JP3467711B2 - Copper based alloy casting method - Google Patents

Copper based alloy casting method

Info

Publication number
JP3467711B2
JP3467711B2 JP20372695A JP20372695A JP3467711B2 JP 3467711 B2 JP3467711 B2 JP 3467711B2 JP 20372695 A JP20372695 A JP 20372695A JP 20372695 A JP20372695 A JP 20372695A JP 3467711 B2 JP3467711 B2 JP 3467711B2
Authority
JP
Japan
Prior art keywords
ingot
mold
copper
based alloy
cracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20372695A
Other languages
Japanese (ja)
Other versions
JPH0925528A (en
Inventor
浩一 畠山
敏裕 神崎
秀樹 遠藤
章 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP20372695A priority Critical patent/JP3467711B2/en
Publication of JPH0925528A publication Critical patent/JPH0925528A/en
Application granted granted Critical
Publication of JP3467711B2 publication Critical patent/JP3467711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Continuous Casting (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、銅基合金及びその
鋳造方法に関し、詳しくは例えばリードフレームに代表
される電気・電子部品に用いられる銅基合金の鋳造方法
に関するものである。 【0002】 【従来の技術】銅基合金はその高い強度,弾性,硬度に
加え、電気伝導性,耐熱性,耐食性、さらにコストパフ
ォーマンスに優れているため、その展伸材はリードフレ
ーム等の電気・電子部品用として広い範囲で利用されて
いる。また、さらに鉄を第1添加元素とし、更に微量添
加元素を加えて、諸特性を向上させた銅基合金も提案さ
れている。 【0003】従来、銅基合金の展伸材を製造するには、
大断面積の鋳塊を半連続鋳造あるいは連続鋳造によって
製造し、これを熱間圧廷などの熱間加工と冷間圧廷、熱
処理等を繰り返して所望の板厚の板材(コイル)を製造
していた。 【0004】しかしながら、鋳造段階で鋳塊表面に表面
割れに代表される欠陥が発生し、これが最終板材(コイ
ル)において重大欠陥として残存し、歩留の低下の一因
となっていた。 【0005】ここで、表面割れは鋳塊の鋳造方向と平行
に発生する割れであり、発生位置により面中央部付近に
発生する縦割れとコーナー部付近に発生するコーナー部
割れに大別される。これらの割れは、全長数mm程度の
微細な割れから150mmを越える割れまで、その長さ
は様々である。 【0006】また、割れの発生頻度は含有する成分によ
る影響が大きく、特に鉄を含む合金では割れ易い。上記
の割れは、鉄が含有されることにより、鋳型内で形成さ
れる凝固殻の厚さが不均一になり易く、また粒界に鉄の
偏析が生じ易くて、凝固収縮や熱収縮によって生じる引
張応力によって表面割れが発生するものと考えられる。 【0007】現在、上記の割れ防止対策としては、鋳型
内での冷却条件や鋳型形状,鋳造速度、パウダー物性の
適正化ならびに鋳型直下での直接冷却帯の緩冷化,均一
化等かとられているが、各条件間での相関には不明瞭な
点が多く、現状の製造ラインでの制御及び管理により表
面割れ等の欠陥のない健全な鋳塊を得ることは困難であ
った。 【0008】 【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の諸問題点を解決し、鋳塊の表面割れやブロ
ーホール等の欠陥が全く認められず、またその展伸材と
して曲げ加工性及びめつき信頼性に優れ、更に竪型連続
鋳造により鋳塊を効率よく製造でき、しかも銅基合金展
伸材として高品質でコストダウンに寄与する銅基合金の
鋳造方法を提案するものである。 【0009】 【課題を解決するための手段】本発明は、上記のような
従来の問題を解決すべく鋭意研究した結果、鋳造,冷却
過程における鋳塊表面温度を制御することによって、表
面割れに代表される欠陥のない健全な銅基合金の大断面
積の鋳塊を効率よく生産できる銅基合金の鋳造方法を提
供するものである。 【0010】即ち、第1発明は、鉄0.01〜3重量%
を含み、または更にリン、ニッケル、コバルト、錫、亜
鉛、マグネシウム、ジルコニウム、クロム、珪素、チタ
ン、マンガン、アルミニウム、銀のうちから選ばれる1
種又は2種以上を合計で0.01〜5重量%含み、残部
が実質的に銅からなる銅基合金であり、 【0011】第2発明は、鉄0.01〜3重量%を含
み、または更にリン、ニッケル、コバルト、錫、亜鉛、
マグネシウム、ジルコニウム、クロム、珪素、チタン、
マンガン、アルミニウム、銀のうちから選ばれる1種又
は2種以上を合計で0.01〜5重量%含み、残部が実
質的に銅からなる銅基合金の溶湯を鋳型を介して連続的
に鋳造・冷却するに際し、鋳型直下の鋳塊表面温度を7
80〜920℃、該鋳型から排出される該鋳塊を連続し
て冷却する冷却帯直下の鋳塊を表面温度を700〜75
0℃に制御することを特徴とする銅基合金の鋳造方法を
提供するものである。以下、本発明に係る銅基合金の鋳
造方法を詳細に説明する。 【0012】まず、本発明方法における銅基合金の成分
組成範囲について述べる。 (1)鉄について:鉄は、銅マトリックス中に鉄単体あ
るいは鉄−リン系の化合物を形成し、析出強化と分散強
化を図るために不可欠な元素である。鉄含有量が重量%
で0.01未満では上記の効果が充分でなく、一方3%
を越えると凝固過程において粗大析出物が析出し、その
後の熱処理を経ても残存するため、曲げ加工性やめつき
信頼性に悪影響を与えるためである。従って、鉄の含有
量は0.01〜3重量%の範囲とした。 【0013】(2)リン、ニッケル、コバルト、錫、亜
鉛、マグネシウム、ジルコニウム、クロム、珪素、チタ
ン、マンガン、アルミニウム、銀について:これら元素
は、銅マトリックス中に固溶又は析出して化合物を形成
し、強度や弾性等を向上させる効果があり、また結晶粒
粗大化防止等の効果がある。 【0014】特に、リンは溶湯の脱酸剤として効くと共
に、鉄と化合物を形成して分散析出することにより、熱
(電気)伝導性を向上させ、更に強度、弾性を向上させ
る。しかし、リンは重量%で0.01未満では溶湯中で
の脱酸効果が不充分であり、一方0.3%を越えると鉄
との共存下でも熱(電気)伝導性の低下し、また熱間加
工性にも悪影響を与える。従って、リンの含有量は0.
01〜0.3重量%の範囲が好ましい。 【0015】更に、ニッケル、コバルト、マグネシウム
等はリンと化合物を形成し、強度、弾性、熱(電気)伝
導性を、またチタン、ジルコニウム、珪素、クロムは耐
熱性を、亜鉛、マンガンははんだ耐熱剥離性を各々向上
させる。 【0016】これらの添加元素が合計で0.01重量%
未満では上記のような効果が得られず、一方5重量%を
越えると熱(電気)伝導性や加工性の低下が著しいの
で、上記元素の1種または2種以上の含有量を0.01
〜5重量%とした。 【0017】次に、鋳型直下における鋳塊表面温度は、
780℃未満では鋳型内での冷却が強すぎて急激な凝固
収縮がのため割れが発生する。また、更にガスがトラッ
プされ易く、ブローホールの原因となる。一方、920
℃を越えると、凝固層が鋳型内にて凝固収縮や熱収縮等
によって生じる引張応力に耐えるだけの強度をもつ厚さ
になっておらず、表面割れが発生する。従って、鋳型直
下における鋳塊表面温度を780〜920℃の範囲とし
た。 【0018】上記鋳型から排出される該鋳塊を連続して
直接冷却する冷却帯(以下、単に直接冷却帯という)直
下の鋳塊表面温度は、700〜750℃の範囲とする。
これは、700℃未満では直接冷却帯での単位時間当り
の冷却能が大き過ぎ、未凝固部の凝固に伴う凝固収縮や
熱収縮によって生じる応力によって表面割れが発生し、
一方750℃を越えると直接冷却帯直下の領域で未凝固
が残ってしまい、その結果溶湯の静圧により鋳塊表面に
割れが発生する。また、更に析出物の凝集粗大化が起こ
り、その後の熱処理を経ても残存し、曲げ加工性に悪影
響を与える。以上のように、鋳型直下及び直接冷却帯直
下の鋳塊表面温度を規定することにより、表面割れのな
い健全な鋳塊が得られる。次に、本発明の実施例を図を
参照して説明する。 【0019】 【実施例】 実施例1 重量%で鉄:0.20%、ニッケル:0.15%、錫:
0.07%、リン:0.06%を含み、残部が銅及び不
可避的不純物からなる銅基合金を還元雰囲気で溶解し、
下記に示す条件下で186mm×484mmの断面を有
する銅製鋳型に鋳込み、連続的に鋳造した。 【0020】図1は本発明に係る鋳造方法の一実施例を
示す説明図であり、まず溶解炉(高周波誘導炉)内で溶
解した銅基合金の溶湯はターンディッシュ内に導入さ
れ、給湯ノズル1を介して銅製鋳型2内に導入され、該
鋳型2内において鋳型2の外壁に接触装備された冷却構
造体3により間接冷却される。 【0021】なお、溶湯の温度は上記溶解炉の制御によ
って変化させ、鋳型2内における溶湯の冷却能は上記冷
却構造体3の鋳型2の外壁における接触位置や接触面積
及び冷却構造体3内を流れる水量、水温を制御すること
により変化させることができる。 【0022】次に、上記鋳型2内における溶湯は該鋳型
2を介して冷却構造体3によって冷却され、凝固鋳片と
溶湯との凝固界面9を形成する。 【0023】鋳型2内における鋳塊(インゴット)8は
油圧シリングー5によって鋳型2内から引き抜かれ、引
き抜かれたインゴット8はスプレーノズル6から噴出さ
れた冷却水7によって直接冷却される。なお、鋳造速度
は油圧シリンダー5の油量制御によって適宜変化させる
ことができ、また直接冷却帯の水量はスプレーノズル6
の個数やノズル径の変更によって変化させることができ
る。 【0024】本実施例においては、放射温度計を用いて
銅製鋳型2直下の鋳塊表面温度測定点a、直接冷却帯直
下の鋳塊表面温度測定点bにおいて各々の鋳塊表面温度
を測定した。 【0025】さらに、得られた鋳塊については、鋳塊表
面の目視観察を行い、表面割れによる欠陥の認められな
いものは○印、欠陥が認められたものは×印として評価
した。また、鋳塊中のブローホールは鋳塊の湯底部と湯
口部から各々長さ方向に100mmの位置で幅方向に切
断し、該切断面の目視観察により、欠陥の認められない
ものは○印、欠陥が認められたものは×印として評価し
た 【0026】曲げ加工性は、鋳塊を冷間圧延と熱処理を
繰り返し、厚さ0.25mmの展伸材に仕上げた後、9
0°W曲げ試験(JIS H 3110、R=0.2
圧延方向とその垂直方向)を行い、中央部の山表面が良
好なものは○印、シワ及び割れが発生したものは×印と
して評価した。以上の結果を表1に示した。 【0027】 【表1】 【0028】表1の結果から分るように、本発明に係る
鋳造方法によって得られた鋳塊は、表面割れやブローホ
ールの欠陥がなく、しかもその展伸材は曲げ加工性に優
れた鋳塊である。 【0029】これに対して、鋳型2直下の鋳塊表面温度
側定点aでの表面温度が高い比較例No.2には表面割
れが認められ、測定点aでの鋳塊表面温度が低い比較例
No.3には表面割れどブローホールが認められ、測定
点a,bでの鋳塊表面温度が高い比較例No.4には割
れがあり、また曲げ加工性も悪かったことが分る。 【0030】実施例2 重量%で鉄:1.00%、ニッケル:0.15%、錫:
1.00% 、リン:0.06%を含み、残部が銅及び
不可避的不純物からなる銅基合金を還元性雰囲気で溶解
し、下記に示す条件下で186mm×484mmの断面
を有する銅製鋳型に鋳込み、上記実施例1と同様の方法
で連続的に鋳造した。さらに、得られた鋳塊の評価も実
施例1と同様の方法で行った。以上の結果を表2に示し
た。 【0031】 【表2】 【0032】表2の結果から分るように、本発明に係る
鋳造方法によって得られた鋳塊は表面割れやブローホー
ルの欠陥が全くなく、その展伸材は曲げ加工性に優れた
鋳塊である。 【0033】これに対して、鋳型2直下の鋳塊表面測定
点aでの鋳塊表面温度が高い比較例No.2には表面割
れがあり、測定点a,bでの鋳塊表面温度が高い比較例
No.3には割れがあり、曲げ加工性も悪い。また、測
定点aでの表面温度が低く、かつ側定点bでの鋳塊表面
温度が高い比較例No.4には表面割れやブローホール
があり、曲げ加工性も悪いことが分る。 【0034】 【発明の効果】上記のように、本発明に係る銅基合金の
鋳造方法によれば、得られた鋳塊には表面割れやブロー
ホール等の欠陥が全く認められず、またその展伸材では
曲げ加工性及びめっき信頼性にも優れている。 【0035】さらに、本発明によれば連続鋳造により鋳
塊を効率よく製造することができ、銅基合金展伸材の品
質の向上やコストダウンに寄与するところ極めて大であ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper-based alloy and a method for casting the same, and more particularly, to a copper-based alloy used for electric / electronic parts such as a lead frame. It relates to a casting method. 2. Description of the Related Art Copper-based alloys have excellent electrical conductivity, heat resistance, corrosion resistance, and cost performance in addition to their high strength, elasticity, and hardness. -Widely used for electronic components. Further, a copper-based alloy in which various properties are improved by further using iron as a first additive element and further adding a trace additive element has been proposed. Conventionally, in order to produce a wrought copper-based alloy,
Ingots with large cross-sectional areas are manufactured by semi-continuous casting or continuous casting, and this is subjected to hot working such as hot pressing, cold pressing, heat treatment, etc. to produce a sheet material (coil) having a desired thickness. Was. [0004] However, defects such as surface cracks occur on the surface of the ingot in the casting stage, and these defects remain as serious defects in the final sheet material (coil), which causes a reduction in yield. [0005] Here, surface cracks are cracks that occur in parallel with the casting direction of the ingot, and are roughly classified into vertical cracks that occur near the center of the surface and corner cracks that occur near the corners according to the location of the cracks. . These cracks vary in length from fine cracks having a total length of about several mm to cracks exceeding 150 mm. [0006] The frequency of occurrence of cracks is greatly affected by the contained components, and in particular, alloys containing iron are easily cracked. The above cracks are caused by the inclusion of iron, so that the thickness of the solidified shell formed in the mold is likely to be uneven, and the segregation of iron is likely to occur at the grain boundaries, resulting from solidification shrinkage and heat shrinkage It is considered that surface cracks occur due to tensile stress. At present, as measures for preventing the above-mentioned cracks, the cooling conditions in the mold, the shape of the mold, the casting speed, the physical properties of the powder, and the cooling of the direct cooling zone immediately below the mold, uniformization, and the like have been taken. However, there are many unclear points in the correlation between the respective conditions, and it has been difficult to obtain a sound ingot without defects such as surface cracks by control and management in the current production line. [0008] The present invention solves the above-mentioned problems of the prior art, and shows no defects such as surface cracks and blowholes of the ingot, A method of casting a copper-based alloy that excels in bending workability and plating reliability as a rolled material, and that can efficiently produce ingots by vertical continuous casting, and that contributes to cost reduction with high quality as a rolled copper-based alloy. Is proposed. The present invention has been made as a result of intensive studies to solve the above-mentioned conventional problems. As a result, by controlling the surface temperature of the ingot in the casting and cooling processes, it is possible to prevent surface cracks. An object of the present invention is to provide a method for casting a copper-based alloy capable of efficiently producing a large ingot of a cross-sectional area of a sound copper-based alloy having no defect. That is, the first invention is characterized in that iron is contained in an amount of 0.01 to 3 wt%.
Or further selected from phosphorus, nickel, cobalt, tin, zinc, magnesium, zirconium, chromium, silicon, titanium, manganese, aluminum, and silver
A copper-based alloy containing 0.01 to 5% by weight of a total of two or more kinds, and a balance substantially consisting of copper; the second invention contains 0.01 to 3% by weight of iron; Or even phosphorus, nickel, cobalt, tin, zinc,
Magnesium, zirconium, chromium, silicon, titanium,
Continuously casting, via a mold, a molten metal of a copper-based alloy containing 0.01 to 5% by weight in total of one or more selected from manganese, aluminum, and silver, with the balance being substantially copper・ When cooling, set the surface temperature of the ingot immediately below the mold to 7
80-920 ° C., the ingot immediately below the cooling zone for continuously cooling the ingot discharged from the mold is heated to a surface temperature of 700-75.
An object of the present invention is to provide a method for casting a copper-based alloy, which is controlled at 0 ° C. Hereinafter, the method for casting a copper-based alloy according to the present invention will be described in detail. First, the composition range of the copper-based alloy in the method of the present invention will be described. (1) Regarding iron: Iron is an essential element for forming a simple substance of iron or an iron-phosphorus compound in a copper matrix to strengthen precipitation strengthening and dispersion strengthening. Iron content is% by weight
If less than 0.01, the above effect is not sufficient, while 3%
If the temperature exceeds the above range, coarse precipitates precipitate in the solidification process and remain after the subsequent heat treatment, so that bending workability and plating reliability are adversely affected. Therefore, the iron content is in the range of 0.01 to 3% by weight. (2) Phosphorus, nickel, cobalt, tin, zinc, magnesium, zirconium, chromium, silicon, titanium, manganese, aluminum, and silver: these elements form solid compounds or precipitates in a copper matrix to form compounds This has the effect of improving strength and elasticity, and has the effect of preventing crystal grain coarsening. In particular, phosphorus acts as a deoxidizing agent for molten metal, and forms a compound with iron to be dispersed and precipitated, thereby improving thermal (electric) conductivity, and further improving strength and elasticity. However, if the content of phosphorus is less than 0.01% by weight, the deoxidizing effect in the molten metal is insufficient, while if it exceeds 0.3%, thermal (electric) conductivity is reduced even in the presence of iron, and It also has an adverse effect on hot workability. Therefore, the content of phosphorus is 0.1.
The range of 01 to 0.3% by weight is preferred. Further, nickel, cobalt, magnesium and the like form a compound with phosphorus, and have strength, elasticity and heat (electricity) conductivity, titanium, zirconium, silicon and chromium have heat resistance, and zinc and manganese have solder heat resistance. Improve the releasability. The total amount of these additional elements is 0.01% by weight.
If it is less than 5% by weight, on the other hand, if it exceeds 5% by weight, the thermal (electrical) conductivity and workability are significantly reduced.
To 5% by weight. Next, the surface temperature of the ingot immediately below the mold is:
If the temperature is lower than 780 ° C., the cooling in the mold is too strong, and rapid solidification shrinkage causes cracking. Further, gas is more easily trapped, which causes blowholes. On the other hand, 920
If the temperature exceeds ℃, the solidified layer is not thick enough to withstand the tensile stress generated by solidification shrinkage or heat shrinkage in the mold, and surface cracks occur. Therefore, the surface temperature of the ingot immediately below the mold was set in the range of 780 to 920 ° C. The surface temperature of the ingot immediately below a cooling zone (hereinafter, simply referred to as a direct cooling zone) for continuously and directly cooling the ingot discharged from the mold is in the range of 700 to 750 ° C.
This is because if the temperature is less than 700 ° C., the cooling capacity per unit time in the direct cooling zone is too large, and surface cracks occur due to stress caused by solidification shrinkage and heat shrinkage accompanying solidification of the unsolidified portion,
On the other hand, when the temperature exceeds 750 ° C., unsolidified remains in a region directly below the cooling zone, and as a result, cracks occur on the surface of the ingot due to the static pressure of the molten metal. Further, the precipitates are further coarsened and agglomerated, and remain even after the subsequent heat treatment, which adversely affects bending workability. As described above, by defining the surface temperature of the ingot immediately below the mold and directly below the cooling zone, a sound ingot without surface cracks can be obtained. Next, an embodiment of the present invention will be described with reference to the drawings. EXAMPLES Example 1 Iron: 0.20%, Nickel: 0.15%, Tin:
0.07%, phosphorus: 0.06%, the balance being copper and a copper-based alloy consisting of unavoidable impurities dissolved in a reducing atmosphere,
Under a condition shown below, the resultant was cast into a copper mold having a cross section of 186 mm × 484 mm, and continuously cast. FIG. 1 is an explanatory view showing an embodiment of a casting method according to the present invention. First, a molten copper-base alloy melted in a melting furnace (high-frequency induction furnace) is introduced into a turn dish, and a hot water supply nozzle is provided. 1 and is introduced into a copper mold 2 and is indirectly cooled in the mold 2 by a cooling structure 3 provided in contact with the outer wall of the mold 2. The temperature of the molten metal is changed by controlling the melting furnace, and the cooling ability of the molten metal in the mold 2 is determined by the contact position and contact area of the cooling structure 3 on the outer wall of the mold 2 and the inside of the cooling structure 3. It can be changed by controlling the amount of flowing water and the water temperature. Next, the molten metal in the mold 2 is cooled by the cooling structure 3 via the mold 2 to form a solidified interface 9 between the solidified slab and the molten metal. The ingot (ingot) 8 in the mold 2 is drawn out of the mold 2 by the hydraulic syringe 5, and the drawn ingot 8 is directly cooled by the cooling water 7 jetted from the spray nozzle 6. The casting speed can be changed as appropriate by controlling the oil amount of the hydraulic cylinder 5, and the water amount in the direct cooling zone is
Can be changed by changing the number of nozzles or the nozzle diameter. In this embodiment, the ingot surface temperatures were measured at a point a of the ingot surface temperature immediately below the copper mold 2 and at a point b of the ingot surface temperature immediately below the cooling zone using a radiation thermometer. . Further, with respect to the obtained ingot, the surface of the ingot was visually observed, and those having no defects due to surface cracks were evaluated as ○, and those having defects were evaluated as x. The blowhole in the ingot was cut in the width direction at a position of 100 mm in the length direction from the bottom and the sprue of the ingot, respectively. Those with defects were evaluated as x marks. The bending workability was determined by repeating cold rolling and heat treatment of the ingot to obtain a wrought material having a thickness of 0.25 mm.
0 ° W bending test (JIS H 3110, R = 0.2
(The rolling direction and the direction perpendicular to the rolling direction), and those having a good mountain surface at the center were evaluated as ○, and those having wrinkles and cracks were evaluated as x. Table 1 shows the above results. [Table 1] As can be seen from the results shown in Table 1, the ingot obtained by the casting method according to the present invention has no surface cracks and no defects of blow holes, and the wrought material has excellent bending workability. It is a lump. On the other hand, in Comparative Example No. 2 in which the surface temperature at the fixed point a on the ingot surface temperature side immediately below the mold 2 was high. In Comparative Example No. 2 where a surface crack was observed and the ingot surface temperature at the measurement point a was low. In Comparative Example No. 3 where blowholes were found at the surface cracks but the ingot surface temperature at the measurement points a and b was high. It can be seen that No. 4 had cracks and had poor bending workability. Example 2 Iron: 1.00%, nickel: 0.15%, tin:
A copper-based alloy containing 1.00% and phosphorus: 0.06%, with the balance being copper and unavoidable impurities, is melted in a reducing atmosphere to form a copper mold having a section of 186 mm x 484 mm under the following conditions. It was cast and continuously cast in the same manner as in Example 1 above. Further, the obtained ingot was evaluated in the same manner as in Example 1. Table 2 shows the above results. [Table 2] As can be seen from the results shown in Table 2, the ingot obtained by the casting method according to the present invention has no surface cracks and no defects of blowholes, and the wrought material is an ingot excellent in bending workability. It is. On the other hand, in Comparative Example No. 2 in which the ingot surface temperature was high at the ingot surface measurement point a immediately below the mold 2. Comparative Example No. 2 had a surface crack and had a high ingot surface temperature at measurement points a and b. 3 has cracks and poor bending workability. In Comparative Example No., the surface temperature at the measurement point a was low and the ingot surface temperature at the side fixed point b was high. It can be seen that No. 4 has surface cracks and blowholes and has poor bending workability. As described above, according to the method for casting a copper-based alloy according to the present invention, no defects such as surface cracks and blowholes are observed in the obtained ingot. The wrought material has excellent bending workability and plating reliability. Further, according to the present invention, an ingot can be efficiently produced by continuous casting, and it is extremely large that it contributes to improving the quality of wrought copper-based alloy and reducing the cost.

【図面の簡単な説明】 【図1】本発明に係る鋳造方法の一実施例を示す説明図
である。 【符号の説明】 1−給湯ノズル 2−銅製鋳型 3−冷却構造体 4−シリングーヘッド 5−油圧シリンダー 6−スプレーノズル 7−冷却水 8−鋳塊(インゴット) 9−凝固界面 a−鋳型直下の鋳塊表面温度測定点 b−直接冷却帯直下の鋳塊表面温度測定点
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing one embodiment of a casting method according to the present invention. [Description of Signs] 1-Hot water supply nozzle 2-Copper mold 3-Cooling structure 4-Shilling head 5-Hydraulic cylinder 6-Spray nozzle 7-Cooling water 8-Ingot 9-Solidification interface a-Immediately below the mold Ingot surface temperature measurement point b-ingot surface temperature measurement point immediately below the direct cooling zone

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅原 章 東京都千代田区丸の内一丁目8番2号 同和鉱業株式会社内 (56)参考文献 特開 平4−231445(JP,A) 特開 平6−145847(JP,A) 特開 平1−139736(JP,A) 特開 平1−212732(JP,A) 特開 平2−221344(JP,A) 特開 平3−75325(JP,A) 特開 昭61−257443(JP,A) 特開 昭62−93325(JP,A) 特開 昭62−96630(JP,A) 特開 昭62−99429(JP,A) 特開 昭62−164843(JP,A) 特開 昭62−185842(JP,A) 特開 昭62−267456(JP,A) 特開 昭63−266053(JP,A) 特開 昭63−266052(JP,A) 特開 昭57−62845(JP,A) 特開 平6−262323(JP,A) 特開 昭54−117323(JP,A) 特開 平3−193253(JP,A) 特開 平6−246411(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/00 B22D 11/22 C22C 9/00 H01L 23/50 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Akira Sugawara 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (56) References JP-A-4-231445 (JP, A) JP-A-6 JP-A-145847 (JP, A) JP-A-1-139736 (JP, A) JP-A-1-212732 (JP, A) JP-A-2-221344 (JP, A) JP-A-3-75325 (JP, A) JP-A-61-257443 (JP, A) JP-A-62-93325 (JP, A) JP-A-62-9630 (JP, A) JP-A-62-99429 (JP, A) JP-A-62-99429 164843 (JP, A) JP-A-62-185842 (JP, A) JP-A-62-267456 (JP, A) JP-A-63-266053 (JP, A) JP-A-63-266605 (JP, A) JP-A-57-62845 (JP, A) JP-A-6-262323 (JP, A) JP-A-54-117323 (JP, A) Open flat 3-193253 (JP, A) JP flat 6-246411 (JP, A) (58 ) investigated the field (Int.Cl. 7, DB name) B22D 11/00 B22D 11/22 C22C 9/00 H01L 23/50

Claims (1)

(57)【特許請求の範囲】 【請求項1】 鉄0.01〜3重量%、リン0.01〜
0.3重量%を含み、鉄−リン系の化合物を形成して均
一に分散析出させ、更にニッケル、コバルト、錫、亜
鉛、マグネシウム、ジルコニウム、クロム、珪素、チタ
ン、マンガン、アルミニウム、銀のうち選ばれる少なく
とも一種以上を合計で0.01〜5重量%含み、残部が
実質的に銅からなる銅基合金の溶湯を鋳型を介して連続
的に鋳造・冷却するに際し、鋳型直下の鋳塊表面温度を
780℃〜920℃、該鋳型から排出される該鋳塊を連
続して冷却する冷却帯直下の鋳塊表面温度を700℃〜
750℃に制御することを特徴とする銅基合金の鋳造方
法。
(57) [Claims 1] Iron 0.01 to 3% by weight, Phosphorus 0.01 to
Containing 0.3% by weight, forming an iron-phosphorus compound and uniformly dispersing and depositing the same; and among nickel, cobalt, tin, zinc, magnesium, zirconium, chromium, silicon, titanium, manganese, aluminum and silver When continuously casting and cooling a molten metal of a copper base alloy containing at least one or more selected metals in a total amount of 0.01 to 5% by weight, with the balance being substantially copper, through the mold, the surface of the ingot immediately below the mold The temperature is 780 ° C to 920 ° C, and the surface temperature of the ingot immediately below the cooling zone for continuously cooling the ingot discharged from the mold is 700 ° C to
A method for casting a copper-based alloy, wherein the temperature is controlled to 750 ° C.
JP20372695A 1995-07-06 1995-07-06 Copper based alloy casting method Expired - Lifetime JP3467711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20372695A JP3467711B2 (en) 1995-07-06 1995-07-06 Copper based alloy casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20372695A JP3467711B2 (en) 1995-07-06 1995-07-06 Copper based alloy casting method

Publications (2)

Publication Number Publication Date
JPH0925528A JPH0925528A (en) 1997-01-28
JP3467711B2 true JP3467711B2 (en) 2003-11-17

Family

ID=16478843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20372695A Expired - Lifetime JP3467711B2 (en) 1995-07-06 1995-07-06 Copper based alloy casting method

Country Status (1)

Country Link
JP (1) JP3467711B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749699B2 (en) 2000-08-09 2004-06-15 Olin Corporation Silver containing copper alloy
CN113430415A (en) * 2021-06-22 2021-09-24 江西省科学院应用物理研究所 Pore-free copper-iron alloy and preparation method thereof

Also Published As

Publication number Publication date
JPH0925528A (en) 1997-01-28

Similar Documents

Publication Publication Date Title
KR101450916B1 (en) Process for manufacturing copper alloy wire rod and copper alloy wire rod
CN101501230B (en) Aluminum alloy fin material for heat exchanger and method ofproduction of same and method of production of heat exchanger by brazing fin material
JP3025656B2 (en) Chill vent
JP4082217B2 (en) Magnesium alloy material and method for producing the same
KR101511632B1 (en) Method for manufacturing of Al-Zn alloy sheet using twin roll casting and Al-Zn alloy sheet thereby
US20040238501A1 (en) Electrode material and method for manufacture thereof
RU2307000C2 (en) Dispersion hardened copper alloy as material for making casting molds
JP2004160543A (en) Method of manufacturing ingot for manufacturing ti-containing copper alloy plate or bar of excellent workability
JPH0967635A (en) Aluminum alloy casting excellent in strength and toughness, by high pressure casting, and its production
JP3467711B2 (en) Copper based alloy casting method
CA2408361C (en) Copper alloy comprising zinc, tin and iron for electrical connection and a process for preparing the alloy
JP4661857B2 (en) Magnesium alloy material and method for producing the same
KR100961239B1 (en) Casting roll for two-roll casting installation
KR102175426B1 (en) High strength and high conductivity copper alloy and manufacturing method thereof
JP3137779B2 (en) Continuous casting method of Cu-Ni-Sn alloy
JPH0313935B2 (en)
JP3344687B2 (en) Copper alloy for lead frame
CN118180357B (en) Copper-aluminum composite metal plate, casting forming method and application of copper-aluminum composite metal plate in radiator
JP2005288519A (en) Electrode material and its production method
US20200030920A1 (en) Method for obtaining a welding electrode
JPS6344461B2 (en)
JP2006239760A (en) Method for producing copper alloy
KR100573781B1 (en) Flux for the Melting Treatment Method of Copper and Copper Alloy
KR101232221B1 (en) The method for preparing of Al-Mg-Mn alloy strip using twin roll cast and Al-Mg-Mn alloy strip
WO2009107928A9 (en) Method for manufacturing magnesium alloy sheet cladded with aluminum sheet and magnesium alloy sheet using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term