JP3456787B2 - Electrolytic capacitor deterioration determination circuit and DC power supply equipped with the same - Google Patents

Electrolytic capacitor deterioration determination circuit and DC power supply equipped with the same

Info

Publication number
JP3456787B2
JP3456787B2 JP07996595A JP7996595A JP3456787B2 JP 3456787 B2 JP3456787 B2 JP 3456787B2 JP 07996595 A JP07996595 A JP 07996595A JP 7996595 A JP7996595 A JP 7996595A JP 3456787 B2 JP3456787 B2 JP 3456787B2
Authority
JP
Japan
Prior art keywords
circuit
electrolytic capacitor
signal
deterioration
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07996595A
Other languages
Japanese (ja)
Other versions
JPH08248086A (en
Inventor
公禎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP07996595A priority Critical patent/JP3456787B2/en
Publication of JPH08248086A publication Critical patent/JPH08248086A/en
Application granted granted Critical
Publication of JP3456787B2 publication Critical patent/JP3456787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Voltage And Current In General (AREA)
  • Dc-Dc Converters (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Protection Of Static Devices (AREA)
  • Rectifiers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する分野の説明】本発明は、電解コンデンサ
の劣化状態を検出し予め設定した基準信号と比較する事
で劣化状態を判別する電解コンデンサの劣化判別回路に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deterioration determining circuit for an electrolytic capacitor, which detects a deterioration state of an electrolytic capacitor and compares it with a preset reference signal to determine the deterioration state.

【0002】[0002]

【従来技術】従来より、化学的変化を生じ経年劣化を避
けられない電源装置の電解コンデンサの経年劣化を判別
する一手段としてコンデンサに印加するリップル電圧を
検出する方法が行われてきた。即ち電解コンデンサが経
時劣化すると内部の電解液が減少し等価直列抵抗(ES
R)が増加する。このESRの増加をリップル成分(リ
ップル電圧、または電流)の増大の形で検出し、初期の
リップル成分と比較することで劣化判定する方法であ
る。図9はこの劣化時に増加するESR(結果は内部抵
抗とインピ−ダンス)を実験から求めた結果である。コ
ンデンサ容量が劣化(容量減少)すると内部抵抗、イン
ピ−ダンス共増加することがわかる。(図9×印) (3)
2. Description of the Related Art Conventionally, a method of detecting a ripple voltage applied to a capacitor has been used as a means for discriminating aging deterioration of an electrolytic capacitor of a power supply device in which chemical deterioration is caused and aging deterioration cannot be avoided. That is, when the electrolytic capacitor deteriorates with time, the internal electrolytic solution decreases and the equivalent series resistance (ES
R) increases. In this method, deterioration is determined by detecting the increase in ESR in the form of increase in ripple component (ripple voltage or current) and comparing it with the initial ripple component. FIG. 9 is a result of experimentally determining ESR (results are internal resistance and impedance) that increase during this deterioration. It can be seen that both internal resistance and impedance increase when the capacitor capacity deteriorates (capacity decreases). (Figure 9 x) (3)

【0003】[0003]

【従来技術の問題点】所で係るリップル検出手段として
従来、ロウパスフィルタ(L.P)によるもの或いはバ
ンドパスフィルタ(B.P)によるものが知られている
が前者(L.P)は、電解コンデンサに印加するリップ
ル電圧は各種の周波数成分、ノイズを含んでおり、ま
た、供給する負荷側の電力により印加されるリップル電
圧波形は変化するため、信頼性、安定性の高い劣化判別
を行なうための検出信号を得る事は困難である。又後者
(B.L)による方法ではフィルタの中心周波数を例え
ば電源装置の動作周波数に同期するように設定したとし
ても実際の動作では各々の周波数にズレが生じてしまう
事が予想され安定した検出信号を得る事は困難である。
さらに周波数変調方式の電源装置や動作周波数の異なる
電源装置の場合には適用できず汎用性に欠ける。
2. Description of the Related Art Heretofore, as a ripple detecting means, a low-pass filter (LP) or a band-pass filter (BP) has been known, but the former (LP) is The ripple voltage applied to the electrolytic capacitor contains various frequency components and noise, and the ripple voltage waveform applied changes depending on the power on the load side to be supplied, so it is possible to judge deterioration with high reliability and stability. It is difficult to obtain a detection signal to do. Further, in the latter method (BL), even if the center frequency of the filter is set to be synchronized with the operating frequency of the power supply device, it is expected that the respective frequencies will be deviated in the actual operation, and stable detection is possible. It is difficult to get a signal.
Further, it cannot be applied to a power supply device of a frequency modulation type or a power supply device of different operating frequency, and thus lacks versatility.

【0004】[0004]

【発明の目的】本発明の第1の目的は新規なリップル電
圧検出法の採用により高精度の電解コンデンサ劣化制定
回路の提供にある。第2の目的はこの劣化判定回路を搭
載し、常時電解コンデンサの劣化状態を監視し装置の付
加価値を向上可能とする電源装置を提供するものであ
る。
SUMMARY OF THE INVENTION The first object of the present invention is to provide a highly accurate electrolytic capacitor deterioration establishment circuit by adopting a novel ripple voltage detection method. A second object of the present invention is to provide a power supply device which is equipped with this deterioration determination circuit and constantly monitors the deterioration state of the electrolytic capacitor to improve the added value of the device.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に、本発明の電解コンデンサ劣化判定回路は、電解コン
デンサに印加されるリップル電圧の重畳した直流電圧を
入力として、コンデンサとトランスから成る直流電圧カ
ット回路により絶縁したリップル電圧(交流)を取り出
し、これをLC同調回路に入力することでLCにより設
定された動作周波数に同調する正弦波状のリップル電圧
成分のみを出力し、これを直流化した信号と基準信号を
比較し、これを劣化判別用検出信号とするように構成す
る。
In order to achieve this object, an electrolytic capacitor deterioration judging circuit of the present invention uses a DC voltage composed of a capacitor and a transformer, with a DC voltage superimposed with a ripple voltage applied to the electrolytic capacitor as an input. By extracting the ripple voltage (AC) isolated by the voltage cut circuit and inputting it to the LC tuning circuit, only the sinusoidal ripple voltage component that tunes to the operating frequency set by the LC is output, and this is converted to DC. The signal and the reference signal are compared, and this is used as a detection signal for deterioration determination.

【0006】[0006]

【作用】[Action]

(4) 電解コンデンサ劣化判定回路のリップル電圧検出にLC
同調回路を使用する事により、電解コンデンサに印加さ
れるリップル電圧の任意の周波数成分のみの正弦波状信
号を検出する事が可能であり、これを直流化した検出信
号の信頼性、安定性、耐ノイズ性は向上する。またLC
同調回路のキャパシタンス部分に可変容量ダイオ−ドを
採用する事で外部直流電圧印加で同調周波数の補正や各
種の電源装置の対応周波数に適応可能となり、上記に加
えて汎用性が向上する。又、この電解コンデンサ劣化判
定回路を用いた劣化判別回路搭載の電源装置は、常時電
解コンデンサの劣化状態を監視できるため電源装置の付
加価値をより向上させる事ができる。さらに可変容量ダ
イオ−ドへ容量可変のために印加する直流電圧を例えば
電源装置の動作周波数に同期した必要な直流レベル、F
/V変換回路より与えるように構成すれば、同調周波数
検出の精度は選り向上し自動調整化も可能である。
(4) LC for detecting ripple voltage of electrolytic capacitor deterioration judgment circuit
By using a tuning circuit, it is possible to detect a sinusoidal signal of only the arbitrary frequency component of the ripple voltage applied to the electrolytic capacitor. Noise characteristics are improved. Also LC
By adopting a variable capacitance diode in the capacitance portion of the tuning circuit, it becomes possible to correct the tuning frequency by applying an external DC voltage and adapt to the corresponding frequency of various power supply devices, and in addition to the above, versatility is improved. In addition, the power supply device equipped with the deterioration determination circuit using the electrolytic capacitor deterioration determination circuit can constantly monitor the deterioration state of the electrolytic capacitor, so that the added value of the power supply device can be further improved. Further, the DC voltage applied to the variable capacitance diode for varying the capacitance is, for example, a required DC level F synchronized with the operating frequency of the power supply device, F
If it is configured to be supplied from the / V conversion circuit, the accuracy of tuning frequency detection is improved and automatic adjustment is possible.

【0007】[0007]

【実施例】図1、図2は本発明の劣化判定回路の一実施
例図及びその各部動作波形図で図中1は電解コンデンサ
劣化判定回路、3−1、−2は電解コンデンサ両端電圧
入力、4は直流カット用コンデンサ、5は絶縁用トラン
ス、6はインダクタンス、7はキャパシタンス、8は直
流化回路、9は劣化判別比較回路、10は基準信号回
路、A、Lはアラ−ム等の表示部、13は可変容量ダイ
オ−ド、13−1は外部直流入力端子である。
1 and 2 are diagrams showing an embodiment of a deterioration judging circuit of the present invention and operation waveform diagrams of respective parts thereof, in which 1 is an electrolytic capacitor deterioration judging circuit, 3-1 and -2 are voltage inputs across electrolytic capacitors. Reference numeral 4 is a DC cut capacitor, 5 is an insulating transformer, 6 is an inductance, 7 is a capacitance, 8 is a DC conversion circuit, 9 is a deterioration determination comparison circuit, 10 is a reference signal circuit, A and L are alarms, etc. The display unit, 13 is a variable capacitance diode, and 13-1 is an external DC input terminal.

【0008】この回路の動作について、図2と共に説明
する。図2において(a)〜(d)は図1の各部a〜e
の波形を示し、夫々点線イは初期等、ロは劣化時の波形
を示す。又ハは基準信号である。先ず電解コンデンサ両
端電圧入力3−1、−2にはリップル電圧の重畳した直
流電圧が入力される。図2(a)そして直流カット用コ
ンデンサ4と絶縁用トランス5により交流信号化され、
図2(b)インダクタンス6、キャパシタンス7により
構成されるLC同調回路に入力され任意設定する同調周
波数に同調する周波数成分図2(c)のみを後段の直流
化回路8に入力 (5) し直流化後、図2(d)劣化判別比較回路9にて基準信
号図2(d)ハと比較され検出信号として判別出力とし
て各種手段A.L(例えばLED点灯、ブザ−鳴動等)
で外部に出力される。また、図1ではLC同調回路のキ
ャパシタンスCを、外部信号13−1により直流電圧印
加する事で自身の容量可変を可能とする可変容量ダイオ
−ド13とコンデンサ7で構成している。
The operation of this circuit will be described with reference to FIG. In FIG. 2, (a) to (d) are parts a to e of FIG.
, The dotted line a shows the initial waveform, and the broken line shows the degraded waveform. C is a reference signal. First, a DC voltage on which ripple voltage is superimposed is input to the voltage inputs 3-1 and -2 across the electrolytic capacitor. 2 (a) and converted into an AC signal by the DC cutting capacitor 4 and the insulating transformer 5,
2 (b) The frequency components input to the LC tuning circuit composed of the inductance 6 and the capacitance 7 and tuned to the arbitrarily set tuning frequency. 2D, the deterioration discrimination comparison circuit 9 compares the reference signal with the reference signal shown in FIG. L (for example, LED lighting, buzzer ringing, etc.)
Is output to the outside. Further, in FIG. 1, the capacitance C of the LC tuning circuit is composed of a variable capacitance diode 13 and a capacitor 7 which make it possible to vary the capacitance by applying a DC voltage by an external signal 13-1.

【0009】可変容量ダイオ−ドは、図3に示すように
印加する直流電圧VDCを高くするとそのCD容量は減
少し、逆に低くすると増加するという特性を有する。し
かし、基本的にはダイオ−ドであるため印加電圧が発振
出力を下回るような低電圧印加領域に於いて使用する際
注意が必要である。この実施例では構成としては2個の
可変容量ダイオ−ドを逆向きで直列に接続し、接続部に
直流電圧(13−1)を印加するようにした。この構成
により低電圧印加領域でのダイオ−ド特性をキャンセル
する事ができ、この領域まで安定に動作可能とした。因
みにLC同調の場合、同調周波数frはfr=1/2π
√LCで決定する。この時、LかCのいずれかが可変で
きればfrは変化する。このCに可変容量ダイオ−ドを
採用することでfrを可変可能としたのが本実施例のL
C同調方式である。例えば今まで200KHZのリップ
ルに同調していたとする。次に100KHZのリップル
に対応しようとすればCに印加する電圧を下げ容量を増
加してfr=100KHZとすればよい。
As shown in FIG. 3, the variable capacitance diode has a characteristic that its CD capacitance decreases when the applied DC voltage VDC is increased, and conversely increases when it is decreased. However, since it is basically a diode, care must be taken when using it in a low voltage application region where the applied voltage falls below the oscillation output. In this embodiment, two variable capacitance diodes are connected in series in opposite directions and a DC voltage (13-1) is applied to the connecting portion. With this configuration, the diode characteristics in the low voltage application region can be canceled, and stable operation is possible up to this region. Incidentally, in the case of LC tuning, the tuning frequency fr is fr = 1 / 2π
√ Determine by LC. At this time, if either L or C can be changed, fr changes. By adopting a variable capacitance diode for this C, fr can be made variable by the L of this embodiment.
It is a C tuning method. For example, suppose that until now it has been synchronized with the ripple of 200 KHZ. Next, in order to deal with a ripple of 100 KHZ, the voltage applied to C may be lowered and the capacitance may be increased so that fr = 100 KHZ.

【0010】図4は本発明の劣化判定回路をAC−DC
コンバ−タ等の直流電源装置に搭載する場合のブロック
図で図中RECは交流電圧ACを整流する整流回路、
L.Cは入力平滑用チョ−クコイル及びコンデンサ、T
は出力トランス、Sは出力トランスTの1次巻線n1に
設けたMOSFET等のスイッチング素子、Dは整流用
ダイオ−ド、C1は入力用電解コンデンサ、C2は出力
用電解コンデンサ、RLは負荷である。又劣化制定回路
1は入力用又は出力用電解コンデンサC1又はC2のい
づれに設けてもよく、又両方に設けることもできる。図
5は出力用の電解コンデンサ17に通用した例を示す。 (6)
FIG. 4 shows an AC-DC deterioration determination circuit according to the present invention.
In the block diagram when mounted on a DC power supply device such as a converter, REC is a rectifier circuit that rectifies an AC voltage AC,
L. C is an input smoothing choke coil and capacitor, T
Is an output transformer, S is a switching element such as MOSFET provided in the primary winding n1 of the output transformer T, D is a rectifying diode, C1 is an input electrolytic capacitor, C2 is an output electrolytic capacitor, and RL is a load. is there. The deterioration establishing circuit 1 may be provided in either the input or output electrolytic capacitor C1 or C2, or in both. FIG. 5 shows an example in which the electrolytic capacitor 17 for output is used. (6)

【0011】この回路の動作は制御回路COTより出力
される設定された動作周波数の制御信号によりスイッチ
ング素子SはON−OFFを交互に繰り返す。この動作
により電源装置の出力電解コンデンサC2には動作周波
数に同期するリップル電圧の重畳する直流電圧が印加さ
れる。そしてこの直流電圧が劣化判定回路1に入力さ
れ、劣化判別を行なう。また、可変容量ダイオ−ド13
への同調周波数補正のための直流電圧印加であるが制御
回路COTより動作周波数をF/V変換回路14に入力
し必要な直流電圧13−1を可変容量ダイオ−ド13に
給電する。
In the operation of this circuit, the switching element S alternately repeats ON-OFF by the control signal of the set operating frequency output from the control circuit COT. By this operation, a DC voltage on which a ripple voltage synchronized with the operating frequency is superimposed is applied to the output electrolytic capacitor C2 of the power supply device. Then, this DC voltage is input to the deterioration determination circuit 1 to perform deterioration determination. Also, the variable capacitance diode 13
Although a DC voltage is applied to correct the tuning frequency, the operating frequency is input from the control circuit COT to the F / V conversion circuit 14 and the required DC voltage 13-1 is supplied to the variable capacitance diode 13.

【0012】図6は上記直流電源装置(図5)に適用さ
れた劣化制定回路1の回路図で回路構成は、検出電圧を
直流化して劣化判定用直流検出値を得る直流化回路8、
LC同調回路、LC同調回路で使用する可変容量ダイオ
−ド13に直流電圧を印加する同調周波数コントロ−ル
13−1、リップル電圧の入力を行なう検出用電解コン
デンサ電圧入力3−1、3−2により構成される。動作
としては、検出用電解コンデンサ電圧入力に直流重畳さ
れたリップル電圧が入力される。そして、LC同調回路
にはリップル電圧成分のみが印加され、同調周波数コン
トロ−ルからリップル電圧成分の周波数に同調する直流
電圧を印加した際、その出力VPOに最大電圧振幅の正
弦波が出力される。これを、直流化回路の入力とし劣化
判定用直流検出値DCを得る回路である。
FIG. 6 is a circuit diagram of a deterioration establishing circuit 1 applied to the above DC power supply device (FIG. 5). The circuit configuration is a DC converting circuit 8 for converting a detection voltage into a DC to obtain a DC detection value for deterioration determination,
LC tuning circuit, tuning frequency control 13-1 for applying DC voltage to variable capacitance diode 13 used in LC tuning circuit, detection electrolytic capacitor voltage input 3-1, 3-2 for inputting ripple voltage It is composed of As the operation, the ripple voltage superimposed on the direct current is input to the detection electrolytic capacitor voltage input. Then, only the ripple voltage component is applied to the LC tuning circuit, and when a DC voltage that tunes to the frequency of the ripple voltage component is applied from the tuning frequency control, a sine wave with the maximum voltage amplitude is output to the output VPO. . This is a circuit for inputting the DC conversion circuit to obtain the deterioration determination DC detection value DC.

【0013】図7は出力電解コンデンサC2として劣化
コンデンサを使用して直流電源に適用した時の出力電圧
検出VQDC(mv)、リップル電圧Vp(mv)及び
容量Cr(μF)の関係を示す特性図で図中(イ)はリ
ップル電圧(Vp)(ロ)は検出電圧VQDC(mv)
の夫々変化を示す。なお劣化コンデンサは予めコンデン
サ頭部に1φ程度の穴を開けホットプレ−ト上で高温過
熱することで電解液を減少させる加速劣化を行なったも
のを使用した。又L.C同調回路の同調周波数は電源装
置のスイッチング素子Sの動作周波数とした。更に使用
電源は、5V、10A、動作周波数は200KHZ、使
用コン (7) デンサは、LXF10V2200μFとした。図7から
明らかなように劣化コンデンサを使用した場合は劣化が
進むにつれリップル電圧、検出電圧ともに同じ傾向で増
加することがわかる。これによりLC同調回路で劣化判
定が可能であることが言える。例えば、コンデンサ容量
65%の1300μFで劣化判定しようとすれば、検出
値電圧は250mVであるのでこれを超えた時点でアラ
−ム送出するよう後段の回路を構成すれば良いことにな
る。なお、図示しないが上記の条件下で負荷(RL)の
電流(±0)としてI0=0A、10Aの状態で測定し
た結果電源装置の負荷電流の違いによるリップル電圧と
検出電圧VPOの関係で、負荷によりリップル電圧の波
形が変化しても検出波形は変化しないことを示し、さら
に負荷によりリップル電圧が増加した場合、検出電圧も
増大しリップル電圧の増加変化をLC同調回路で検出で
きることを確認した。
FIG. 7 is a characteristic diagram showing the relationship between the output voltage detection VQDC (mv), the ripple voltage Vp (mv) and the capacitance Cr (μF) when a deteriorated capacitor is used as the output electrolytic capacitor C2 and applied to a DC power supply. In the figure, (a) is ripple voltage (Vp) (b) is detection voltage VQDC (mv)
Shows the respective changes. The deteriorated capacitor used was one in which a hole of about 1φ was made in advance in the capacitor head, and accelerated deterioration was carried out by reducing the electrolytic solution by heating at high temperature on a hot plate. See also L. The tuning frequency of the C tuning circuit was the operating frequency of the switching element S of the power supply device. The power supply used was 5V, 10A, the operating frequency was 200KHz, and the capacitor (7) used was LXF10V2200μF. As is clear from FIG. 7, when the deteriorated capacitor is used, both the ripple voltage and the detected voltage increase in the same tendency as the deterioration progresses. Therefore, it can be said that the LC tuning circuit can determine deterioration. For example, if it is attempted to judge the deterioration with 1300 μF of the capacitor capacity of 65%, the detected value voltage is 250 mV, so the circuit in the latter stage may be configured to send the alarm when the voltage exceeds this value. Although not shown, the load (RL) current (± 0) under the above conditions was measured under the conditions of I0 = 0A and 10A. As a result, the relationship between the ripple voltage and the detection voltage VPO due to the difference in the load current of the power supply device It is shown that the detected waveform does not change even if the ripple voltage waveform changes depending on the load. Furthermore, when the ripple voltage increases due to the load, the detected voltage also increases and it is confirmed that the increase change of the ripple voltage can be detected by the LC tuning circuit. .

【0014】図8は本発明の実施例を示すブロック図で
電源装置に補正回路を付加した劣化判定回路を搭載した
例を示すもので、補正回路を搭載し選り精度の高い劣化
判定器とした場合の1回路構成例を示す。構成回路は、
温度と負荷電流を検出し劣化判別回路の基準信号(RE
F)に補正を加えるREF回路、動作周波数を検出し同
調周波数のズレ補正と周波数変調方式の場合の検出値補
正を加え劣化判別回路の検出入力とする回路より構成さ
れる。
FIG. 8 is a block diagram showing an embodiment of the present invention and shows an example in which a deterioration determining circuit with a correction circuit added to a power supply device is mounted. An example of one circuit configuration in the case is shown. The component circuit is
Reference signal (RE
It is composed of a REF circuit for correcting F), a circuit for detecting an operating frequency, correcting a deviation of a tuning frequency, and correcting a detected value in the case of a frequency modulation system, and using the detection input of a deterioration determination circuit.

【0015】[0015]

【発明の効果】本発明は、以上説明したように構成され
ているため、以下に示すような効果を有する。 (1)電解コンデンサの劣化判別回路は、電解コンデン
サのリップル電圧を検出する信号検出回路にLC同調回
路を採用しているため、検出信号は任意の周波数、例え
ば電源装置の動作周波数に同調する成分のみの正弦波信
号となり、これを直流化して得られる直流信号は信頼
性、安定性の高いものとなる。さらに、LC同調回路の
キャパシタンスCの部分を直流電圧印加で自身の容量を
可変可能な可 (8) 変容量ダイオ−ドとすることにより、同調周波数の補正
や各種の電源装置に適応可能となり、回路の信頼性、安
定性、汎用性は選り向上できる。また、電解コンデンサ
劣化判別回路に電解コンデンサの温度検出、電源装置の
負荷電流検出により補正を加えた基準信号と上記直流検
出信号とを比較、劣化判別できるため精度の高い劣化判
定回路が提案できる。さらに可変容量ダイオ−ドに印加
する直流電圧を外部調整可能な可変抵抗器を使用し供給
できるように構成すればテスタレベルの安価な劣化判別
回路が提案できる。 (2)電解コンデンサ劣化判定回路を用いた劣化判定回
路搭載の電源装置は、LC同調回路に可変容量ダイオ−
ドを採用し、印加する直流電圧を電源装置の制御回路の
動作周波数を入力とするF/V変換回路から入力してい
るため、常に電源装置の動作周波数に同調するリップル
電圧成分を検出でき、さらに常時電源装置の電解コンデ
ンサの状態を監視できるので信頼性、安定性の高い劣化
判別が可能である。
Since the present invention is constructed as described above, it has the following effects. (1) Since the electrolytic capacitor deterioration determination circuit employs an LC tuning circuit as a signal detection circuit that detects the ripple voltage of the electrolytic capacitor, the detection signal is a component that is tuned to an arbitrary frequency, for example, the operating frequency of the power supply device. Only a sine wave signal is obtained, and a DC signal obtained by converting this into a DC signal has high reliability and stability. Furthermore, by making the capacitance C portion of the LC tuning circuit a variable capacitance diode whose capacitance can be changed by applying a DC voltage (8), it becomes possible to correct the tuning frequency and adapt to various power supply devices. The reliability, stability, and versatility of the circuit can be selected and improved. Further, since it is possible to compare and judge the reference signal corrected by the electrolytic capacitor deterioration determination circuit by detecting the temperature of the electrolytic capacitor and the load current of the power supply device and the DC detection signal, it is possible to propose a highly accurate deterioration determination circuit. Further, if the DC voltage applied to the variable capacitance diode is configured to be supplied by using a variable resistor that can be externally adjusted, an inexpensive deterioration determination circuit at a tester level can be proposed. (2) A power supply device equipped with a deterioration determination circuit that uses an electrolytic capacitor deterioration determination circuit has a variable capacitance diode in the LC tuning circuit.
Since the DC voltage to be applied is input from the F / V conversion circuit that receives the operating frequency of the control circuit of the power supply device as input, the ripple voltage component that is always tuned to the operating frequency of the power supply device can be detected, Further, since the state of the electrolytic capacitor of the power supply device can be constantly monitored, it is possible to judge deterioration with high reliability and stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例回路図(劣化判定回路)FIG. 1 is a circuit diagram of an embodiment of the present invention (deterioration determination circuit).

【図2】本発明の実施例(図1)の各部動作波形図FIG. 2 is an operation waveform diagram of each part of the embodiment (FIG. 1) of the present invention.

【図3】可変容量ダイオ−ドの容量CD(μF)−直流
印加電圧VDC(V)特性図
[Fig.3] Characteristic diagram of capacitance CD (μF) -DC applied voltage VDC (V) of variable capacitance diode

【図4】本発明を適用する直流電源装置のブロック図FIG. 4 is a block diagram of a DC power supply device to which the present invention is applied.

【図5】本発明の実施例回路図(直流電源装置)FIG. 5 is a circuit diagram of an embodiment of the present invention (DC power supply device)

【図6】本発明の実施例回路図(劣化判定回路)FIG. 6 is a circuit diagram of an embodiment of the present invention (deterioration determination circuit).

【図7】本発明の実施例(図5)のリップル電圧VP−
検出電圧VQDC特性図 (9)
FIG. 7 shows the ripple voltage VP− of the embodiment of the present invention (FIG. 5).
Detection voltage VQDC characteristic diagram (9)

【図8】本発明の実施例回路図(直流電源装置)FIG. 8 is a circuit diagram of an embodiment of the present invention (DC power supply device)

【図9】電解コンデンサの劣化時の内部抵抗R/内部イ
ンピ−ダンス特性図
FIG. 9 is a characteristic diagram of internal resistance R / internal impedance when the electrolytic capacitor is deteriorated.

【符号の説明】[Explanation of symbols]

1 電解コンデンサ劣化判定回路 3−1、3−2 電解コンデンサ入力端子 4 直流カット用コンデンサ 5 絶縁トランス 6 インダクタンス(L) 7 キャパシタンス(C) 8 直流化回路 9 劣化制定部 10 基準信号 AL 表示器 13 可変容量ダイオ−ド 13−1 外部直流入力端子 S スイッチング素子 REC 整流回路 C1、C2 電解コンデンサ T 出力トランス 14 F/V変換回路 COT 制御回路 1 Electrolytic capacitor deterioration judgment circuit 3-1, 3-2 Electrolytic capacitor input terminal 4 DC cut capacitor 5 isolation transformer 6 Inductance (L) 7 Capacitance (C) 8 DC conversion circuit 9 Degradation establishment department 10 Reference signal AL display 13 Variable capacitance diode 13-1 External DC input terminal S switching element REC rectifier circuit C1, C2 electrolytic capacitors T output transformer 14 F / V conversion circuit COT control circuit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01R 31/00 H02H 7/12 H02M 3/28 H02M 7/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01R 31/00 H02H 7/12 H02M 3/28 H02M 7/06

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 直流カット用コンデンサ及び絶縁トラン
スにより電解コンデンサのリップル電圧検出回路を構成
すると共に、前記リップル電圧検出信号を正弦波形とし
て検出するインダクタンスとキャパシタンスとで構成し
LC同調回路と、前記正弦波検出信号を直流化する直
流化回路と、前記直流化信号と基準信号を比較する劣化
判定部とを備え、前記LC同調回路を外部直流信号によ
り任意周波数に同調可能にしたことを特徴とする電解コ
ンデンサ劣化判定回路。
1. A ripple voltage detection circuit for an electrolytic capacitor is constituted by a DC cut capacitor and an insulating transformer, and is constituted by an inductance and a capacitance for detecting the ripple voltage detection signal as a sine waveform.
The LC tuning circuit, a DC converting circuit for converting the sine wave detection signal into a DC signal, and a deterioration determining section for comparing the DC converting signal with a reference signal .
The electrolytic capacitor deterioration judgment circuit is characterized by being tuned to an arbitrary frequency .
【請求項2】 前記劣化判定部の出力部にアラーム等の
表示手段を設けたことを特徴とする請求項1記載の電解
コンデンサ劣化判定回路。
2. The electrolytic capacitor deterioration determining circuit according to claim 1, characterized in that a display means of the alarm such as the output of said deterioration determining unit.
【請求項3】 前記LC同調回路に可変容量ダイオード
を接続し、該可変容量ダイオードに外部直流電圧を印加
せしめるようにしたことを特徴とする請求項1又は2
の電解コンデンサ劣化判定回路。
3. Connect the variable capacitance diode to the LC tuning circuit, according to claim 1 or 2 SL, characterized in that as allowed to apply an external DC voltage to variable capacitance diodes
Electrolytic capacitor deterioration determination circuit mounting.
【請求項4】 交流電圧を整流する整流回路と、前記整
流出力を平滑する電解コンデンサと、出力トランスと、
該出力トランスの1次巻線側に接続されたスイッチング
素子と、該出力トランスの2次巻線側に接続された整流
用ダイオードを設けた直流電源装置において、前記電解
コンデンサの劣化判定回路を設け、且つ該電解コンデン
サの劣化判定回路を、直流カット用コンデンサ及び絶縁
トランスにより電解コンデンサのリップル電圧検出回路
と、前記リップル電圧検出信号を正弦波形として検出す
るLC同調回路と、前記正弦波検出信号を直流化する直
流化回路と、前記直流化信号と基準信号を比較する劣化
判定部により構成し、前記LC同調回路を外部直流信号
により任意周波数に同調可能にしたことを特徴とする直
流電源装置。
4. A rectifier circuit for rectifying an AC voltage, an electrolytic capacitor for smoothing the rectified output, an output transformer,
In a DC power supply device provided with a switching element connected to the primary winding side of the output transformer and a rectifying diode connected to the secondary winding side of the output transformer, a deterioration determination circuit for the electrolytic capacitor is provided. And a deterioration determination circuit for the electrolytic capacitor, a ripple voltage detection circuit for the electrolytic capacitor using a DC cut capacitor and an insulating transformer, an LC tuning circuit for detecting the ripple voltage detection signal as a sine waveform, and the sine wave detection signal. A DC conversion circuit for converting to DC and a deterioration determination unit for comparing the DC conversion signal with a reference signal, and the LC tuning circuit is connected to an external DC signal.
DC power supply device characterized in that it can be tuned to an arbitrary frequency by .
【請求項5】 出力トランスの1次巻線側に設けたスイ
ッチング素子と該出力トランスの2次巻線側の出力を整
流平滑する整流用ダイオード及び出力用電解コンデンサ
を設けた直流電源装置において、前記電解コンデンサの
劣化判定回路を設け、且つ該電解コンデンサの劣化判定
回路を、直流カット用コンデンサ及び絶縁トランスによ
り電解コンデンサのリップル電圧検出回路と、前記リッ
プル電圧検出信号を正弦波形として検出するLC同調回
路と、前記正弦波検出信号を直流化する直流化回路と、
前記直流化信号と基準信号を比較する劣化判定部により
構成し、前記LC同調回路を外部直流信号により任意周
波数に同調可能にしたことを特徴とする直流電源装置。
5. A DC power supply device comprising a switching element provided on the primary winding side of an output transformer, a rectifying diode for rectifying and smoothing an output on the secondary winding side of the output transformer, and an electrolytic capacitor for output, An LC capacitor deterioration judgment circuit is provided, and the electrolytic capacitor deterioration judgment circuit is a ripple voltage detection circuit for the electrolytic capacitor using a DC cut capacitor and an insulating transformer, and LC tuning for detecting the ripple voltage detection signal as a sine waveform. A circuit, and a direct current circuit for converting the sine wave detection signal into a direct current,
The LC tuning circuit is configured by a deterioration determining unit that compares the DC signal and a reference signal, and the LC tuning circuit is arbitrarily rotated by an external DC signal.
A DC power supply device characterized in that it can be tuned to the wave number .
【請求項6】 前記外部直流信号としてスイッチング素
子のスイッチング動作周波数検出信号を用いたことを特
徴とする請求項4又は5記載の直流電源装置。
6. A DC power supply device according to claim 4, wherein a switching operation frequency detection signal of a switching element is used as the external DC signal.
【請求項7】 前記電解コンデンサの劣化判定回路の劣
化判定部に判定信号補正要素を付加すると共に該判定信
号補正要素として電解コンデンサの温度検出信号若しく
は負荷電流検出信号を用いたことを特徴とする請求項
4、5又は6記載の直流電源装置。
Characterized by using the temperature detection signal or the load current detection signal of the electrolytic capacitor as the determination signal correction element with 7. adds a determination signal correction element to the deterioration determination of the deterioration determination circuit of the electrolytic capacitor Claim
The DC power supply device according to 4, 5, or 6 .
JP07996595A 1995-03-10 1995-03-10 Electrolytic capacitor deterioration determination circuit and DC power supply equipped with the same Expired - Fee Related JP3456787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07996595A JP3456787B2 (en) 1995-03-10 1995-03-10 Electrolytic capacitor deterioration determination circuit and DC power supply equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07996595A JP3456787B2 (en) 1995-03-10 1995-03-10 Electrolytic capacitor deterioration determination circuit and DC power supply equipped with the same

Publications (2)

Publication Number Publication Date
JPH08248086A JPH08248086A (en) 1996-09-27
JP3456787B2 true JP3456787B2 (en) 2003-10-14

Family

ID=13705033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07996595A Expired - Fee Related JP3456787B2 (en) 1995-03-10 1995-03-10 Electrolytic capacitor deterioration determination circuit and DC power supply equipped with the same

Country Status (1)

Country Link
JP (1) JP3456787B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11215686A (en) * 1998-01-23 1999-08-06 Mitsubishi Electric Corp Feeding device
JP2004280549A (en) * 2003-03-17 2004-10-07 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Degradation diagnostic device for dc power unit
JP4607744B2 (en) * 2005-11-28 2011-01-05 日置電機株式会社 Voltage measuring device and power measuring device
JP2007244161A (en) * 2006-03-10 2007-09-20 Mels Corp Power supply device and its service life diagnostic device
JP2009011107A (en) * 2007-06-29 2009-01-15 Toshiba Techno Network Kk Repair information notification device
US7830269B2 (en) * 2007-09-14 2010-11-09 Astec International Limited Health monitoring for power converter capacitors
JP5778377B2 (en) * 2009-02-18 2015-09-16 Dxアンテナ株式会社 Life detection device and life detection method
WO2012029935A1 (en) * 2010-09-02 2012-03-08 株式会社アイ・オー・データ機器 Switching power supply circuit provided with protection function
JP5977701B2 (en) * 2013-03-28 2016-08-24 日本電信電話株式会社 AC adapter degradation status judgment system for information communication terminal device
JP6327099B2 (en) 2014-10-08 2018-05-23 株式会社デンソー Semiconductor device
CN207124491U (en) * 2015-02-26 2018-03-20 株式会社村田制作所 Voltage detecting circuit, power transmission device and electrical power transmission system
EP3109648B1 (en) * 2015-06-25 2018-05-02 Mitsubishi Electric R&D Centre Europe B.V. Method and system for on-line monitoring an electrolytic capacitor condition
JP6666551B2 (en) 2016-04-07 2020-03-18 富士通株式会社 Capacitor life diagnosis device, capacitor life diagnosis method and program
JP7120817B2 (en) * 2018-06-08 2022-08-17 三菱電機エンジニアリング株式会社 Deterioration measuring method for electrolytic capacitors and deterioration measuring device for electrolytic capacitors
CN110045666A (en) * 2019-05-30 2019-07-23 柳州和利时科技有限责任公司 Track power outage with capacitor status monitoring supervises resistance-capacitance box
CN114899803B (en) * 2022-04-26 2023-03-07 西南交通大学 Electrolytic capacitor aging suppression method, circuit, device, equipment and storage medium

Also Published As

Publication number Publication date
JPH08248086A (en) 1996-09-27

Similar Documents

Publication Publication Date Title
JP3456787B2 (en) Electrolytic capacitor deterioration determination circuit and DC power supply equipped with the same
EP0482705B1 (en) Circuit arrangement
JP3531385B2 (en) Power supply
US8018744B1 (en) Power factor correction by measurement and removal of overtones
EP0350104B1 (en) A signal generating circuit for ballast control of discharge lamps
US11190058B2 (en) Non-contact power supply device and method for abnormal stop
JP7338189B2 (en) power supply
JPH10225129A (en) Non-contact power supply facility
KR100317851B1 (en) Power source device for arc processing
JP2013201831A (en) Charging device
KR100747424B1 (en) Converter with resonant circuit elements
JPH02133099A (en) Trouble detectgor for ac generator
JP3196554B2 (en) Current mode switching stabilized power supply
CN110661426A (en) Power system and method for detecting overload
JP4374276B2 (en) Dielectric strength test equipment
JP2000308339A (en) Switching power unit
JP4275386B2 (en) Power supply
KR100301462B1 (en) Circuit for protecting induction heating cooking utensil
KR100292489B1 (en) Power factor correcting boost converter using soft switching technique
JP2750690B2 (en) Leakage current detection method
TWI286451B (en) Discharge lamp lighting apparatus
JPH11266580A (en) Power source
JPH06233524A (en) Power-factor improvement circuit
JPH082141B2 (en) Deterioration detection circuit for electrolytic capacitors
JPH0819260A (en) High power factor power supply circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees