JP3457503B2 - Insulated gate type semiconductor device - Google Patents

Insulated gate type semiconductor device

Info

Publication number
JP3457503B2
JP3457503B2 JP13629797A JP13629797A JP3457503B2 JP 3457503 B2 JP3457503 B2 JP 3457503B2 JP 13629797 A JP13629797 A JP 13629797A JP 13629797 A JP13629797 A JP 13629797A JP 3457503 B2 JP3457503 B2 JP 3457503B2
Authority
JP
Japan
Prior art keywords
insulated gate
semiconductor device
electrode
inductance
gate semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13629797A
Other languages
Japanese (ja)
Other versions
JPH10326861A (en
Inventor
和弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13629797A priority Critical patent/JP3457503B2/en
Priority to CA002232199A priority patent/CA2232199C/en
Priority to AU58436/98A priority patent/AU712126B2/en
Priority to US09/042,576 priority patent/US5929665A/en
Priority to CN98115111A priority patent/CN1065990C/en
Publication of JPH10326861A publication Critical patent/JPH10326861A/en
Application granted granted Critical
Publication of JP3457503B2 publication Critical patent/JP3457503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48092Helix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、素子と電極とを加
圧接続した圧接タイプの絶縁ゲート型半導体素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure contact type insulated gate semiconductor device in which a device and an electrode are pressure-connected.

【0002】[0002]

【従来の技術】IGBT(Insulated Gate Bipolar Tra
nsistor )やIEGT(Injection Enhanced Gate Tran
sistor)で代表される絶縁ゲート型半導体素子(以下素
子という)は、一般的に、絶縁基板上に素子が搭載さ
れ、その素子のエミッタ部分と端子部分である銅板とを
リード線で接続したボンディングタイプのものと素子の
エミッタ部分と端子部分である銅板とを加圧接続した圧
接タイプのものがある。
2. Description of the Related Art IGBT (Insulated Gate Bipolar Tra
nsistor) and IEGT (Injection Enhanced Gate Tran)
Insulated gate type semiconductor devices (hereinafter referred to as "devices") represented by sistors are generally devices that are mounted on an insulating substrate, and the emitter part of the device and the copper plate that is the terminal part are connected by a lead wire. There are a type and a pressure welding type in which the emitter portion of the element and the copper plate which is the terminal portion are pressure-connected.

【0003】そして、最近、素子の高電圧化が進み、耐
電圧が1.7kVや2.5kVといった高耐電圧のIG
BTも商品化されてきている。更に、耐電圧が3.3k
VのIGBTや4.5kVのIEGTといった高耐電圧
化の新しい素子も開発されるに至っている。
Recently, with the progress of higher voltage devices, the IG has a high withstand voltage of 1.7 kV or 2.5 kV.
BT has also been commercialized. Furthermore, withstand voltage is 3.3k
New devices with high withstand voltage, such as V IGBT and 4.5 kV IEGT, have also been developed.

【0004】しかしながら、これら高耐電圧の素子の電
流を遮断しようとすると、電流遮断時のdv/dtが非
常に激しく素子が破壊されてしまうことがある。また、
素子の高耐電圧化により、電圧Eが高くなった分、電流
の上昇率であるdi/dt=E/L(Lは回路の配線イ
ンダクタンスなど)も大きくなり、素子を並列接続した
場合、一部の素子に電流が集中して素子を破壊する別の
不具合現象も顕著になってきている。
However, when it is attempted to cut off the current of these high withstand voltage elements, the element may be destroyed because the dv / dt at the time of the current interruption is extremely high. Also,
Due to the higher withstand voltage of the elements, the current increase rate di / dt = E / L (L is the wiring inductance of the circuit, etc.) also increases with the increase in the voltage E, and when the elements are connected in parallel, Another problem phenomenon in which the current is concentrated on the element of the part and the element is destroyed has become remarkable.

【0005】この不具合現象は、ボンディングタイプの
素子にはほとんど現れず、圧接タイプの素子に現れる。
その理由は以下の通りである。
This defect phenomenon hardly appears in the bonding type element, but appears in the pressure contact type element.
The reason is as follows.

【0006】上記不具合現象を解消する構成としては、
図8に示すように、素子のエミッタ部分Eに少量のイン
ダクタンスIndを接続して、そのインダクタンスIn
dを含んだ位置からゲート用エミッタ端子Egを形成
し、ターンオフ時の遮断電流によってインダクタンスI
ndに発生する電圧をゲート電圧緩和のために利用して
素子に印加されるdv/dtを緩和して素子の破壊を防
止する構成が考えられる。
As a structure for solving the above-mentioned trouble phenomenon,
As shown in FIG. 8, a small amount of inductance Ind is connected to the emitter portion E of the element, and the inductance In
The gate emitter terminal Eg is formed from the position including d, and the inductance I is generated by the cutoff current at turn-off.
A configuration in which the voltage generated at nd is used to alleviate the gate voltage and dv / dt applied to the element is alleviated to prevent the element from being destroyed can be considered.

【0007】このようにインダクタンスIndが挿入さ
れると電流が遮断される場合、図8に示す極性に電圧L
・(di/dt)が発生して素子に実際に印加されるゲ
ート電圧VgeはEoffではなく、(Eoff−L・
(di/dt))に減少してターンオフ電圧を緩和し
て、遮断現象が急激に発生しないのでターンオフ時のd
v/dtも緩やかになり、素子1の破壊を防止する効果
が得られる。また、大きな電流を遮断する時はdi/d
tが更に大きくなるので、自動的にオフ用ゲート電圧は
更に小さくなってdv/dtを更に緩和して素子の破壊
を防止する効果が得られる。
When the current is cut off when the inductance Ind is inserted in this way, the voltage L has the polarity shown in FIG.
The gate voltage Vge actually generated by (di / dt) and applied to the device is not (Eoff) but (Eoff-L.
(Di / dt)) to alleviate the turn-off voltage and the cut-off phenomenon does not occur suddenly.
The v / dt also becomes gentle, and the effect of preventing the element 1 from being destroyed can be obtained. When cutting off a large current, di / d
Since t is further increased, the OFF gate voltage is automatically reduced, and dv / dt is further relaxed, so that the element is prevented from being destroyed.

【0008】そして、図9に示すように、ボンディング
タイプの素子は、絶縁基板1上にチップ2,コレクタ端
子電極銅板3,エミッタ端子電極銅板4が搭載されてお
り、チップ2はゲート部G,コレクタ−エミッタ部CE
から構成されている。そして、コレクタ−エミッタ部C
Eのエミッタ部分とエミッタ端子電極銅板4とをリード
線5でボンディングすることで構成されている。このよ
うに構成されたボンディングタイプの素子は、直流電源
E1,E2とスイッチS1,S2と抵抗Rとから構成さ
れるゲート電源供給回路6からゲート部Gに給電される
ことにより、ゲート駆動制御されている。従って、ボン
ディングタイプの素子の場合は、コレクタ−エミッタ部
CEのエミッタ部分とエミッタ端子電極銅板4とをリー
ド線5でボンディングされているため、このリード線5
がインダクタンス要素となっているためである。
As shown in FIG. 9, in the bonding type element, a chip 2, a collector terminal electrode copper plate 3 and an emitter terminal electrode copper plate 4 are mounted on an insulating substrate 1, and the chip 2 has a gate portion G, Collector-emitter CE
It consists of Then, the collector-emitter portion C
It is configured by bonding the emitter portion of E and the emitter terminal electrode copper plate 4 with a lead wire 5. The bonding-type element thus configured is controlled in gate drive by supplying power to the gate portion G from the gate power supply circuit 6 including the DC power supplies E1 and E2, the switches S1 and S2, and the resistor R. ing. Therefore, in the case of a bonding type element, since the emitter portion of the collector-emitter portion CE and the emitter terminal electrode copper plate 4 are bonded by the lead wire 5, this lead wire 5
Is an inductance element.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述し
たボンディングタイプの絶縁ゲート型半導体素子におい
ては、リード線によるインダクタンスで、電流遮断時で
のdv/dtを十分に抑制できるが、圧接タイプの絶縁
ゲート型半導体素子の場合には、素子のエミッタ部分と
エミッタ端子電極とは圧接構造により接続しているた
め、ボンディングタイプの絶縁ゲート型半導体素子のよ
うに、リード線により接続していないので、リード線5
自身をインダクタンス要素とすることができず、インダ
クタンス要素がほとんどない構造となっている。従っ
て、ボンディングタイプの絶縁ゲート型半導体素子に比
べ、圧接タイプの絶縁ゲート型半導体素子は、前述した
dv/dtが更に厳しく高dv/dtにより、素子を破
壊され易くなってしまう。また、圧接タイプの絶縁ゲー
ト型半導体素子において、インダクタンス要素を形成す
るために、素子を圧接する電極を厚くすることが考えら
れるが、この場合、素子として外形が大きくなるため、
圧接タイプの絶縁ゲート型半導体素子としてのスケール
メリットが発揮できない。
However, in the above-mentioned bonding type insulated gate type semiconductor element, the inductance due to the lead wire can sufficiently suppress dv / dt at the time of current interruption, but a pressure contact type insulated gate is used. In the case of a type semiconductor element, since the emitter portion of the element and the emitter terminal electrode are connected by a pressure contact structure, they are not connected by a lead wire unlike a bonding type insulated gate type semiconductor element. 5
Since it cannot be used as an inductance element itself, the structure has almost no inductance element. Therefore, the pressure contact type insulated gate semiconductor element is more severe in dv / dt described above than the bonding type insulated gate semiconductor element, and the element is more likely to be destroyed due to the high dv / dt. Further, in the pressure contact type insulated gate semiconductor element, in order to form an inductance element, it is conceivable to thicken the electrode that pressure contacts the element, but in this case, since the outer shape of the element becomes large,
The scale merit as a pressure contact type insulated gate semiconductor device cannot be exhibited.

【0010】故に、上記課題を解決するために、本発明
は、圧接タイプの絶縁ゲート型半導体素子としてのスケ
ールメリットを生かしたまま、dv/dtの緩和及び並
列接続時におけるターンオフ時の電流アンバランスを抑
制可能なインダクタンス要素を有する圧接タイプの絶縁
ゲート型半導体素子を提供する。
Therefore, in order to solve the above problems, the present invention relaxes dv / dt and current imbalance at the time of turn-off in parallel connection while making the most of the merit of scale as a pressure contact type insulated gate semiconductor device. Provided is a pressure contact type insulated gate semiconductor element having an inductance element capable of suppressing the above.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、請求項1項記載の発明は、素子と電極とを加圧接続
した絶縁ゲート型半導体素子において、少なくとも前記
素子の一端と前記電極との間に円筒形状で且つらせん状
に形成されたインダクタンス要素を設けたことを特徴と
する。
In order to achieve the above object, the invention according to claim 1 is an insulated gate semiconductor device in which an element and an electrode are pressure-connected to each other, and at least one end of the element and the electrode. A cylindrical and spirally formed inductance element is provided between and.

【0012】また、請求項2項記載の発明は、素子と電
極とを加圧接続した絶縁ゲート型半導体素子において、
少なくとも前記素子の一端と前記電極との間に角筒形状
で且つらせん状に形成されたインダクタンス要素を設け
たことを特徴とする。
The invention according to claim 2 is an insulated gate semiconductor device in which a device and an electrode are pressure-connected,
It is characterized in that a rectangular tube-shaped and spirally formed inductance element is provided at least between one end of the element and the electrode.

【0013】更に、請求項3項記載の発明は、素子と電
極とを加圧接続した絶縁ゲート型半導体素子において、
少なくとも前記素子の一端と前記電極との間にコイル形
状に形成されたインダクタンス要素を設けたことを特徴
とする。
Further, the invention according to claim 3 is an insulated gate semiconductor device in which a device and an electrode are pressure-connected,
A coil-shaped inductance element is provided at least between one end of the element and the electrode.

【0014】また、更に、請求項4項記載の発明は、素
子と電極とを加圧接続した絶縁ゲート型半導体素子にお
いて、前記素子の両端に熱緩衝板を設け、この熱緩衝板
を介して前記素子と前記電極及び前記素子と前記インダ
クタンス要素とを夫々接続したことを特徴とする。
Further, according to the invention of claim 4, in an insulated gate semiconductor element in which an element and an electrode are pressure-connected, a heat buffer plate is provided at both ends of the element, and the heat buffer plate is interposed therebetween. The element and the electrode, and the element and the inductance element are connected to each other.

【0015】請求項5記載の発明は、インダクタンス要
素のターン間を絶縁処理したことを特徴とするまた、請
求項6記載の発明は、絶縁処理が、インダクタンス要素
のターン間に電気絶縁物を挿入することで成されたこと
を特徴とする。
The invention according to claim 5 is characterized in that the turns of the inductance element are insulated, and the invention according to claim 6 is such that the insulation treatment inserts an electrical insulator between the turns of the inductance element. It is characterized by being done by doing.

【0016】更に、請求項7記載の発明は、絶縁処理
が、インダクタンス要素のターン間を絶縁コーティング
することで成されたことを特徴とする。また、更に、請
求項8記載の発明は、インダクタンス要素を複数で並列
接続をしたことを特徴とする。請求項9記載の発明は、
電極と複数のインダクタンス要素とを一体で形成したこ
とを特徴とする。
Further, the invention according to claim 7 is characterized in that the insulating treatment is carried out by insulating coating between the turns of the inductance element. Further, the invention according to claim 8 is characterized in that a plurality of inductance elements are connected in parallel. The invention according to claim 9 is
It is characterized in that the electrode and the plurality of inductance elements are integrally formed.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を用いて説明する。本実施の形態として平型I
EGTについて、図1乃至図3を用いて説明する。図1
は、平型IEGTのパッケージの断面図で、碍囲器10
の上下に蓋になる合金板11で接合し、コレクタ電極及
びエミッタ電極となる塑性変形可能な導体である銅ポス
ト12,13を接合している。その銅ポスト12,13
の間に、通電による素子の熱変歪を抑える目的で、材質
がモリブデンの熱緩衝板14をゲート部,コレクタ−エ
ミッタ部から構成されるチップ2の両端に配置して、図
1のX−X矢視図の図2に示す複数個の角筒形状にした
チップが挿入され、平型のIEGTを構成している。そ
して、エミッタ電極となる銅ポスト13と熱緩衝板14
の間にはインダクタンス要素として材質が銅のコイル1
5aを挿入する。また、所定のチップ2の端部には、ゲ
ートピン16が形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. As the present embodiment, a flat type I
The EGT will be described with reference to FIGS. 1 to 3. Figure 1
Is a cross-sectional view of a flat type IEGT package.
The upper and lower sides are joined by an alloy plate 11 serving as a lid, and the copper posts 12, 13 which are plastically deformable conductors serving as the collector electrode and the emitter electrode are joined. The copper post 12,13
In order to suppress thermal distortion of the element due to energization, a heat buffer plate 14 made of molybdenum is placed at both ends of the chip 2 composed of a gate portion and a collector-emitter portion, and X- of FIG. A plurality of rectangular tube-shaped chips shown in FIG. 2 of the arrow X are inserted to form a flat IEGT. Then, the copper post 13 and the thermal buffer plate 14 which will be the emitter electrode
A coil 1 made of copper as an inductance element between
Insert 5a. A gate pin 16 is formed at the end of the predetermined chip 2.

【0018】そして、図3に示すように、コイル15a
は、銅棒を円筒形状に機械加工し、更にその円筒に対し
て螺旋状に溝を切り、その螺旋溝にコイル間の絶縁とし
てノーメックス等の絶縁シート17を挿入した構成であ
る。
Then, as shown in FIG. 3, the coil 15a
Is a configuration in which a copper rod is machined into a cylindrical shape, a groove is spirally cut in the cylinder, and an insulating sheet 17 such as Nomex is inserted into the spiral groove as insulation between the coils.

【0019】このように、インダクタンス要素として円
筒形状のコイル15aを用いることにより、遮断時に発
生するコイル15a両端の電圧Eは50V以下であるの
で、絶縁シート17に加わる電圧は上記電圧Eをコイル
15aのターン数で割った値となり、絶縁耐量的には全
く問題のない値となる。
As described above, by using the cylindrical coil 15a as the inductance element, the voltage E across the coil 15a generated at the time of interruption is 50 V or less, so that the voltage applied to the insulating sheet 17 is the voltage E above the coil 15a. It is a value divided by the number of turns of, which is a value with no problem in terms of dielectric strength.

【0020】尚、コイル15aの値は50nH以下に抑
える。その根拠としては、素子のゲートの限界耐電圧は
50V程度であり、これ以上の電圧が印加されると絶縁
破壊を起こす可能性があるためである。従って、一般的
に高電圧の素子での遮断電流di/dtは1kA/μS
ec程度であることから、L=E/(di/dt)=5
0V/1kA=50nHとなる。例えば、安全率2とし
た25nHでのコイル15aの外形は、直径10mm、
5ターン、長さ6mm程度に形成する。
The value of the coil 15a is kept below 50 nH. The reason for this is that the limit withstand voltage of the gate of the device is about 50 V, and if a voltage higher than this is applied, dielectric breakdown may occur. Therefore, the cut-off current di / dt in a high voltage device is generally 1 kA / μS.
Since it is about ec, L = E / (di / dt) = 5
It becomes 0 V / 1 kA = 50 nH. For example, the outer shape of the coil 15a at 25 nH with a safety factor of 2 is 10 mm in diameter,
It is formed with 5 turns and a length of about 6 mm.

【0021】従って、本実施の形態によれば、コイルの
15aの材質を銅としたため、電極である銅ポスト1
2,13を加圧することにより、コイル15aが塑性変
形を起こすので、寸法誤差を吸収でき、個々の素子の均
一な圧接力を確保することができる。また、特性面にお
いても、ボンディングタイプの素子と同様に、電流が遮
断されるときに電圧L・di/dtが発生して素子に実
際に印加されるゲート電圧VgeはEoffではなく、
Eoff−L・di/dtに減少してターンオフ電圧を
緩和するため、遮断現象が急激に発生しないので、ター
ンオフ時のdv/dtも緩やかになり、素子破壊を防止
することができる。更に、大きな電流を遮断する場合
は、di/dtが更に大きくなるのに伴ない、自動的に
オフ用ゲート電圧は小さくなるので、dv/dtを更に
緩和して、より一層素子破壊を防止することができる。
Therefore, according to the present embodiment, since the material of the coil 15a is copper, the copper post 1 which is an electrode is used.
By pressurizing the coils 2 and 13, the coil 15a undergoes plastic deformation, so that a dimensional error can be absorbed and a uniform pressure contact force of each element can be secured. In terms of characteristics, as in the case of the bonding type device, the voltage L · di / dt is generated when the current is cut off, and the gate voltage Vge actually applied to the device is not Eoff,
Since the turn-off voltage is reduced by reducing to Eoff-L · di / dt, the cutoff phenomenon does not occur rapidly, so that dv / dt at the time of turn-off also becomes gentle and element breakdown can be prevented. Further, when a large current is cut off, the gate voltage for turning off automatically decreases as di / dt further increases. Therefore, dv / dt is further relaxed to further prevent device breakdown. be able to.

【0022】また、本実施の形態によれば、ボンディン
グタイプの素子と同様に、素子の高耐電圧化に伴ない、
電圧Eが高くなった場合、逆に電流の上昇率であるdi
/dt=E/L(Lは回路の配線インダクタンスなど)
は小さくなるので、素子を並列接続した場合、一部の素
子に電流が集中して素子を破壊することも抑制できる。
尚、上記実施の形態に示されたインダクタンス要素の
変形例について、図4乃至図7を用いて説明する。
Further, according to the present embodiment, as with the bonding type element, with the increase in withstand voltage of the element,
When the voltage E becomes high, conversely, the rate of increase of the current di
/ Dt = E / L (L is the wiring inductance of the circuit)
Therefore, when the elements are connected in parallel, it is possible to suppress the destruction of the elements due to the current concentration on some elements.
A modified example of the inductance element shown in the above embodiment will be described with reference to FIGS. 4 to 7.

【0023】図4に示されたインダクタンス要素は、図
3に示した円筒形状コイル15aに対して、角筒形状に
したコイル15bである。図3に示した円筒形状コイル
に比較し、通電断面積を大きくすることでき、電流容量
を増やすことができる。
The inductance element shown in FIG. 4 is a coil 15b in the shape of a rectangular tube, as opposed to the cylindrical coil 15a shown in FIG. Compared with the cylindrical coil shown in FIG. 3, the energization cross section can be increased and the current capacity can be increased.

【0024】また、この角筒形状のコイル15bの場合
も、図3に示した円筒形状コイルと同様に、通常ゲート
エミッタ間の電圧耐量以下に制限する必要があるため、
遮断時に発生するコイル15b両端の電圧Eは50V以
下である。従って、絶縁シート16に加わる電圧は上記
電圧Eをコイル15bのターン数で割った値となり、絶
縁耐量的には全く問題のない値となる。
Also in the case of the rectangular tube-shaped coil 15b, it is necessary to limit the voltage to the gate-emitter voltage withstand voltage or less, as in the cylindrical coil shown in FIG.
The voltage E across the coil 15b generated at the time of interruption is 50 V or less. Therefore, the voltage applied to the insulating sheet 16 is a value obtained by dividing the voltage E by the number of turns of the coil 15b, which is a value that does not cause any problem in terms of the dielectric strength.

【0025】尚、図5は、図3に示した円筒形状のコイ
ル15aと図4に示した角筒形状のコイル15bの中心
断面図である。尚、本図に示したように、図3に示した
円筒形状のコイル15a及び図4に示した角筒形状のコ
イル15bにおけるゲート電極Egは、コイル15bの
下部に設けた切欠部20に電線を接続したバネ性のゲー
トピン21を挿入し形成している。
FIG. 5 is a central sectional view of the cylindrical coil 15a shown in FIG. 3 and the rectangular tube-shaped coil 15b shown in FIG. As shown in this figure, the gate electrode Eg in the cylindrical coil 15a shown in FIG. 3 and the rectangular tube-shaped coil 15b shown in FIG. 4 has an electric wire in the cutout portion 20 provided in the lower portion of the coil 15b. The gate pin 21 having a spring property is connected to and formed.

【0026】更に、図6は、上記円筒形状コイル15a
にエポキシ等の絶縁コーティング30を施したものであ
る。尚、この場合は、円筒形状コイル15aを対象とし
ているが、図4に示した角筒形状のコイル15bにエポ
キシ等の絶縁コーティング30を施しても同様の効果が
得られる。
Further, FIG. 6 shows the cylindrical coil 15a.
Is coated with an insulating coating 30 such as epoxy. In this case, the cylindrical coil 15a is targeted, but the same effect can be obtained by applying the insulating coating 30 such as epoxy to the rectangular tubular coil 15b shown in FIG.

【0027】図7は、図6の中心断面であり、この絶縁
コーティング30は螺旋溝加工を施したコイル15a
を、予め加熱して流動浸漬法及び静電塗装法で行うこと
により、螺旋状の溝をコーティング絶縁している。コイ
ル15aの両端部に付着した絶縁コーティング30は機
械加工で除去することにより電極が形成される。
FIG. 7 is a central cross section of FIG. 6, in which the insulating coating 30 has a spiral grooved coil 15a.
Is heated in advance by the fluidized-bed method and the electrostatic coating method to coat and insulate the spiral groove. Electrodes are formed by removing the insulating coating 30 attached to both ends of the coil 15a by machining.

【0028】この絶縁コーティング30も前述した絶縁
シート16同様に電気絶縁的耐量的には全く問題はな
い。尚、図示しないが、図1に示したコイル15aまた
は図4に示したコイル15aを複数個並列にし大電流化
を図る場合は、エミッタ電極となる銅ポスト12,13
と複数個の円筒形状コイル15aまたは角筒形状のコイ
ル15bを複数個配置し構成する。この複数個の配置方
法としては、個々のコイル15aまたは15bをエミッ
タ電極の銅ポスト13に銀ロー付け等で接合するか、若
しくは個々のコイル15aまたは15bとエミッタ電極
の銅ポスト13とを一体にプレス成形または鋳造する。
その後、螺旋状の溝きり加工を施して、絶縁シート16
の挿入及び絶縁コーティング30を行なう。
This insulating coating 30, like the insulating sheet 16 described above, has no problem in terms of electrical insulation and withstand capacity. Although not shown, when a plurality of the coils 15a shown in FIG. 1 or the coils 15a shown in FIG. 4 are arranged in parallel to increase the current, the copper posts 12 and 13 to be the emitter electrodes are formed.
And a plurality of cylindrical coils 15a or rectangular tubular coils 15b are arranged. As a method of arranging the plurality of coils, the individual coils 15a or 15b are joined to the copper posts 13 of the emitter electrode by silver brazing, or the individual coils 15a or 15b and the copper posts 13 of the emitter electrode are integrated. Press molding or casting.
After that, a spiral groove is processed to form the insulating sheet 16
And the insulating coating 30.

【0029】[0029]

【発明の効果】以上述べたように、本発明によれば、各
素子を均一に圧接可能なインダクタンス要素を設けるの
で、圧接タイプの絶縁ゲート型半導体素子としてのスケ
ールメリットを生かしたまま、dv/dtの緩和及び並
列接続時におけるターンオフ時の電流アンバランスを抑
制可能な圧接タイプの絶縁ゲート型半導体素子を提供す
ることができる。
As described above, according to the present invention, the inductance element capable of uniformly pressure-contacting each element is provided. Therefore, dv / It is possible to provide a pressure contact type insulated gate semiconductor element capable of relaxing dt and suppressing current imbalance at turn-off in parallel connection.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の態様である平型IEGTのパ
ッケージの断面図。
FIG. 1 is a sectional view of a flat IEGT package according to an embodiment of the present invention.

【図2】 図1のX一X矢視図。FIG. 2 is a view taken in the direction of arrow X1X in FIG.

【図3】 図1に示した円筒形状のコイル15aの斜視
図。
FIG. 3 is a perspective view of the cylindrical coil 15a shown in FIG.

【図4】 図1に示したインダクタンス要素としての角
筒状のコイルの斜視図。
FIG. 4 is a perspective view of a rectangular tubular coil as the inductance element shown in FIG. 1.

【図5】 図3及び図4に示したコイルの中心断面図。5 is a central cross-sectional view of the coil shown in FIGS. 3 and 4. FIG.

【図6】 図1に示した円筒形状コイル15aに対して
絶縁コーティングを施した斜視図。
6 is a perspective view of an insulating coating applied to the cylindrical coil 15a shown in FIG.

【図7】 図6に示した円筒形状コイル15aの中心断
面図。
7 is a central cross-sectional view of the cylindrical coil 15a shown in FIG.

【図8】 ボンディングタイプの絶縁ゲート型半導体素
子の概要構成図。
FIG. 8 is a schematic configuration diagram of a bonding type insulated gate semiconductor element.

【図9】 ボンディングタイプの絶縁ゲート型半導体素
子の回路図。
FIG. 9 is a circuit diagram of a bonding type insulated gate semiconductor device.

【符号の説明】[Explanation of symbols]

2……チップ、12,13……電極、14……熱緩衝
板、15a,15b……コイル(インダクタンス要
素)、17……絶縁シート、30……絶縁コーティング
2 ... Chip, 12, 13 ... Electrode, 14 ... Thermal buffer plate, 15a, 15b ... Coil (inductance element), 17 ... Insulation sheet, 30 ... Insulation coating

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 25/07 H01L 25/18 H01L 29/78 H01L 21/52 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 25/07 H01L 25/18 H01L 29/78 H01L 21/52

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 素子と電極とを加圧接続した絶縁ゲー
ト型半導体素子において、少なくとも前記素子の一端と
前記電極との間に円筒形状で且つらせん状に形成された
インダクタンス要素を設けたことを特徴とする絶縁ゲー
ト型半導体素子。
1. An insulated gate semiconductor device in which an element and an electrode are pressure-connected to each other, wherein a cylindrical and spirally formed inductance element is provided between at least one end of the element and the electrode. A characteristic insulated gate semiconductor device.
【請求項2】 素子と電極とを加圧接続した絶縁ゲー
ト型半導体素子において、少なくとも前記素子の一端と
前記電極との間に角筒形状で且つらせん状に形成された
インダクタンス要素を設けたことを特徴とする絶縁ゲー
卜型半導体素子。
2. An insulated gate semiconductor element in which an element and an electrode are pressure-connected to each other, wherein a rectangular tube-shaped and spirally formed inductance element is provided between at least one end of the element and the electrode. An insulated gate type semiconductor device characterized by:
【請求項3】 素子と電極とを加圧接続した絶縁ゲー
ト型半導体素子において、少なくとも前記素子の一端と
前記電極との間にコイル形状に形成されたインダクタン
ス要素を設けたことを特徴とする絶縁ゲー卜型半導体素
子。
3. An insulated gate semiconductor device in which an element and an electrode are pressure-connected to each other, wherein an inductance element formed in a coil shape is provided at least between one end of the element and the electrode. Gate type semiconductor device.
【請求項4】 素子と電極とを加圧接続した絶縁ゲー
ト型半導体素子において、前記素子の両端に熱緩衝板を
設け、この熱緩衝板を介して前記素子と前記電極及び前
記素子と前記インダクタンス要素とを夫々接続したこと
を特徴とする請求項1乃至請求項3のいずれかに記載の
絶縁ゲート型半導体素子。
4. In an insulated gate semiconductor device in which an element and an electrode are pressure-connected, thermal buffer plates are provided at both ends of the element, and the element and the electrode and the element and the inductance are interposed via the thermal buffer plates. The insulated gate semiconductor device according to any one of claims 1 to 3, wherein the elements are connected to each other.
【請求項5】 前記インダクタンス要素のターン間を
絶縁処理したことを特徴とする請求項1乃至請求項3の
いずれかに記載の絶縁ゲート型半導体素子。
5. The insulated gate semiconductor device according to claim 1, wherein the turns of the inductance element are insulated.
【請求項6】 前記絶縁処理が、前記インダクタンス
要素のターン間に電気絶縁物を挿入することで成された
ことを特徴とする請求項5記載の絶縁ゲート型半導体素
子。
6. The insulated gate semiconductor device according to claim 5, wherein the insulating process is performed by inserting an electrical insulator between turns of the inductance element.
【請求項7】 前記絶縁処理が、前記インダクタンス
要素のターン間を絶縁コーティングすることで成された
ことを特徴とする請求項5記載の絶縁ゲート型半導体素
子。
7. The insulated gate semiconductor device according to claim 5, wherein the insulating treatment is performed by insulating coating between turns of the inductance element.
【請求項8】 前記インダクタンス要素を複数で並列
接続をしたことを特徴とする請求項1乃至請求項7のい
ずれかに記載の絶縁ゲート型半導体素子。
8. The insulated gate semiconductor device according to claim 1, wherein a plurality of the inductance elements are connected in parallel.
【請求項9】 前記電極と複数の前記インダクタンス
要素とを一体で形成したことを特徴とする請求項8記載
の絶縁ゲ一卜型半導体素子。
9. The insulated gate semiconductor device according to claim 8, wherein the electrode and a plurality of the inductance elements are integrally formed.
JP13629797A 1997-04-22 1997-05-27 Insulated gate type semiconductor device Expired - Fee Related JP3457503B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13629797A JP3457503B2 (en) 1997-05-27 1997-05-27 Insulated gate type semiconductor device
CA002232199A CA2232199C (en) 1997-04-22 1998-03-16 Power converter with voltage drive switching element
AU58436/98A AU712126B2 (en) 1997-04-22 1998-03-17 Power converter with voltage drive switching device monitored by device parameters and electric parameters
US09/042,576 US5929665A (en) 1997-04-22 1998-03-17 Power converter with voltage drive switching device monitored by device parameters and electric parameters
CN98115111A CN1065990C (en) 1997-04-22 1998-04-22 Power conversion device having voltage driven switch element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13629797A JP3457503B2 (en) 1997-05-27 1997-05-27 Insulated gate type semiconductor device

Publications (2)

Publication Number Publication Date
JPH10326861A JPH10326861A (en) 1998-12-08
JP3457503B2 true JP3457503B2 (en) 2003-10-20

Family

ID=15171895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13629797A Expired - Fee Related JP3457503B2 (en) 1997-04-22 1997-05-27 Insulated gate type semiconductor device

Country Status (1)

Country Link
JP (1) JP3457503B2 (en)

Also Published As

Publication number Publication date
JPH10326861A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
US5929665A (en) Power converter with voltage drive switching device monitored by device parameters and electric parameters
US5347158A (en) Semiconductor device having a particular terminal arrangement
US5345096A (en) Turn-off high-power semiconductor component with low inductive housing
US6127727A (en) Semiconductor substrate subassembly with alignment and stress relief features
KR100280168B1 (en) Voltage-Driven Power Semiconductor Device
JP3344552B2 (en) Pressure welding type semiconductor device
EP0159797A2 (en) Thyristor device and process for producing it
US6967357B1 (en) Voltage-driven power semiconductor device
JP3457503B2 (en) Insulated gate type semiconductor device
JP3787037B2 (en) Semiconductor module
US4672417A (en) Semiconductor apparatus
JPH03119762A (en) Pressure-welding type semiconductor device for electric power
JP3220366B2 (en) Semiconductor device
US6445013B1 (en) Gate commutated turn-off semiconductor device
JPH07254699A (en) Insulated gate semiconductor device and power converter using the same
JP2000323647A (en) Module semiconductor device and manufacture thereof
JP3226088B2 (en) Semiconductor device
JP2002064180A (en) Semiconductor module
AU727159B2 (en) Power converter
JP2559937B2 (en) Semiconductor device
US6707144B2 (en) Insulated high speed semiconductor switching device
CN117238897B (en) IGBT device structure and preparation method thereof
JP2536099B2 (en) MOS gate type bipolar transistor
JP2680465B2 (en) Snubber unit
JPS5980945A (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees