JP3465291B2 - Method for producing water for beverage and food production - Google Patents

Method for producing water for beverage and food production

Info

Publication number
JP3465291B2
JP3465291B2 JP09773193A JP9773193A JP3465291B2 JP 3465291 B2 JP3465291 B2 JP 3465291B2 JP 09773193 A JP09773193 A JP 09773193A JP 9773193 A JP9773193 A JP 9773193A JP 3465291 B2 JP3465291 B2 JP 3465291B2
Authority
JP
Japan
Prior art keywords
water
resin
exchange resin
tower
strongly basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09773193A
Other languages
Japanese (ja)
Other versions
JPH06304556A (en
Inventor
高光 森田
敏 元木
純二 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP09773193A priority Critical patent/JP3465291B2/en
Publication of JPH06304556A publication Critical patent/JPH06304556A/en
Application granted granted Critical
Publication of JP3465291B2 publication Critical patent/JP3465291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭酸系飲料、果実系飲
料、コーヒー系飲料、茶系飲料、水系飲料などの清涼飲
料やアルコール飲料および菓子などの食品製造に使用す
る純水を製造する方法の改良に関するものである。詳し
くは、本発明は強酸性陽イオン交換樹脂(以下強酸性樹
脂と略す)を充填したカチオン塔と強塩基性陰イオン交
換樹脂(以下強塩基性樹脂と略す)を充填したアニオン
塔から構成される複床式の純水製造装置により飲料・食
品製造用に使用される純水の製造法の改良に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention produces pure water used in the production of soft drinks such as carbonated drinks, fruit drinks, coffee drinks, tea drinks and water drinks and foods such as alcoholic drinks and confectionery. It concerns the improvement of the method. More specifically, the present invention comprises a cation tower packed with a strongly acidic cation exchange resin (hereinafter abbreviated as strong acid resin) and an anion tower packed with a strongly basic anion exchange resin (hereinafter abbreviated as strong basic resin). The present invention relates to improvement of a method for producing pure water used for producing beverages and foods by a multi-bed type pure water producing apparatus.

【0002】[0002]

【従来の技術】従来、飲料や食品の製造用水は、厚生省
令による水質基準に適合することは当然であるが、業界
団体および製造業者による独自の水質基準も設定されて
いる。例えば清涼飲料分野における用水の一般的な条件
としては、無色透明、無味無臭、微生物汚れの無いこ
と、鉄やマンガンが殆ど含まれないこと、および残留塩
素を含まないことがあげられ、さらに製品によってはア
ルカリ度や硬度が低いことが求められている。清涼飲料
用水の水源としては水道水や地下水などが使われるが、
原水の水質や要求される水質に応じた処理、例えばエア
レーション、砂や活性炭によるろ過、凝集沈澱などの操
作が単独または組み合わせて実施されている。近年、飲
料用水を製造する際に、品質管理の面から脱塩工程を導
入する例が増加しており、その為の手法としてはイオン
交換法、電気透析法、逆浸透膜法が挙げられる。その中
でもイオン交換法は殆ど全ての溶解イオン類を除去する
ことができる為、広く用いられつつある。イオン交換法
は目的に応じて種々のイオン交換樹脂を組み合わせて用
いる多数の処理方法があるが、飲料および食品の製造用
水向けとしては強酸性樹脂と強塩基性樹脂を同一の塔内
で混合した後に原水を通液する混床式が一般に採用され
ている。混床式は一塔式である為装置製作費が比較的安
価になる反面、再生工程が複雑で時間を要する欠点の
他、原水中の炭酸成分が強塩基性樹脂の負荷になること
から多量の強塩基性樹脂および多量の再生剤量を必要と
する。この弱点は装置が大型になるほど軽視できなくな
るという欠点を有している。そこで、近年は強酸性樹脂
を充填したカチオン塔と強塩基性樹脂を充填したアニオ
ン塔に原水を直列に通水する複床式が採用されている。
複床式はカチオン塔とアニオン塔の中間に脱炭酸塔を設
置する事ができるため、その場合には原水中の炭酸成分
を除去する事ができ、アニオン塔に対する負荷が軽減さ
れ強塩基性樹脂および再生剤量を少なくする事ができ
る。さらに、カチオン塔およびアニオン塔共に原水の流
れ方向と再生剤の流れ方向を逆にして再生する向流再生
方式を採用すれば、非常に純度の高い純水が得られるこ
とになり、また再生効率も非常に向上するため、運転コ
ストの低減化が達成される。
2. Description of the Related Art Conventionally, water for manufacturing beverages and foods naturally complies with the water quality standards specified by the Ordinance of the Ministry of Health and Welfare, but industry groups and manufacturers have also established their own water quality standards. For example, the general conditions for water in the soft drink field are colorless and transparent, tasteless and odorless, free of microbial stains, containing almost no iron or manganese, and containing no residual chlorine. Is required to have low alkalinity and hardness. Although tap water and groundwater are used as the water source for soft drinks,
Treatments depending on the water quality of the raw water or the required water quality, such as aeration, filtration with sand or activated carbon, and coagulation sedimentation, are carried out individually or in combination. In recent years, examples of introducing a desalting step from the viewpoint of quality control when manufacturing drinking water have been increasing, and examples of the method for that purpose include an ion exchange method, an electrodialysis method, and a reverse osmosis membrane method. Among them, the ion exchange method is being widely used because it can remove almost all dissolved ions. Ion exchange method has many treatment methods using various ion exchange resins in combination depending on the purpose, but for water for producing beverages and foods, strong acidic resin and strong basic resin were mixed in the same tower. A mixed bed type in which raw water is passed later is generally adopted. Since the mixed bed type is a single tower type, the manufacturing cost of the device is relatively low, but the regeneration process is complicated and time-consuming. Of strong basic resin and a large amount of regenerant. This weakness has the drawback that the larger the device, the more difficult it becomes to neglect. Therefore, in recent years, a multiple bed type has been adopted in which raw water is passed in series through a cation tower filled with a strongly acidic resin and an anion tower filled with a strongly basic resin.
Since the decarbonation tower can be installed between the cation tower and the anion tower in the multiple bed type, in that case, the carbonic acid component in the raw water can be removed, the load on the anion tower is reduced, and the strong basic resin is used. And the amount of regenerant can be reduced. Furthermore, if both the cation tower and the anion tower adopt a countercurrent regeneration method in which the flow direction of the raw water and the flow direction of the regenerant are reversed, pure water of extremely high purity can be obtained, and the regeneration efficiency can be improved. Also, since the operating cost is significantly improved, the operating cost can be reduced.

【0003】[0003]

【発明が解決しようとする課題】ところが複床式を採用
した場合には、残存無機イオン濃度が低い高純度の純水
が大量に得られたとしても、不快な臭気があり、飲料お
よび食品製造用水として直ちに採水することは困難であ
り、純水装置に通水直後から臭いのない純水が得られる
製造方法が望まれていた。不快臭の原因としてはイオン
交換樹脂からの溶出物特に強塩基性樹脂から溶出するア
ミンと考えられる。強塩基性樹脂は、交換基の違いによ
りI型とII型があることは知られているが、II型樹脂は
貫流交換容量が大きいため多量の純水が得られるもの
の、アミン臭がより著しいという欠点を有している。例
えば、それらの樹脂を用いた純水製造装置では連続運転
をしながら6カ月経過した後においても、純水中に異臭
が残る場合がある。一方、I型樹脂においてはアミン臭
はII型樹脂に比べて少ないものの、それでも通常5日間
ないし1カ月間においても異臭が残留することもある。
そこで強塩基性樹脂については、水酸化ナトリウム水溶
液などを用いて再生した後、極めて大量の水により洗浄
を行った上で採水するなどの方法が考えられるが、大量
の水で水洗する事は、運転コストの増大や操業上の時間
的支障などを引き起こし、生産性の低下につながる不合
理な方法である。本発明者等は臭気漏出の比較的少ない
I型樹脂からの臭気をさらに減少させる手段を講じ、純
水製造装置の試運転直後より無味無臭の処理水を得る事
を目的に検討を加えた。
However, when the multi-bed type is adopted, there is an unpleasant odor even if a large amount of high-purity pure water having a low residual inorganic ion concentration is obtained, and beverages and foods are manufactured. It is difficult to collect water immediately as water for use, and there has been a demand for a manufacturing method capable of obtaining pure water having no odor immediately after passing through a pure water device. The cause of the unpleasant odor is considered to be the eluate from the ion exchange resin, especially the amine eluted from the strongly basic resin. Strongly basic resins are known to be of type I and type II due to the difference in the exchange groups, but since type II resins have a large flow-through exchange capacity, a large amount of pure water can be obtained, but the amine odor is more pronounced. It has the drawback of For example, in a pure water production apparatus using such a resin, an offensive odor may remain in pure water even after 6 months have passed during continuous operation. On the other hand, although the type I resin has a smaller amine odor than the type II resin, it may still have an offensive odor even after 5 days to 1 month.
Therefore, for strongly basic resins, it is possible to regenerate it with an aqueous solution of sodium hydroxide, wash it with an extremely large amount of water, and then collect water.However, washing with a large amount of water is not recommended. However, this is an irrational method that causes an increase in operating cost, a time hindrance in operation, etc., and leads to a decrease in productivity. The present inventors have taken measures to further reduce the odor from the I-type resin, which has a relatively small odor leakage, and have conducted an investigation for the purpose of obtaining tasteless and odorless treated water immediately after the test operation of the pure water production apparatus.

【0004】一方、アミン類が強塩基性樹脂からの主な
る溶出物である事は古くから知られているが、臭気の強
さとの関連性について定性的な言及がなされているもの
は散見されるものの、定量的またはどの程度まで低下さ
せると飲料および食品製造用水に適した水になるかにつ
いては知られていない。I型樹脂からの臭気成分はトリ
メチルアミンであると言われているが、トリメチルアミ
ンは魚介類にも含まれるので低濃度であれば毒性上の危
険度は低いと言えるが、悪臭防止法における悪臭物質と
して良く知られている。本発明者等はトリメチルアミン
濃度と臭気の相関について鋭意検討を加え、併せて官能
試験を実施する事により純水中のトリメチルアミン濃度
が従来考えられていたより遙かに低濃度の20ppb以
下でなければ通常の人間にとっては無味無臭に感じられ
ない事を知見した。またI型樹脂を予じめ前処理するこ
とによって処理水中のトリメチルアミンを20ppb以
下にする方法を見出しI型強塩基性樹脂を用いる食品製
造用水の製造法を確立し、本発明に至った。
On the other hand, it has long been known that amines are the main eluate from strongly basic resins, but some qualitative references have been made regarding the relationship with odor intensity. However, it is not known whether it is quantitative or to a lesser extent suitable for drinking and food production. It is said that the odor component from the type I resin is trimethylamine, but since trimethylamine is also contained in seafood, it can be said that the toxicity risk is low if the concentration is low, but as a malodorous substance under the Malodor Control Law. Well known. The present inventors have diligently studied the correlation between trimethylamine concentration and odor, and by conducting a sensory test together, the trimethylamine concentration in pure water should be 20 ppb or less, which is a much lower concentration than conventionally considered. It was discovered that human beings do not feel tasteless and odorless. Further, a method of preliminarily pre-treating the type I resin to reduce trimethylamine in the treated water to 20 ppb or less was found, and a method for producing water for food production using the type I strong basic resin was established, which led to the present invention.

【0005】 本発明は、強酸性樹脂を充填したカチオ
ン塔と強塩基性樹脂を充填したアニオン塔から構成され
る複床式の純水製造装置において、強塩基性樹脂として
I型樹脂であって、かつ極性有機溶媒で洗浄するか、又
はアルカリ性水溶液中で80℃以上で加熱処理すること
により、トリメチルアミンの溶出量を低減させたものを
用いることにより、イオン交換処理後の水中のトリメチ
ルアミン濃度20ppb以下することを特徴とする
食品製造用水の製造方法に存する。以下本発明を詳細に
説明する。
[0005] The present invention provides a multi-bed water purifying apparatus constructed a cation column and a strongly basic resin filled with strongly acidic resin from the anion column filled, a type I resin as strongly basic resins , And wash with polar organic solvent, or
Is heat treatment at 80 ℃ or higher in alkaline aqueous solution
To reduce the elution amount of trimethylamine
The use, resides in the production method of food preparation water, characterized by the following 20ppb trimethylamine concentration in water after the ion exchange treatment. The present invention will be described in detail below.

【0006】本発明の方法は強酸性陽イオン交換樹脂塔
と強塩基性陰イオン交換樹脂塔を用いた所謂複床式の純
水製造装置に適用される。複床式の装置としては陽イオ
ン樹脂塔と陰イオン樹脂塔を直列に接続した2床2塔
式、更に脱炭酸塔を設けた2床3塔式を採用することが
できる。更に弱塩基性樹脂や弱酸性樹脂を併用する装置
も使用できる。使用する原水も天然水、水道水等処理に
より飲料に適した水が得られるのであれば特に限定され
ない。原水は必要に応じ脱塩素処理等の前処理を行なっ
た後、本発明方法が適用される。
The method of the present invention is applied to a so-called multiple bed type pure water producing apparatus using a strongly acidic cation exchange resin tower and a strongly basic anion exchange resin tower. As the multi-bed apparatus, a two-bed two-column system in which a cation resin tower and an anion resin tower are connected in series, and a two-bed three tower system in which a decarbonation tower is further provided can be adopted. Furthermore, an apparatus using a weakly basic resin or a weakly acidic resin together can be used. The raw water to be used is not particularly limited as long as it can be treated with natural water, tap water or the like to obtain water suitable for drinking. The raw water is subjected to a pretreatment such as dechlorination as necessary, and then the method of the present invention is applied.

【0007】使用されるイオン交換樹脂としては強酸性
陽イオン交換樹脂及びI型の強塩基性陰イオン交換樹脂
すなわち、イオン交換基が
The ion exchange resin used is a strongly acidic cation exchange resin or a type I strong basic anion exchange resin, that is, an ion exchange group.

【0008】[0008]

【化1】 [Chemical 1]

【0009】である樹脂であれば特に限定されるもので
はない。I型強塩基性樹脂からの異臭の成分であるトリ
メチルアミンは、樹脂製造時に樹脂粒子内に残留したト
リメチルアミンもその一因であると考えられるので、使
用に先立ってこれを強制的に脱離させることも有効であ
る。除去方法としては樹脂を水洗する方法が挙げられる
が、I型強塩基性樹脂からのトリメチルアミン溶出量は
樹脂体積の数千倍程度の清浄な水を用いて洗浄すれば、
通常の人間が無味無臭に感じる程度まで低減化できるこ
とは以前より知られているが、効率的ではない。
There is no particular limitation as long as the resin is Trimethylamine, which is an offensive odor component from the type I strong basic resin, is considered to be partly due to trimethylamine remaining in the resin particles during resin production. Therefore, it is necessary to forcibly remove it before use. Is also effective. As a method for removing the resin, a method of washing the resin can be mentioned. If the amount of trimethylamine eluted from the type I strong basic resin is washed with several thousand times the volume of the resin, clean water is used.
It has been known for a long time that it can be reduced to the level that a normal person feels tasteless and odorless, but it is not efficient.

【0010】本発明が提供する効率的なトリメチルアミ
ン溶出量の低減化方法のひとつとして、極性有機溶媒に
よる洗浄があげられる。使用する極性有機溶媒として
は、洗浄する樹脂との親和性が強く、かつトリメチルア
ミンに対する溶解度が大きいメタノール、エタノール、
アセトン等が適当である。洗浄に際しては、洗浄効率の
高いカラム方式が望ましく、この場合使用する極性有機
溶媒の量は樹脂体積の0.2倍量以上、望ましくは0.
5倍以上が必要であり、15分間以上の接触時間が必要
である。
Washing with a polar organic solvent is one of the efficient methods for reducing the elution amount of trimethylamine provided by the present invention. As the polar organic solvent used, methanol, ethanol, which has a strong affinity with the resin to be washed and has a high solubility in trimethylamine,
Acetone or the like is suitable. In washing, a column system with high washing efficiency is desirable, and in this case, the amount of the polar organic solvent used is 0.2 times the volume of the resin or more, preferably 0.
5 times or more is required and a contact time of 15 minutes or more is required.

【0011】他の効率的なトリメチルアミン溶出量の低
減化方法としては、アルカリ性水溶液の存在下での加熱
処理があげられる。アルカリ性水溶液の種類は問わない
が、通常苛性アルカリ、炭酸アルカリ等の水溶液を用い
pH10以上、望ましくはpH12以上の条件下、温度
を80℃以上、望ましくは水溶液の還流雰囲気即ち10
0℃で、1時間以上の加熱処理が必要である。
Another efficient method for reducing the amount of trimethylamine eluted is heat treatment in the presence of an alkaline aqueous solution. The type of the alkaline aqueous solution is not limited, but usually an aqueous solution of caustic alkali, alkali carbonate or the like is used, and the temperature is 80 ° C. or higher under the condition of pH 10 or higher, preferably pH 12 or higher, preferably the reflux atmosphere of the aqueous solution, ie, 10
Heat treatment at 0 ° C. for 1 hour or more is required.

【0012】以上の前処理を施す事により、再生後の再
生型の強塩基性陰イオン交換樹脂を水洗するがその水洗
水量が再生型樹脂体積量の20倍量以内でその処理水中
のトリメチルアミン濃度を20ppb以下とする事が可
能となり、実装置に新品樹脂を充填した場合に初回再生
後の水洗水量を大幅に減少せしめて操業上の支障を懸念
する必要が無くなった。
By carrying out the above-mentioned pretreatment, the regenerated strong basic anion exchange resin after regeneration is washed with water, but the amount of washing water is within 20 times the volume of the regenerated resin, and the concentration of trimethylamine in the treated water is reduced. Can be set to 20 ppb or less, and when the actual device is filled with a new resin, it is not necessary to significantly reduce the amount of rinsing water after the initial regeneration and to worry about the operational trouble.

【0013】[0013]

【実施例】以下に実施例により本発明を更に詳細に説明
するが、本発明はこれら実施例によっては何ら限定され
ない。本発明において、トリメチルアミン濃度の測定は
(株)島津製作所製の表面電離型検出器付ガスクロGC
−14APSIにより、また、官能試験は試験員6人に
よる処理水の臭いと味に関する3段階評価により実施し
た。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. In the present invention, the trimethylamine concentration is measured by a gas chromatograph GC with a surface ionization detector manufactured by Shimadzu Corporation.
-14 APSI, and the sensory test was conducted by 6 testers by a three-level evaluation of smell and taste of treated water.

【0014】〔比較例〕市販されているスチレン系の強
酸性樹脂ダイヤイオンSK1B(登録商標:三菱化成
(株)製)を100ml、及び同強塩基性樹脂ダイヤイ
オンSA12A(登録商標:三菱化成(株)製)100
mlを各々量りとり、内径14mmの円筒形ガラスカラ
ムの2本に各々充填した。強酸性樹脂に対し2N−HC
lを500mlおよび強塩基性樹脂に対し1N−NaO
H500mlを空間速度(SV)=2h-1にてカラム上
部より各々通液した後、超純水100mlを同流速で各
々通液した。次にこの再生型樹脂に対し、横浜上水を予
め亜硫酸ソーダにより処理して残留塩素を除去後、カチ
オン塔続いてアニオン塔の順に下向流の流速SV=10
-1にて通液し、処理水を共栓付ガラスフラスコに定期
的にサンプリングした。各サンプルにつきトリメチルア
ミン濃度測定と官能試験を実施した結果を第1表に示
す。
[Comparative Example] 100 ml of a commercially available styrene-based strongly acidic resin DIAION SK1B (registered trademark: manufactured by Mitsubishi Kasei Co., Ltd.) and the same strong basic resin DIAION SA12A (registered trademark: Mitsubishi Chemical ( 100)
Each ml was weighed and packed in two cylindrical glass columns each having an inner diameter of 14 mm. 2N-HC for strongly acidic resin
500 ml and 1N-NaO for strongly basic resin
After 500 ml of H was passed through each of the columns at a space velocity (SV) of 2 h −1 from the upper part of the column, 100 ml of ultrapure water was passed at the same flow rate. Next, Yokohama water was treated with sodium sulfite in advance to remove residual chlorine from the regenerated resin, and then a downward flow rate SV = 10 was sequentially applied to the cation tower and then the anion tower.
The solution was passed at h -1 , and the treated water was periodically sampled in a glass flask with a ground stopper. Table 1 shows the results of the trimethylamine concentration measurement and the sensory test performed on each sample.

【0015】〔実施例1〕比較例と同じ強塩基性陰イオ
ン交換樹脂SA12Aの200mlを直径45mm、長
さ300mmのガラス製カラムに充填し、試薬特級メタ
ノールの200mlを1時間で通液した後、脱塩水10
00mlを2.5時間で流し、水洗した。水洗を終了し
た樹脂の内100mlを採り、比較例と同一な方法によ
り横浜上水を処理しトリメチルアミン濃度測定と官能試
験を実施した。その結果を第2表に示す。
Example 1 A glass column having a diameter of 45 mm and a length of 300 mm was filled with 200 ml of the same strongly basic anion exchange resin SA12A as in the comparative example, and 200 ml of reagent grade methanol was passed through for 1 hour. , Demineralized water 10
00 ml was poured for 2.5 hours and washed with water. 100 ml of the resin that had been washed with water was taken, Yokohama water was treated in the same manner as in Comparative Example, and trimethylamine concentration measurement and sensory test were carried out. The results are shown in Table 2.

【0016】〔実施例2〕比較例と同じ強塩基性陰イオ
ン交換樹脂SA12Aの200mlを水湿潤状態で計り
採り、脱塩水400mlと2N苛性ソーダ25mlと共
に1000ml容の撹拌器を取り付けたガラス製4つ口
フラスコに入れた。130℃に加熱したオイルバスを用
いて撹拌しながら4時間加熱処理を施した後、樹脂を直
径45mm、長さ300mmのガラス製カラムに移し、
脱塩水1000mlを2.5時間で流し、水洗した。水
洗を終了した樹脂の内100mlを採り、比較例と同一
の方法により横浜上水を処理しトリメチルアミン濃度測
定と官能試験を実施した。その結果を第3表に示す。
[Example 2] 200 ml of the same strongly basic anion exchange resin SA12A as in the comparative example was weighed in a water-wet state, and 400 ml of demineralized water and 25 ml of 2N caustic soda were attached to four glass-made stirrers. Place in a neck flask. After heat treatment for 4 hours while stirring using an oil bath heated to 130 ° C., the resin was transferred to a glass column having a diameter of 45 mm and a length of 300 mm,
1000 ml of demineralized water was flowed for 2.5 hours and washed with water. 100 ml of the resin that had been washed with water was taken, Yokohama water was treated by the same method as in the comparative example, and trimethylamine concentration measurement and sensory test were carried out. The results are shown in Table 3.

【0017】[0017]

【発明の効果】本発明方法によれば、強酸性樹脂および
強塩基性樹脂を用いた複床式純水装置により、新品樹脂
を充填した運転開始後において速やかに無味無臭の処理
水を得る事が可能である。
According to the method of the present invention, it is possible to obtain tasteless and odorless treated water promptly after the start of operation in which a new resin is filled, by using a multiple bed type deionized water apparatus using a strongly acidic resin and a strongly basic resin. Is possible.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福田 純二 神奈川県横浜市緑区鴨志田町1000番地 三菱化成株式会社総合研究所内 (56)参考文献 特開 昭63−97236(JP,A) 特開 平5−92183(JP,A) 特開 昭64−66598(JP,A) 特開 昭54−112380(JP,A) 特開 昭60−102950(JP,A) 特開 昭63−97286(JP,A) 特開 昭54−34545(JP,A) 特開 平5−49950(JP,A) 特公 昭48−18706(JP,B1) 宮原昭三 大曲隆昭 酒井重男,実用 イオン交換,日本,株式会社化学工業 社,1976年10月15日,12 (58)調査した分野(Int.Cl.7,DB名) C02F 1/42 B01J 39/00 - 49/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junji Fukuda 1000 Kamoshida-cho, Midori-ku, Yokohama-shi, Kanagawa Mitsubishi Kasei Co., Ltd. (56) Reference JP-A-63-97236 (JP, A) JP-A 5-92183 (JP, A) JP 64-66598 (JP, A) JP 54-112380 (JP, A) JP 60-102950 (JP, A) JP 63-97286 (JP, A) JP 54-34545 (JP, A) JP 5-49950 (JP, A) JP 48-18706 (JP, B1) Shozo Miyahara Takazo Omagari Shigeo Sakai, Ion Exchange, Japan, Ltd. Chemical Industry, October 15, 1976, 12 (58) Fields investigated (Int.Cl. 7 , DB name) C02F 1/42 B01J 39/00-49/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 強酸性陽イオン交換樹脂を充填したカチ
オン塔と強塩基性陰イオン交換樹脂を充填したアニオン
塔から構成される複床式の純水製造装置により飲料
品の製造用水として用いるトリメチルアミン濃度が20
ppb以下の純水を製造する方法において、該強塩基性
陰イオン交換樹脂としてI型の樹脂であって、かつ極性
有機溶媒で洗浄するか、又はアルカリ性水溶液中で80
℃以上で加熱処理することにより、トリメチルアミンの
溶出量を低減させたものを用いることを特徴とする方
法。
1. A multi-bed type pure water producing apparatus comprising a cation tower filled with a strongly acidic cation exchange resin and an anion tower filled with a strongly basic anion exchange resin, and a beverage or a food product. The concentration of trimethylamine used as water for manufacturing
A method for producing pure water of ppb or less, wherein the strongly basic anion exchange resin is an I type resin and is polar.
Wash with organic solvent or in alkaline water
By heat-treating above ℃,
Those who are characterized by using a reduced elution amount
Law.
【請求項2】 極性有機溶媒による洗浄が、メタノー
ル、エタノール及びアセトンよりなる群から選ばれた極
性有機溶媒と強塩基性陰イオン交換樹脂とを15分間以
上接触させることにより行われたことを特徴とする請求
項1に記載の方法。
2. Washing with a polar organic solvent is performed using methanol.
A pole selected from the group consisting of
The basic organic solvent and the strongly basic anion exchange resin for 15 minutes or more.
Claims characterized by being made by contacting up
The method according to Item 1.
【請求項3】 アルカリ性水溶液中での加熱処理が、83. The heat treatment in an alkaline aqueous solution is 8
0℃ないし100℃で1時間以上行われたことを特徴とCharacterized by being performed at 0 ° C to 100 ° C for 1 hour or more
する請求項1記載の方法。The method of claim 1, wherein
【請求項4】 アルカリ水溶液中での加熱処理が、pH4. The heat treatment in an alkaline aqueous solution is performed at pH
12以上のアルカリ性水溶液中で行われたことを特徴とCharacterized by being carried out in 12 or more alkaline aqueous solutions
する請求項1又は3記載の方法。The method according to claim 1 or 3, wherein
JP09773193A 1993-04-23 1993-04-23 Method for producing water for beverage and food production Expired - Lifetime JP3465291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09773193A JP3465291B2 (en) 1993-04-23 1993-04-23 Method for producing water for beverage and food production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09773193A JP3465291B2 (en) 1993-04-23 1993-04-23 Method for producing water for beverage and food production

Publications (2)

Publication Number Publication Date
JPH06304556A JPH06304556A (en) 1994-11-01
JP3465291B2 true JP3465291B2 (en) 2003-11-10

Family

ID=14200043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09773193A Expired - Lifetime JP3465291B2 (en) 1993-04-23 1993-04-23 Method for producing water for beverage and food production

Country Status (1)

Country Link
JP (1) JP3465291B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102553662A (en) * 2010-12-29 2012-07-11 陶氏环球技术有限公司 Method for inhibiting nitrosamine formation in anion exchange resins

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000819A (en) * 2005-06-27 2007-01-11 Ebara Corp Pure water production apparatus and method
CN110508331B (en) * 2019-09-19 2023-08-18 华能国际电力股份有限公司 Low-loss organic amine solution purification device and application method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宮原昭三 大曲隆昭 酒井重男,実用イオン交換,日本,株式会社化学工業社,1976年10月15日,12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102553662A (en) * 2010-12-29 2012-07-11 陶氏环球技术有限公司 Method for inhibiting nitrosamine formation in anion exchange resins

Also Published As

Publication number Publication date
JPH06304556A (en) 1994-11-01

Similar Documents

Publication Publication Date Title
Lalezary‐Craig et al. Optimizing the removal of Geosmin and 2‐methylisoborneol by powdered activated carbon
RU2464237C2 (en) Method and apparatus for enriching water with magnesium ions
US4775541A (en) Ion exchange method of treating liquid fermentation products to reduce the content of coloring matter therein
JPH1042852A (en) Stabilization of beverage
JP2008080332A (en) Process for making and using low beverage soluble iron content adsorbent and composition made thereby
JPH1085743A (en) Method and apparatus for treating water containing boron
MX2007004647A (en) Purified beverage products and processes for making the same.
WO1997000024A1 (en) Process for producing preservable squeezed vegetable juice
JP3465291B2 (en) Method for producing water for beverage and food production
Frisch et al. Organic Fouling of Anion‐Exchange Resins
US5278339A (en) Process for the recovery of cyclohexanedicarboxylic acids
US4267057A (en) Water treatment for selective removal of nitrates
Loubser et al. The removal of copper and iron from wine using a chelating resin
Pollio et al. Tertiary treatment of municipal sewage effluents
JP2607534B2 (en) Device for removing odor components in pure water
JPS5963200A (en) Selective removal of extractable sulfonic acid resin using acrylic anion exchange resin
JP5235091B2 (en) Method and apparatus for removing aldehyde compound from alcohol-containing liquid
JPWO2005090612A1 (en) Sugar liquid purification method and purification apparatus
JPH1176840A (en) Method for separating mixed resin in mixed bed ion exchange resin tower and method for regenerating mixed bed sucrose refining apparatus
JPH0372900A (en) Method for purifying sucrose solution and treating equipment therefor
JP2510452B2 (en) Deodorizing method of reconstituted milk
JP2006254794A (en) Method for regenerating phenolic absorbing resin in sugar solution refining system and sugar solution refining apparatus
WARD Organic Fouling of Strongly Basic Anion Exchange Resins
JP2000202442A (en) Separation and recovering method of boron in boron- containing water
JP2001299400A (en) Method and apparatus both for producing refined sucrose solution containing mineral ingredients

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

EXPY Cancellation because of completion of term