring / mixing device connected to the inside of the rotary reaction separation cylinder and the gas connected to the outside of the rotary reaction separation cylinder so that the organic and hardly decomposable waste water passes through the cooling plate. Ozone gas is gas-liquid concentrated and mixed by a liquid stirring and mixing device, so that vortex rotation diffusion is performed.
A method for treating organic and persistent degradable wastewater by ozone, which is characterized in that the wastewater is sent to .
【請求項2】 原水調整槽、混合調整槽、生物処理槽、
及び沈殿槽を備えた活性汚泥処理システムを用いた有機
性廃棄物処理方法において、混合調整槽に有機性、難分
解性排水を供給し、気液攪拌混合装置を接続された反応
分離槽に前記有機性、難分解性排水を前記混合調整槽か
ら供給し、前記反応分離槽から前記気液攪拌混合装置に
前記有機性、難分解性排水を送ると共に、前記気液攪拌
混合装置にオゾンガスを供給して気液濃縮混合すること
により気液混合液とし、前記気液混合液を前記反応分離
槽に渦流回転拡散するように還流し酸化生成物と液体
とを分離して、前記分離された液体を前記混合調整槽へ
返送し、新たに前記混合調整槽に前記原水調整槽から供
給される有機性、難分解性排水と前記分離された液体と
を前記混合調整槽で攪拌混合されるようにして前記有機
性、難分解性排水の負荷を低減し、前記負荷を低減され
た有機性、難分解性排水を前記生物処理槽に送り生物処
理した後に沈殿槽へ供給し、前記沈殿槽の下部に溜まっ
た汚泥を気液攪拌混合装置を接続された反応分離槽に供
給し、前記反応分離槽から前記気液攪拌混合装置に前記
汚泥を送ると共に、前記気液攪拌混合装置にオゾンガス
を供給して混合することにより気液混合液とし、前記気
液混合液を前記反応分離槽に還流して酸化生成物と液体
とを分離して汚泥の減量/脱臭を行うようにしたオゾン
による有機性、難分解性排水の処理方法であって、 前記混合調整槽からの前記有機性、難分解性排水を供給
される前記反応分離槽に接続される前記気液攪拌混合装
置を複数設け、当該反応分離槽の内側に回転反応分離筒
を配置し、当該反応分離槽と当該回転反応分離筒との間
にパンチング板を配置し、当該回転反応分離筒の内側に
パンチング板を配置し、前記有機性、難分解性排水が、
当該反応分離槽と当該回転反応分離筒との間のパンチン
グ板と、当該回転反応分離筒内のパンチング板とを通過
するようにし、 有機性、難分解性排水が、 前記回転反応分離筒の内側に
接続される前記気液攪拌混合装置と、前記回転反応分離
筒の外側に接続される前記気液攪拌混合装置とによって
オゾンガスと気液濃縮混合され、渦流回転拡散するよう
に送られることを特徴とするオゾンによる有機性、難分
解性排水の処理方法。
2. A raw water adjusting tank, a mixing adjusting tank, a biological treatment tank,
And an organic waste treatment method using an activated sludge treatment system equipped with a settling tank, wherein an organic, hardly decomposable wastewater is supplied to a mixing adjustment tank, and the reaction separation tank connected to a gas-liquid stirring mixing device Supplying organic and refractory wastewater from the mixing adjustment tank, sending the organic and refractory wastewater from the reaction separation tank to the gas-liquid stirring mixer, and supplying ozone gas to the gas-liquid stirring mixer. Then, the mixture is concentrated and mixed to form a gas-liquid mixture, and the gas-liquid mixture is refluxed in the reaction separation tank so as to be swirling and rotationally diffused , and the oxidation product and the liquid are separated, and the separated. The liquid is returned to the mixing adjusting tank, and the organic and non-decomposable wastewater newly supplied to the mixing adjusting tank from the raw water adjusting tank and the separated liquid are stirred and mixed in the mixing adjusting tank. And the organic and persistent decomposition drainage The load is reduced, and the organic and non-decomposable wastewater with reduced load is sent to the biological treatment tank for biological treatment and then supplied to the sedimentation tank, and the sludge accumulated in the lower part of the sedimentation tank is a gas-liquid agitation mixing device. Is supplied to the connected reaction separation tank, and the sludge is sent from the reaction separation tank to the gas-liquid stirring / mixing device, and ozone gas is supplied to the gas-liquid stirring / mixing device to mix to form a gas-liquid mixed liquid. A method for treating organic and hardly decomposable wastewater by ozone, wherein the gas-liquid mixed liquid is refluxed to the reaction separation tank to separate an oxidation product and a liquid to reduce / deodorize sludge. , A plurality of the gas-liquid stirring and mixing devices connected to the reaction separation tank supplied with the organic and hardly decomposable waste water from the mixing adjustment tank, and a rotary reaction separation cylinder is arranged inside the reaction separation tank and, the reaction separation vessel and the rotational reaction Between the separating cylinder
Place the punching plate on the inside of the rotary reaction separation cylinder.
Arranging a punching plate, the organic and persistent water is
Pantin between the reaction separation tank and the rotary reaction separation cylinder
Passing through the punching plate and the punching plate in the rotary reaction separation cylinder
And organic, hardly decomposable waste water, the gas-liquid stirring and mixing device connected to the inside of the rotary reaction separation cylinder, and the gas-liquid stirring and mixing device connected to the outside of the rotary reaction separation cylinder Ozone gas and gas-liquid are concentrated and mixed by vortex flow
A method for treating organic and persistent degradable wastewater by ozone, which is characterized in that the wastewater is sent to .
【請求項3】 前記混合調整槽に気液攪拌混合装置を設
置し、前記反応分離槽に接続されている前記気液混合攪
拌装置における前記気液攪拌混合過程で生じる排オゾン
ガスを前記反応分離槽に設置の気液攪拌混合装置、及び
/又は前記混合調整槽に設置の前記気液攪拌混合装置へ
供給し、前記排オゾンガスを再利用するようにした請求
項1に記載のオゾンによる有機性、難分解性排水の処理
方法。
3. A gas-liquid stirring / mixing device is installed in the mixing adjusting tank, and exhaust ozone gas generated in the gas-liquid stirring / mixing process in the gas-liquid mixing / stirring device connected to the reaction separating tank is discharged into the reaction separating tank. The gas-liquid stirring / mixing device installed in the above, and / or the gas-liquid stirring / mixing device installed in the above-mentioned mixing adjusting tank, and the exhaust ozone gas is reused, and the organic property by ozone according to claim 1, Method of treating persistent wastewater.
【請求項4】 前記混合調整槽に気液攪拌混合装置を設
置し、前記混合調整槽からの排水を処理する前記反応分
離槽に接続されている前記気液混合攪拌装置における気
液攪拌混合過程で生じる排オゾンガスを当該反応分離槽
に設置の気液攪拌混合装置、及び/又は前記混合調整槽
に設置の前記気液攪拌混合装置へ供給し、沈殿槽からの
汚泥を処理する前記反応分離槽に接続されている前記気
液混合攪拌装置における気液攪拌混合過程で生じる排オ
ゾンガスを当該反応分離槽に設置の気液攪拌混合装置、
及び/又は前記混合調整槽に設置の前記気液攪拌混合装
置へ供給し、前記排オゾンガスを再利用するようにした
請求項2に記載のオゾンによる有機性、難分解性排水の
処理方法。
4. A gas-liquid stirring / mixing process in the gas-liquid mixing / stirring apparatus, wherein a gas-liquid stirring / mixing apparatus is installed in the mixing / adjusting tank and is connected to the reaction separation tank for treating wastewater from the mixing / adjusting tank. The reaction separation tank for treating the sludge from the settling tank by supplying the exhaust ozone gas generated in 1) to the gas-liquid stirring / mixing apparatus installed in the reaction separation tank and / or the gas-liquid stirring / mixing apparatus installed in the mixing adjustment tank. A gas-liquid stirring / mixing device in which the exhaust ozone gas generated in the gas-liquid stirring / mixing process in the gas-liquid mixing / stirring device connected to
And / or the method for treating organic and hardly decomposable waste water with ozone according to claim 2, wherein the waste ozone gas is supplied to the gas-liquid stirring / mixing device installed in the mixing adjusting tank to reuse the waste ozone gas.
【請求項5】 原水調整槽、混合調整槽、生物処理槽、
及び沈殿槽を備えた活性汚泥処理システムにおいて、前
記混合調整槽に繋がる反応分離槽と、前記反応分離槽の
内側に配置される回転分離筒と、前記反応分離槽に周設
され、前記回転反応分離筒の内側と、前記回転分離筒の
外側とに接続された複数の気液攪拌混合装置にオゾンを
供給して混合するオゾン供給装置と、前記反応分離槽に
有機性、難分解性排水を前記混合調整槽から供給する手
段と、前記反応分離槽及び前記気液攪拌混合装置の間で
前記有機性、難分解性排水及びオゾン混合液を相互に供
給/還流する供給/還流手段と、オゾン処理された前記
有機性、難分解性排水を前記混合調整槽へ返送する手段
と、前記オゾン処理された有機性、難分解性排水と前記
原水調整槽から新たに送られてくる有機性、難分解性排
水とを攪拌混合して、前記有機性、難分解性排水の負荷
を低減させて後に、前記生物処理槽へ前記負荷を低減さ
せた排水を供給する手段とを具備したオゾンによる有機
性、難分解性排水の処理システムであって、 複数の気液攪拌混合装置を接続され、回転反応分離筒を
内蔵した前記反応分離槽に有機性、難分解性排水を供給
し、前記反応分離槽から前記気液攪拌混合装置に前記有
機性、難分解性排水を送ると共に、前記気液攪拌混合装
置にオゾンガスを供給して気液濃縮混合することにより
気液混合液とし、前記気液混合液を前記反応分離槽に渦
流回転拡散するように還流し、酸化生成物と液体とを分
離し、前記有機性、難分解性排水の負荷/脱臭を低減す
るようになっている反応分離槽を第1反応分離槽及び第
2反応分離槽として二つ直列に接続し、 前記第1反応分離槽では前記気液混合液が前記第1反応
分離槽内の回転反応分離筒の内側から外側へ当該回転反
応分離筒内のパンチング板を通過して、当該回転反応分
離筒から溢れて、当該反応分離槽と当該回転反応分離筒
との間のパンチング板を通過して渦流回転拡散して流れ
るようにし、 前記第2反応分離槽では前記第1反応分離槽から送られ
てくる前記気液混合液が前記第2反応分離槽内の回転反
応分離筒の外側から内側へ当該反応分離槽と当該回転反
応分離筒との間のパンチング板を通過して当該回転反応
分離筒内に溢れて 、当該回転反応分離筒内のパンチング
板を通過して渦流回転拡散して流れるように構成した前
記反応分離槽を組み込んだ ことを特徴とするオゾンによ
る有機性、難分解性排水の処理システム。
5. A raw water adjusting tank, a mixing adjusting tank, a biological treatment tank,
In the activated sludge treatment system including a settling tank, a reaction separation tank connected to the mixing adjustment tank, a rotary separation cylinder arranged inside the reaction separation tank, and a rotary separation cylinder that is provided around the reaction separation tank. An ozone supply device for supplying ozone to a plurality of gas-liquid stirring and mixing devices connected to the inside of the separation cylinder and the outside of the rotary separation cylinder, and an organic, hardly decomposable wastewater in the reaction separation tank. Means for supplying from the mixing adjustment tank, supply / reflux means for mutually supplying / refluxing the organic, hardly decomposable wastewater and ozone mixed liquid between the reaction separation tank and the gas-liquid agitation mixing device, and ozone Means for returning the treated organic, hardly decomposable wastewater to the mixing and adjusting tank, and the ozone-treated organic, hardly decomposable wastewater and the organic, freshly sent from the raw water adjusting tank Stir-mix with degradable wastewater The organic, later with reducing the load of the hardly decomposable waste water, organic by ozone and means for supplying the waste water with reduced the load to the biological treatment tank
Sex, a processing system hardly decomposable waste water, is connected a plurality of gas-liquid stirring and mixing device, a rotary reaction separating cylinder
Supplying organic and non-decomposable wastewater to the built-in reaction separation tank
From the reaction separation tank to the gas-liquid stirring and mixing device.
Mechanical and hard-to-decompose wastewater is sent, and the gas-liquid stirring and mixing equipment
By supplying ozone gas to the container and mixing it by gas-liquid concentration,
As a gas-liquid mixture, swirl the gas-liquid mixture into the reaction separation tank.
Reflux to rotate and diffuse to separate the oxidation product and liquid.
Separate to reduce the load / deodorization of the organic and persistent water.
The first reaction separation tank and the first reaction separation tank
Two reaction separation tanks are connected in series, and in the first reaction separation tank, the gas-liquid mixed solution is used for the first reaction.
Rotation reaction inside the separation tank
After passing through the punching plate in the separation cylinder,
The reaction separation tank and the rotary reaction separation cylinder overflowing from the separation cylinder.
Flow through a punching plate between
And the second reaction separation tank is fed from the first reaction separation tank.
The gas-liquid mixed liquid coming in is rotated in the second reaction separation tank.
The reaction separation tank and the rotation
The rotation reaction through the punching plate between the separation cylinder
Punching in the rotation reaction separation cylinder by overflowing into the separation cylinder
Before configured to swirl through the plate to rotate and diffuse
A system for treating organic and persistent decomposition wastewater using ozone , which incorporates a reaction separation tank .
【請求項6】 原水調整槽、混合調整槽、生物処理槽、
沈殿槽、及び脱水機を備えた活性汚泥処理システムにお
いて、前記混合調整槽に繋がる反応分離槽と、前記反応
分離槽の内側に配置される回転分離筒と、前記反応分離
槽に周設され、前記回転反応分離筒の内側と、前記回転
分離筒の外側とに接続された複数の気液攪拌混合装置に
オゾンを供給して混合するオゾン供給装置と、前記反応
分離槽に有機性、難分解性排水を前記混合調整槽から供
給する手段と、前記反応分離槽及び前記気液攪拌混合装
置の間で前記有機性、難分解性排水及びオゾン混合液を
相互に供給/還流する供給/還流手段と、オゾン処理さ
れた前記有機性、難分解性排水を前記混合調整槽へ返送
する手段と、前記オゾン処理された有機性、難分解性排
水と前記原水調整槽から新たに送られてくる有機性、難
分解性排水とを攪拌混合して、前記有機性、難分解性排
水の負荷を低減させて後に、前記生物処理槽へ前記負荷
を低減させた排水を供給する手段とを具備し、前記生物
処理槽で処理された排水を前記沈殿槽へ供給する手段
と、前記沈殿槽に繋がる反応分離槽と、前記反応分離槽
に周設された気液攪拌混合装置にオゾンを供給して混合
する前記オゾン供給装置と、前記反応分離槽に前記沈殿
槽下部に溜まった汚泥を前記沈殿槽から供給する手段
と、前記反応分離槽及び前記気液攪拌混合装置の間で前
記汚泥及びオゾン混合液を相互に供給/還流する供給/
還流手段と、オゾン処理された前記汚泥を前記脱水機へ
供給する手段とを具備したオゾンによる有機性、難分解
性排水の処理システムであって、 複数の気液攪拌混合装置を接続され、回転反応分離筒を
内蔵した前記反応分離槽に有機性、難分解性排水を供給
し、前記反応分離槽から前記気液攪拌混合装置に前記有
機性、難分解性排水を送ると共に、前記気液攪拌混合装
置にオゾンガスを供給して気液濃縮混合することにより
気液混合液とし、前記気液混合液を前記反応分離槽に渦
流回転拡散するように還流し、酸化生成物と液体とを分
離し、前記有機性、難分解性排水の負荷/脱臭を低減す
るようになっている反応分離槽を第1反応分離槽及び第
2反応分離槽として二つ直列に接続し、 前記第1反応分離槽では前記気液混合液が前記第1反応
分離槽内の回転反応分離筒の内側から外側へ当該回転反
応分離筒内のパンチング板を通過して、当該回転反応分
離筒から溢れて、当該反応分離槽と当該回転反応分離筒
との間のパンチング板を通過して渦流回転拡散して流れ
るようにし、 前記第2反応分離槽では前記第1反応分離槽から送られ
てくる前記気液混合液が前記第2反応分離槽内の回転反
応分離筒の外側から内側へ当該反応分離槽と当該回転反
応分離筒との間のパンチング板を通過して当該回転反応
分離筒内に溢れて、当該回転反応分離筒内のパンチング
板を通過して渦流回転拡散して流れるように構成した前
記反応分離槽を組み込んだことを特徴とするオゾンによ
る有機性、難分解性排水の処理システム。
6. A raw water adjusting tank, a mixing adjusting tank, a biological treatment tank,
In an activated sludge treatment system including a settling tank and a dehydrator, a reaction separation tank connected to the mixing adjustment tank, a rotary separation cylinder arranged inside the reaction separation tank, and the reaction separation tank are provided around the reaction separation tank. An ozone supply device that supplies ozone to a plurality of gas-liquid stirring and mixing devices connected to the inside of the rotary reaction separation cylinder and the outside of the rotation separation cylinder, and an organic supply to the reaction separation tank. Means for supplying organic wastewater from the mixing adjustment tank, and supply / reflux means for mutually supplying / refluxing the organic, hardly decomposable wastewater and ozone mixed liquid between the reaction separation tank and the gas-liquid stirring / mixing device. And a means for returning the ozone-treated organic and hardly decomposable wastewater to the mixing adjustment tank, and the ozone-treated organic and hardly decomposable wastewater and the organic material newly sent from the raw water adjustment tank Water and persistent water And a means for supplying the wastewater having the reduced load to the biological treatment tank after mixing to reduce the load of the organic and persistent decomposition wastewater, and the wastewater treated in the biological treatment tank Means for supplying to the precipitation tank, a reaction separation tank connected to the precipitation tank, the ozone supply device for supplying and mixing ozone to a gas-liquid agitation mixing device provided around the reaction separation tank, and the reaction Means for supplying sludge accumulated in the lower part of the settling tank to the separation tank, and supply / reflux of the sludge and ozone mixed solution to / from each other between the reaction separation tank and the gas-liquid agitation mixing device
Organic, hardly decomposed by ozone, which is provided with a reflux means and a means for supplying the ozone-treated sludge to the dehydrator.
This is a system for treating effluent, in which multiple gas-liquid agitation mixers are connected and a rotary reaction separation
Supplying organic and non-decomposable wastewater to the built-in reaction separation tank
From the reaction separation tank to the gas-liquid stirring and mixing device.
Mechanical and hard-to-decompose wastewater is sent, and the gas-liquid stirring and mixing equipment
By supplying ozone gas to the container and mixing it by gas-liquid concentration,
As a gas-liquid mixture, swirl the gas-liquid mixture into the reaction separation tank.
Reflux to rotate and diffuse to separate the oxidation product and liquid.
Separate to reduce the load / deodorization of the organic and persistent water.
The first reaction separation tank and the first reaction separation tank
Two reaction separation tanks are connected in series, and in the first reaction separation tank, the gas-liquid mixed solution is used for the first reaction.
Rotation reaction inside the separation tank
After passing through the punching plate in the separation cylinder,
The reaction separation tank and the rotary reaction separation cylinder overflowing from the separation cylinder.
Flow through a punching plate between
In the second reaction separation tank, the gas-liquid mixed solution sent from the first reaction separation tank is transferred from the outer side to the inner side of the rotary reaction separation cylinder in the second reaction separation tank to the reaction separation tank. The reaction configured to flow through a punching plate between the rotary reaction separation cylinder and overflow into the rotary reaction separation cylinder, and through a punching plate in the rotary reaction separation cylinder to cause vortex rotation diffusion to flow. A system for treating organic and hardly decomposable wastewater using ozone, which is characterized by incorporating a separation tank.
JP36993798A 1998-12-25 1998-12-25 Method and system for treating organic and persistent water by ozone Expired - Fee Related JP3468414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36993798A JP3468414B2 (en) 1998-12-25 1998-12-25 Method and system for treating organic and persistent water by ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36993798A JP3468414B2 (en) 1998-12-25 1998-12-25 Method and system for treating organic and persistent water by ozone

Publications (2)

Publication Number Publication Date
JP2000189981A JP2000189981A (en) 2000-07-11
JP3468414B2 true JP3468414B2 (en) 2003-11-17

Family

ID=18495680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36993798A Expired - Fee Related JP3468414B2 (en) 1998-12-25 1998-12-25 Method and system for treating organic and persistent water by ozone

Country Status (1)

Country Link
JP (1) JP3468414B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8496808B2 (en) 2007-03-16 2013-07-30 Seair Inc Wastewater treatment apparatus
CA2653493C (en) 2008-01-16 2015-03-24 Seair Inc. Flow through water treatment apparatus
JP2010075872A (en) * 2008-09-26 2010-04-08 Sawatec Kk Drainage treating method and apparatus
CA2712046C (en) 2010-08-12 2015-10-20 Harold Kinasewich Headspace gas treatment apparatus and method
UA115322C2 (en) 2012-01-31 2017-10-25 Сіейр Інк. Multi-stage aeration apparatus
JP6335750B2 (en) * 2014-10-10 2018-05-30 三菱電機株式会社 Ozone treatment device, sludge treatment device, ozone treatment method and sludge treatment method
WO2017056325A1 (en) * 2015-10-02 2017-04-06 株式会社ヒューエンス Wastewater treatment system and wastewater treatment method

Also Published As

Publication number Publication date
JP2000189981A (en) 2000-07-11

Similar Documents

Publication Publication Date Title
JP3336410B2 (en) Apparatus and method for treating sewage and wastewater by biological reaction
KR20050093725A (en) An oxidizing pressurized uprising apparatus
WO2023173715A1 (en) Ozone catalytic oxidation and flotation integrated system and method for using same
WO2023140319A1 (en) Industrial wastewater treatment system, use for industrial wastewater treatment system, industrial wastewater treatment method, and wastewater treatment process
JP2007136366A (en) Biological wastewater treatment apparatus and biological wastewater treatment method
JP3468414B2 (en) Method and system for treating organic and persistent water by ozone
KR101751250B1 (en) Water treatment system using flotation reactor using discharge ozone and ozone reactor
JP3441042B2 (en) Phosphorus removal and recovery equipment using seawater
JP4409532B2 (en) Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method
JP2003164890A (en) Waste water treatment system and mixing equipment
JP4271991B2 (en) Ozone water treatment equipment
JP2004322084A (en) Biological filtration system
JP5095882B2 (en) Waste nitric acid treatment method
US5961826A (en) Biological waste water treatment system having a sedimentation tank vertically combined with an aeration tank therein
CN108117196A (en) Leather waste water advanced treatment system and method
JP3384759B2 (en) Method and apparatus for reducing / deodorizing concentrated excess sludge by ozone
JPH07275900A (en) Method for treating wastewater containing organic substance
JP2007222830A (en) Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it
JP2007117867A (en) Method and equipment for treating organic solid
AU9063598A (en) A process for biological purification of waste water under sludge retention
JP2003260485A (en) Biological treatment apparatus
JP3479566B2 (en) Phosphorus recovery device using seawater
CN208218606U (en) A kind of processing equipment of pharmacy waste water
JP3137332B2 (en) Sewage treatment equipment
JP2024049232A (en) Solid-liquid separation device and activated sludge treatment method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees