JP3456561B2 - Ion conductor for non-aqueous battery and non-aqueous battery using the same - Google Patents

Ion conductor for non-aqueous battery and non-aqueous battery using the same

Info

Publication number
JP3456561B2
JP3456561B2 JP11561996A JP11561996A JP3456561B2 JP 3456561 B2 JP3456561 B2 JP 3456561B2 JP 11561996 A JP11561996 A JP 11561996A JP 11561996 A JP11561996 A JP 11561996A JP 3456561 B2 JP3456561 B2 JP 3456561B2
Authority
JP
Japan
Prior art keywords
atom
group
bonded
ionic conductor
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11561996A
Other languages
Japanese (ja)
Other versions
JPH08339827A (en
Inventor
房次 喜多
幸治 村上
章 川上
▲ジン▼ ▲ニエ▼
宏 小林
高明 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP11561996A priority Critical patent/JP3456561B2/en
Publication of JPH08339827A publication Critical patent/JPH08339827A/en
Application granted granted Critical
Publication of JP3456561B2 publication Critical patent/JP3456561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電池用イオン
伝導体およびそれを使用した非水電池に関し、さらに詳
しくは、高電圧安定性の優れた非水電池用イオン伝導体
および非水電池に関する。
TECHNICAL FIELD The present invention relates to an ionic conductor for a non-aqueous battery and a non-aqueous battery using the same, and more particularly to an ionic conductor for a non-aqueous battery excellent in high voltage stability and a non-aqueous battery. Regarding

【0002】[0002]

【従来の技術】二酸化マンガン−リチウム電池に代表さ
れる非水電池は、約3Vの高電圧で、かつ高エネルギー
密度であることから、ますます需要が増加している。ま
た、最近はLiCoO2 とカーボンを用いたリチウムイ
オン二次電池が開発され、この電池は約3.6Vの高電
圧が得られることから、急速に需要が増えている。
2. Description of the Related Art Non-aqueous batteries typified by manganese dioxide-lithium batteries have a high voltage of about 3 V and a high energy density, so that the demand thereof is increasing more and more. In addition, recently, a lithium ion secondary battery using LiCoO 2 and carbon has been developed, and a high voltage of about 3.6 V can be obtained for this battery, so that demand is rapidly increasing.

【0003】従来、この種の電池の電解質には過塩素酸
塩系のLiClO4 が使用されていたが、最近は安全性
に欠けるという観点から、あまり好まれない状況になっ
てきた。また、上記LiClO4 をはじめ、種々のリチ
ウム塩をポリエチレンオキサイド(PEO)などのポリ
マー中に分散させて固体のイオン伝導体にすることによ
って、安全性、信頼性を向上させることが提案されてい
るが、固体化することにより、イオン伝導性がかなり低
下してしまう。
Conventionally, perchlorate-based LiClO 4 has been used as the electrolyte of this type of battery, but recently it has become less preferred because of its lack of safety. Further, it has been proposed to improve safety and reliability by dispersing various lithium salts including LiClO 4 in a polymer such as polyethylene oxide (PEO) to form a solid ionic conductor. However, due to the solidification, the ionic conductivity is considerably reduced.

【0004】また、この種の電池の電解質としては、上
記LiClO4 以外にも、LiB(C654 、Li
CF3 SO3 、LiCF3 CO2 、LiN(CF3 SO
22 、LiC(CF3 SO23 などの有機リチウム
塩を用いることが提案されている(特開平7−6584
3号公報、米国特許第5260143号明細書など)。
In addition to the above LiClO 4 , LiB (C 6 H 5 ) 4 and Li are used as electrolytes for this type of battery.
CF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO
It has been proposed to use organic lithium salts such as 2 ) 2 and LiC (CF 3 SO 2 ) 3 (Japanese Patent Laid-Open No. 7-6584).
3 gazette, US Pat. No. 5,260,143, etc.).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
LiB(C654 は、高電圧安定性が不充分であっ
たり、使用する溶媒によっては貯蔵安定性が悪いという
問題がある。また、上記LiB(C654 を有機溶
媒に溶解させた液状イオン伝導体(電解液)は、貯蔵し
ておくと変色したり、一部の溶媒をポリマー化させる。
However, the above LiB (C 6 H 5 ) 4 has a problem that the high voltage stability is insufficient and the storage stability is poor depending on the solvent used. In addition, the liquid ionic conductor (electrolyte solution) obtained by dissolving the above LiB (C 6 H 5 ) 4 in an organic solvent causes discoloration when stored, and part of the solvent is polymerized.

【0006】そして、その結果、その液状イオン伝導体
(電解液)を用いた電池は、貯蔵により電池性能が低下
してしまうという問題がある。
As a result, the battery using the liquid ionic conductor (electrolytic solution) has a problem that the battery performance is deteriorated by storage.

【0007】また、LiCF3 SO3 、LiCF3 CO
2 、LiN(CF3 SO22 、LiC(CF3 SO
23 などの有機リチウム塩は、LiClO4 より安全
性に優れているが、耐酸化性が不充分であって、高電圧
下での安定性が悪かったり、イオン伝導度が低かった
り、電極の集電体に一部の材料が使えなかったり、高価
であるという問題がある。
Further, LiCF 3 SO 3 and LiCF 3 CO
2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO
2 ) Organolithium salts such as 3 are safer than LiClO 4 , but have insufficient oxidation resistance, and thus have poor stability under high voltage, low ionic conductivity, and electrode There is a problem in that some materials cannot be used for the current collector of or it is expensive.

【0008】したがって、本発明は、上記のような従来
の非水電池用イオン伝導体およびそれを使用した非水電
池の問題点を解決し、特に高電圧安定性の優れた非水電
池用イオン伝導体および非水電池を提供することを目的
とする。
Therefore, the present invention solves the problems of the conventional ion conductor for non-aqueous battery and the non-aqueous battery using the same as described above, and particularly the ion for non-aqueous battery excellent in high voltage stability. It is intended to provide a conductor and a non-aqueous battery.

【0009】[0009]

【課題を解決するための手段】本発明は、金属イオンま
たは水素イオンを対イオンとし、アニオン部となるVb
族原子を含む共鳴構造体がVIb族原子を介して電子求引
性の置換基に結合した化合物を非水電池用イオン伝導体
に用いることによって、該イオン伝導体自体およびそれ
を使用した非水電池の高電圧安定性を向上させ、上記目
的を達成したものである。
According to the present invention, a metal ion or hydrogen ion is used as a counter ion to form Vb which serves as an anion part.
By using a compound in which a resonance structure containing a group atom is bound to an electron-withdrawing substituent via a group VIb atom as an ionic conductor for a non-aqueous battery, the ionic conductor itself and a non-aqueous compound using the same The high voltage stability of the battery is improved to achieve the above object.

【0010】本発明において、非水電池用イオン伝導体
に用いる上記化合物は、有機溶媒に溶解させて液状イオ
ン伝導体(電解液)とする場合の溶質としての単なる金
属塩だけでなく、分子が大きくなればイオン伝導性の構
造体にもなるので、固体の非水電池用イオン伝導体とも
なり得る。この場合、上記化合物は、1つの分子中にい
くつもの金属イオンと対をなしうる部分を有する。本発
明では、その部分を単なる金属塩の場合やポリマーとな
る場合も含めてアニオン部という。そして、このアニオ
ン部は、共鳴構造体となることが好ましい。
In the present invention, the above-mentioned compound used in the ionic conductor for a non-aqueous battery is not only a mere metal salt as a solute when it is dissolved in an organic solvent to form a liquid ionic conductor (electrolytic solution). If it becomes larger, it will also be an ion conductive structure, so it can also be a solid ion conductor for a non-aqueous battery. In this case, the compound has a moiety capable of pairing with several metal ions in one molecule. In the present invention, the portion is referred to as an anion portion including a case of a simple metal salt and a case of forming a polymer. Then, it is preferable that the anion portion be a resonance structure.

【0011】また、本発明の非水電池は、特に電圧での
耐電圧を要求される非水電池に好適である。電池の最大
電圧がLi基準で4.0V以上になると、本発明の非水
電池用イオン伝導体(以下、簡略化して、「本発明のイ
オン伝導体」という場合がある)の効果が明瞭に発現
し、電池の最大電圧が4.1V以上になると、本発明の
イオン伝導体の効果がより明瞭に発現し、本発明のイオ
ン伝導体の使用によってより好ましい結果が得られ、さ
らに電池の最大電圧が4.2V以上になると、本発明の
イオン伝導体の効果がさらに顕著に発現し、本発明のイ
オン伝導体の使用によってさらに好ましい結果が得られ
る。
Further, the non-aqueous battery of the present invention is particularly suitable for a non-aqueous battery which is required to withstand a voltage. When the maximum voltage of the battery is 4.0 V or more on the Li standard, the effect of the ionic conductor for a non-aqueous battery of the present invention (hereinafter, may be simply referred to as “the ionic conductor of the present invention”) becomes clear. When the maximum voltage of the battery becomes 4.1 V or more, the effect of the ionic conductor of the present invention is more clearly expressed, and more preferable results are obtained by using the ionic conductor of the present invention. When the voltage is 4.2 V or higher, the effect of the ionic conductor of the present invention is more remarkably exhibited, and more preferable results are obtained by using the ionic conductor of the present invention.

【0012】本発明において、上記特定の化合物を非水
電池用イオン伝導体に用いることによって、該イオン伝
導体および非水電池の高電圧安定性を向上させることが
できる理由を、上記の化合物を具体的に説明していくな
かで、明らかにする。
In the present invention, the reason why the high voltage stability of the ionic conductor and the non-aqueous battery can be improved by using the above-mentioned specific compound in the ionic conductor for the non-aqueous battery is that It will be clarified in a concrete explanation.

【0013】まず、本発明の第一の要点は、電気的に負
に帯電したアニオンが、どの程度電子を放出して酸化し
やすいかを調べることにより、その電子放出の程度をイ
オン伝導体の酸化に対する安定性の一つの指針とするこ
とができることを見出したことである。
First, the first point of the present invention is to investigate the degree to which an electrically negatively charged anion emits an electron to easily oxidize the anion. It has been found that it can be used as a guideline for stability against oxidation.

【0014】すなわち、半経験的分子軌道法を用いるこ
とによって様々なアニオンのHOMOエネルギーを計算
することができるが、HOMOエネルギーは、アニオン
の真空中で最も放出されやすい不安定な電子軌道のエネ
ルギーレベルであるので、この値が小さいほど、酸化に
強いと考えることができる。
That is, the HOMO energies of various anions can be calculated by using the semi-empirical molecular orbital method. The HOMO energies are the energy levels of unstable electron orbits most easily released in the vacuum of anions. Therefore, it can be considered that the smaller this value is, the stronger the oxidation is.

【0015】表1および表2に、MOPAC(CAch
e system)で半経験的分子軌道法の一つである
MNDO法を用いて、従来のイオン伝導体と本発明のイ
オン伝導体の代表例のHOMOエネルギーを計算した結
果を示す。
Tables 1 and 2 show MOPAC (CAch
The HOMO energies of the representative examples of the conventional ionic conductor and the ionic conductor of the present invention are calculated by using the MNDO method, which is one of the semi-empirical molecular orbital methods.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】表1に示すように、従来のイオン伝導体が
有する(CF3 SO2 2 - などのRfSO2 基より
も、(CF3 OSO2 2 - 、(C4 9 OSO2
(CF3 OSO2 )N- 、(C8 17OSO2 )(CF
3 OSO2 - などのRfOSO2 基を有する本発明
のイオン伝導体の方が、HOMOエネルギーが低く耐酸
化性に優れていると考えられる。また、表2に示すよう
に、本発明のイオン伝導体、すなわち、(CF3 OSO
2 2 - 、(CF3 CH2 OSO2 2 -、(CF
3 CF2 CH2 OSO2 2 - 、〔(CF3 2 CH
OSO2 2 - などのアニオンを有する本発明のイオ
ン伝導体は、従来の(CF3 SO2 2- タイプのア
ニオンを有するイオン伝導体より、低いHOMOエネル
ギーを示し、耐酸化性が優れていることがわかる。
As shown in Table 1, (CF 3 OSO 2 ) 2 N , (C 4 F 9 OSO) rather than RfSO 2 groups such as (CF 3 SO 2 ) 2 N which conventional ion conductors have. 2 )
(CF 3 OSO 2) N - , (C 8 F 17 OSO 2) (CF
It is considered that the ionic conductor of the present invention having an RfOSO 2 group such as 3 OSO 2 N has lower HOMO energy and is excellent in oxidation resistance. Further, as shown in Table 2, the ionic conductor of the present invention, that is, (CF 3 OSO
2) 2 N -, (CF 3 CH 2 OSO 2) 2 N -, (CF
3 CF 2 CH 2 OSO 2) 2 N -, [(CF 3) 2 CH
The ionic conductor of the present invention having an anion such as OSO 2 ] 2 N exhibits lower HOMO energy and oxidation resistance than an ionic conductor having a conventional (CF 3 SO 2 ) 2 N type anion. It turns out to be excellent.

【0019】本発明の第二の要点は、本発明における上
記化合物のアニオン部の中心(以下、簡略化して、アニ
オン中心という)となるVb族原子、たとえばN(窒
素)、P(リン)などは、比較的電気陰性度が低く、こ
れらの原子がアニオン中心となる場合、電池電圧が3V
以上でも電子を放出しにくいので、優れた耐酸化性が期
待できることを見出したことである。
The second important point of the present invention is that the Vb group atom which becomes the center of the anion part of the above compound in the present invention (hereinafter, simply referred to as anion center), such as N (nitrogen) or P (phosphorus). Has a relatively low electronegativity, and when these atoms become the anion centers, the battery voltage is 3 V
It has been found that excellent oxidation resistance can be expected because it is difficult to emit electrons even with the above.

【0020】上記において、Vb族原子とは周期律表の
Vb族に属する元素の原子である。このVb族原子は、
これを安定化するための共鳴構造基(SO2 基やCO基
など)が2個以上またはそれ以上結合することが可能で
あり、それによって、耐酸化性がより向上する。Vb族
原子の中でも、第2周期または第3周期に属する原子が
好ましく、特にN原子のような第2周期に属する原子が
好ましい。そして、共鳴構造基としてはSO2 基やCO
基、POx 基、NOx 基などが挙げられるが、特にSO
2 基とCO基が好ましく、とりわけSO2 基が好まし
い。従って、最も好ましい共鳴構造部は、(−SO2
2- である。
In the above, the Vb group atom is an atom of an element belonging to the Vb group of the periodic table. This Vb group atom is
Two or more resonance structure groups (SO 2 groups, CO groups, etc.) for stabilizing the same can be bonded, whereby the oxidation resistance is further improved. Among the Vb group atoms, atoms belonging to the second or third period are preferable, and atoms belonging to the second period such as N atom are particularly preferable. And, as a resonance structure group, SO 2 group or CO
Group, PO x group, NO x group, etc., but especially SO
2 groups and CO groups are preferred, especially SO 2 groups. Thus, the most preferred resonance structure unit, (- SO 2)
2 N - it is.

【0021】本発明において用いる化合物(以下、簡略
化して、本発明の化合物という)の最も特徴的な部分
は、上記のようなアニオン部の酸化を防止する対策とし
て、アニオン部にVIb族原子を介して電子求引性の有機
置換基を結合させて安定化させたことにある。
The most characteristic part of the compound used in the present invention (hereinafter, simply referred to as the compound of the present invention) is that a VIb group atom is added to the anion part as a measure for preventing the oxidation of the anion part. It is said that an electron-withdrawing organic substituent is bonded to the compound via this to stabilize the compound.

【0022】上記電子求引性の有機置換基は、アニオン
中心原子の電子を求引して、アニオン中心原子の電子密
度を低下させ、アニオン中心から電子を取り出しにくく
することによって、アニオンが酸化されるのを防止する
が、この電子求引性の有機置換基とアニオン部との間に
介在するVIb族原子は、2個の結合が可能な原子として
は最も電気陰性度が高く、電子求引性の有機置換基の作
用をさらに向上させる効果がある。また、VIb族原子が
介在する分だけ置換基が長くなって、立体障害が大きく
なり、特に正極の集電体金属と組み合わせた場合の高電
圧安定性が良くなる。とりわけ、アルミニウムなどのよ
うに溶出時に3価以上になる集電体に対して効果が大き
い。
The electron-withdrawing organic substituent attracts the electron of the central atom of the anion to reduce the electron density of the central atom of the anion and makes it difficult to take out the electron from the central anion, whereby the anion is oxidized. However, the VIb group atom interposed between the electron-withdrawing organic substituent and the anion moiety has the highest electronegativity as an atom capable of forming two bonds, and thus has an electron withdrawing property. It has the effect of further improving the action of the organic substituent. Further, the substituents are lengthened by the presence of the VIb group atom, and steric hindrance is increased, and particularly high voltage stability is improved when combined with the positive electrode current collector metal. In particular, it is highly effective for current collectors that become trivalent or more when eluted, such as aluminum.

【0023】たとえば、従来の(RfSO22 NLi
〔ミッチェル アーマンド(Michel Arman
d)の米国特許第5260145号明細書〕より、本発
明の化合物に属する(RfOSO22 NLiの方が優
れた耐酸化性を示す。VIb族原子としては、O(酸
素)、S(イオウ)などが挙げられるが、特にO(酸
素)原子が2本以上の結合を持ちにくく、立体障害が少
ない状態で電子求引性の有機置換基をアニオン部に結合
させ得るので、高電圧安定性をより大きく高めることが
でき、特に好ましい。
For example, conventional (RfSO 2 ) 2 NLi
[Mitchel Arman (Michel Arman
(d) US Pat. No. 5,260,145], the (RfOSO 2 ) 2 NLi belonging to the compound of the present invention exhibits superior oxidation resistance. Examples of the VIb group atom include O (oxygen) and S (sulfur). Especially, it is difficult for the O (oxygen) atom to have two or more bonds, and electron-withdrawing organic substitution in a state where steric hindrance is small. Since the group can be bonded to the anion portion, high voltage stability can be further enhanced, which is particularly preferable.

【0024】VIb族原子を介して結合させる電子求引性
の有機置換基としては、たとえばハロゲン化アルキル
基、シアノ基などが挙げられるが、特にハロゲン化アル
キル基が好ましく、なかでもフルオロアルキル基が好ま
しい。なお、アルキル基の炭素数は、特に限定されるこ
とはないが、ハロゲン化アルキル基の炭素数が増加する
ほど電子求引性の効果が増加するが、有機溶媒への溶解
性を考慮すると20以下が好ましい。
Examples of the electron-withdrawing organic substituent bonded via a VIb group atom include a halogenated alkyl group and a cyano group. Among them, a halogenated alkyl group is particularly preferable, and a fluoroalkyl group is particularly preferable. preferable. The number of carbon atoms in the alkyl group is not particularly limited, but the effect of electron withdrawing increases as the number of carbon atoms in the halogenated alkyl group increases, but it is 20 when the solubility in an organic solvent is taken into consideration. The following are preferred.

【0025】また、ハロゲン化アルキル基中に窒素原子
や酸素原子を含んでいても良い。ハロゲン化アルキル基
は、ハロゲン化されていない炭素原子を介してVIb族原
子に結合すると、立体障害が大きくなり、正極集電体の
高電圧安定性が高くなるので、特に好ましい。このハロ
ゲン化されていない炭素原子を介してVIb族原子に結合
するハロゲン化アルキル基の具体例としては、たとえ
ば、下記の式(I) 〔(Rf−O−Y)2 −X〕n M (I) 〔式中、Mは金属原子、nは金属原子の価数、XはVb
族原子、YはSO2 基またはCO基を表し、Rfはフッ
素原子を含む電子求引性基であって、酸素原子との結合
部の原子にハロゲン原子が結合していないか、または少
なくとも1個の水素原子が結合している基を表す。ただ
し、Rfは少なくとも2箇所でO−Y−X基に結合して
もよい〕で表される化合物であり、その具体例として
は、たとえば(RfCH2 OSO22 NLiなどが挙
げられる。
Further, the halogenated alkyl group may contain a nitrogen atom or an oxygen atom. When the halogenated alkyl group is bonded to the VIb group atom through a non-halogenated carbon atom, steric hindrance is increased, and the high voltage stability of the positive electrode current collector is increased, which is particularly preferable. Specific examples of the halogenated alkyl group bonded to the VIb group atoms through the unhalogenated carbon atoms, for example, the following formula (I) [(Rf-O-Y) 2 -X ] n M ( I) [In the formula, M is a metal atom, n is a valence of the metal atom, and X is Vb.
A group atom, Y represents a SO 2 group or a CO group, Rf is an electron-attracting group containing a fluorine atom, and a halogen atom is not bonded to the atom at the bonding portion with the oxygen atom, or at least 1 Represents a group in which one hydrogen atom is bonded. However, Rf may be bonded to the O—Y—X group at at least two positions], and specific examples thereof include (RfCH 2 OSO 2 ) 2 NLi.

【0026】また、ハロゲン化アルキル基は、途中で分
枝していると、さらに高電圧安定性が高くなるので、好
ましい。この分枝ハロゲン化アルキル基の具体例として
は、たとえば〔(CF32 CFCH2 OSO22
Liなどが挙げられる。
Further, it is preferable that the halogenated alkyl group be branched in the middle because the stability at high voltage is further enhanced. Specific examples of the branched halogenated alkyl group include, for example, [(CF 3 ) 2 CFCH 2 OSO 2 ] 2 N.
Examples thereof include Li.

【0027】本発明の化合物において、対イオンとなり
得るものとしては、水素イオンの他に金属イオンとし
て、たとえばリチウムイオン、ナトリウムイオン、カリ
ウムイオンなどのアルカリ金属イオン、マグネシウムイ
オン、カルシウムイオンなどのアルカリ土類金属イオン
が挙げられ、特にアルカリ金属イオン、なかでもリチウ
ムイオンが好ましい。
In the compound of the present invention, as counter ions, in addition to hydrogen ions, metal ions such as alkali metal ions such as lithium ion, sodium ion and potassium ion, and alkaline earth ions such as magnesium ion and calcium ion can be used. Examples of the metal ions include alkali metal ions, and lithium ion is particularly preferable.

【0028】本発明の化合物を用いて液状イオン伝導体
(電解液)を調製するにあたっては、上記化合物を有機
溶媒に溶解させることが好ましいが、その際の有機溶媒
としては、たとえば、プロピレンカーボネート、エチレ
ンカーボネート、ブチレンカーボネート、γ−ブチロラ
クトン、γ−バレロラクトン、ジメチルカーボネート、
プロピオン酸メチル、酢酸ブチルなどのエステル類、
1,2−ジメトキシエタン、1,2−ジメトキシメタ
ン、ジメトキシプロパン、1,3−ジオキソラン、テト
ラヒドロフラン、2−メチルテトラヒドロフラン、4−
メチル−1,3−ジオキソランなどのエーテル類、さら
にはスルフォランなどが挙げられるが、液状イオン伝導
体の高電圧安定性を高めるにはエステル類が好ましく、
なかでも炭酸エステル類が特に好ましい。
In preparing a liquid ionic conductor (electrolytic solution) using the compound of the present invention, it is preferable to dissolve the above compound in an organic solvent. Examples of the organic solvent at that time include propylene carbonate, Ethylene carbonate, butylene carbonate, γ-butyrolactone, γ-valerolactone, dimethyl carbonate,
Esters such as methyl propionate and butyl acetate,
1,2-dimethoxyethane, 1,2-dimethoxymethane, dimethoxypropane, 1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, 4-
Examples thereof include ethers such as methyl-1,3-dioxolane, and further sulfolane, but esters are preferable in order to enhance high voltage stability of the liquid ionic conductor,
Of these, carbonic acid esters are particularly preferable.

【0029】そして、さらに高電圧安定性を望むなら
ば、本発明の化合物をポリマーまたはオリゴマーとし、
化合物を固体のイオン伝導体(固体電解質)として機能
させるのが良い。この具体例としては、たとえば〔−R
f′−CH2 OSO2 N(Li)SO2 OCH2 −〕m
(式中、Rf′は炭素数1〜20のフルオロアルキル基
であり、mは重合度を表し、通常2〜100である)な
どが挙げられる。この化合物は新規化合物である。
If further high voltage stability is desired, the compound of the present invention is a polymer or oligomer,
It is preferable that the compound functions as a solid ionic conductor (solid electrolyte). A specific example of this is, for example, [-R
f'-CH 2 OSO 2 N ( Li) SO 2 OCH 2 - ] m
(In the formula, Rf ′ is a fluoroalkyl group having 1 to 20 carbon atoms, m represents the degree of polymerization, and is usually 2 to 100) and the like. This compound is a novel compound.

【0030】なお、本発明のイオン伝導体は、多孔質ポ
リマーや絶縁性無機化合物〔アルミナ(Al23 )、
ゼオライトなど〕や、ポリエチレンオキサイド、ポリプ
ロピレンオキサイド、ポリメタクリル酸メチルまたはそ
れらの誘導体などを支持材とし、それらと本発明の化合
物とを共存した状態で使用したものであることがより好
ましい。
The ionic conductor of the present invention comprises a porous polymer, an insulating inorganic compound [alumina (Al 2 O 3 ),
Zeolite and the like], polyethylene oxide, polypropylene oxide, polymethylmethacrylate or their derivatives are used as a support material, and it is more preferable to use them together with the compound of the present invention.

【0031】これらの化合物の合成方法は、金属塩の場
合、XSO2 NHSO2 X(ここで、Xはハロゲン原
子、特にCl)とRf−CH2 OHとを反応させること
によって、たとえば(Rf−CH2 OSO22 NHが
得られ、これをLi2 CO3 で中和することによって、
(RfCH2 OSO22 NLiが得られる。これらは
200℃付近まで安定な化合物である。
In the case of metal salts, these compounds can be synthesized by reacting XSO 2 NHSO 2 X (where X is a halogen atom, particularly Cl) with Rf-CH 2 OH, for example (Rf- CH 2 OSO 2 ) 2 NH is obtained, which is neutralized with Li 2 CO 3 to give
(RfCH 2 OSO 2 ) 2 NLi is obtained. These are compounds that are stable up to around 200 ° C.

【0032】また、ポリマーまたはオリゴマーの場合
は、反応させるアルコールを二級アルコール(HOCH
2 Rf″CH2 OH)などにすれば、〔−Rf″−CH
2 OSO2 N(H)SO2 OCH2 −〕m が生成物とし
て得られるので、これをLi塩で中和すれば良い。この
具体的な一例を挙げると、HOCH2 (CF24 CH
2 OHを用いて〔N(Li)SO2 OCH2 (CF2
4 CH2 OSO2m(mは9〜10)を合成する場
合が挙げられる。
In the case of a polymer or oligomer, the alcohol to be reacted is a secondary alcohol (HOCH).
2 Rf ″ CH 2 OH) etc. [-Rf ″ -CH
2 OSO 2 N (H) SO 2 OCH 2 - ] Since m is obtained as a product which may be neutralized with a Li salt. To give a specific example, HOCH 2 (CF 2 ) 4 CH
Using 2 OH [N (Li) SO 2 OCH 2 (CF 2 )
4 CH 2 OSO 2] m (m is 9-10), and may be synthesized.

【0033】なお、この〔N(Li)SO2 OCH2
(CF24 CH2 OSO2m (mは9〜10)をア
セトニトリルに溶解させたポリマー液状イオン伝導体
(電解液)(アセトニトリル80重量%、上記ポリマー
20重量%)は、25℃で8.9ms/cmの高イオン
伝導性を示す。
[N (Li) SO 2 OCH 2
A polymer liquid ionic conductor (electrolytic solution) (80% by weight of acetonitrile, 20% by weight of the above polymer) obtained by dissolving (CF 2 ) 4 CH 2 OSO 2 ] m (m is 9 to 10) in acetonitrile is at 25 ° C. It shows a high ionic conductivity of 8.9 ms / cm.

【0034】本発明の化合物を有機溶媒に溶解させて液
状イオン伝導体(電解液)を調製する場合、上記化合物
の濃度は、特に限定されるものではないが、通常0.0
1〜2mol/l、特に0.05〜1mol/l程度に
するのが好ましい。
When a liquid ionic conductor (electrolytic solution) is prepared by dissolving the compound of the present invention in an organic solvent, the concentration of the above compound is not particularly limited, but usually 0.0
It is preferably 1 to 2 mol / l, particularly preferably about 0.05 to 1 mol / l.

【0035】本発明のイオン伝導体を使用して電気化学
装置を作製するにあたり、とりわけ非水電池の場合、負
極にはアルカリ金属またはアルカリ金属を含む化合物を
銅、ニッケル、ステンレス鋼製網などの集電体材料と一
体化したものが用いられる。
In producing an electrochemical device using the ionic conductor of the present invention, particularly in the case of a non-aqueous battery, an alkali metal or a compound containing an alkali metal is used for the negative electrode, such as copper, nickel or stainless steel net. The one integrated with the current collector material is used.

【0036】その際のアルカリ金属としては、たとえば
リチウム、ナトリウム、カリウムなどが挙げられ、アル
カリ金属を含む化合物としては、たとえばアルカリ金属
とアルミニウム、鉛、インジウム、ガリウム、カドミウ
ム、スズ、マグネシウムなどとの合金、さらにはアルカ
リ金属と炭素材料との化合物、低電位のアルカリ金属と
金属酸化物、金属硫化物との化合物などが挙げられる。
Examples of the alkali metal at that time include lithium, sodium and potassium, and examples of the compound containing the alkali metal include alkali metal and aluminum, lead, indium, gallium, cadmium, tin and magnesium. Examples thereof include alloys, compounds of alkali metals and carbon materials, compounds of low-potential alkali metals and metal oxides, compounds of metal sulfides, and the like.

【0037】正極には、たとえばリチウムコバルト酸化
物、リチウムニッケル酸化物、LiMn24 、二酸化
マンガン、五酸化バナジウム、クロム酸化物などの金属
酸化物、二硫化モリブデンなどの金属硫化物、またはそ
れらの正極活物質に必要に応じ黒鉛などの導電助剤やポ
リテトラフルオロエチレンなどの結着剤などを適宜添加
した合剤を、たとえばアルミニウム、タングステン、ス
テンレス鋼製網などの集電体を芯材として成形体に仕上
げたものが用いられる。
For the positive electrode, for example, lithium cobalt oxide, lithium nickel oxide, LiMn 2 O 4 , metal oxides such as manganese dioxide, vanadium pentoxide and chromium oxide, metal sulfides such as molybdenum disulfide, or those If necessary, a mixture of conductive materials such as graphite and a binder such as polytetrafluoroethylene is added to the positive electrode active material, and a current collector such as aluminum, tungsten or stainless steel net is used as a core material. A molded product is used as the product.

【0038】正極活物質は、本発明の化合物が高電圧で
安定であることから、たとえばリチウムコバルト酸化
物、リチウムニッケル酸化物、LiMn24 などの充
電時にLi基準で4V以上、特に4.2V以上の高電圧
のものが利用価値が高く好ましい。そして、正極集電体
材料としては、たとえばアルミニウム、タングステンな
どのように液状イオン伝導体に溶解した時に3価以上に
なる金属が好ましい。
As the positive electrode active material, since the compound of the present invention is stable at high voltage, for example, lithium cobalt oxide, lithium nickel oxide, LiMn 2 O 4 or the like is charged with 4 V or more, especially 4. A high voltage of 2 V or higher is preferable because of its high utility value. The positive electrode current collector material is preferably a metal having a valence of 3 or more when dissolved in a liquid ionic conductor, such as aluminum or tungsten.

【0039】また、正極活物質の表面積が小さくなると
高電圧安定性はさらに向上する。本発明において用いる
正極活物質としては、表面積が50m2 /g以下である
ことが好ましく、特に30m2 /g以下であること、と
りわけ20m2 /gであることが好ましい。
Further, when the surface area of the positive electrode active material is small, the high voltage stability is further improved. The positive electrode active material used in the present invention preferably has a surface area of 50 m 2 / g or less, particularly 30 m 2 / g or less, and particularly preferably 20 m 2 / g.

【0040】さらに、正極活物質の金属酸化物の活性表
面をアルカリ金属またはアルカリ土類金属化合物、特に
それらの炭酸塩で処理して、上記金属酸化物にアルカリ
金属またはアルカリ土類金属を含有させると、さらに高
電圧安定性が向上するので好ましい。
Further, the active surface of the metal oxide of the positive electrode active material is treated with an alkali metal or alkaline earth metal compound, especially a carbonate thereof, so that the metal oxide contains an alkali metal or an alkaline earth metal. It is preferable that the high voltage stability is further improved.

【0041】[0041]

【発明の実施の形態】つぎに、実施例をあげて本発明を
より具体的に説明する。ただし、本発明はそれらの実施
例のみに限定されるものではない。なお、実施例に先立
ち、実施例で電解質として用いる化合物の合成を合成例
として示す。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to only those examples. Prior to the examples, the synthesis of compounds used as electrolytes in the examples will be shown as synthesis examples.

【0042】合成例1 ビス(クロロスルホニル)アミン2.55gを50ml
のバブルカウンターと塩化カルシウム乾燥管を備えた二
口フラスコに入れ、マグネッチクスターラーで攪拌しな
がら、蒸留したヘキサフルオロ−2−プロパノール20
mlを加えて、反応混合物を還流条件下43時間反応さ
せた。上記反応の間に塩化水素ガスの発生が認められ
た。過剰なアルコールをエバポレーターで取り除き、そ
れによって、5.67gの吸湿性の高い白色の固体を得
た。
Synthesis Example 1 50 ml of 2.55 g of bis (chlorosulfonyl) amine
Hexafluoro-2-propanol 20 was placed in a two-necked flask equipped with a bubble counter and a calcium chloride drying tube, and stirred with a magnetic stirrer.
ml was added and the reaction mixture was reacted for 43 hours under reflux conditions. Generation of hydrogen chloride gas was observed during the above reaction. Excess alcohol was removed on the evaporator, thereby giving 5.67 g of a highly hygroscopic white solid.

【0043】この白色固体を80℃、0.25mmHg
の条件下でICE−TRAP(アイス−トラップ)を用
いて昇華精製を行い、無色の結晶〔(CF3 2 CHO
SO2 2 N−Hを5.36g得た。
This white solid was placed at 80 ° C. and 0.25 mmHg.
Sublimation purification was carried out using ICE-TRAP (ice-trap) under the conditions of, and colorless crystals [(CF 3 ) 2 CHO were obtained.
SO 2] a 2 N-H to obtain 5.36 g.

【0044】この結晶1.25gを50mlの二口フラ
スコ中で15mlのアセトニトリルに溶解して、室温で
マグネチックスターラーで攪拌しながら、炭酸リチウム
(純度99.999%)を0.0968g徐々に加え、
1時間超音波照射(sonication)を行った。
その間に炭酸ガスの発生が認められた。
1.25 g of this crystal was dissolved in 15 ml of acetonitrile in a 50 ml two-necked flask, and 0.0968 g of lithium carbonate (purity 99.999%) was gradually added while stirring with a magnetic stirrer at room temperature. ,
Ultrasonic irradiation was performed for 1 hour.
During that time, generation of carbon dioxide was observed.

【0045】反応溶液を濾過した後、溶媒のアセトニト
リルをエバポレーターで取り除き、無色の液体を得た。
これを0.05mmHgで100℃で2時間乾燥し、残
留した酸を昇華によって取り除いた。これによって、非
常に吸湿性の高い白色粉状の〔(CF3 3 CHOSO
2 2 N−Liを1g得た。この化合物の分析結果を以
下に示す。
After the reaction solution was filtered, the solvent acetonitrile was removed by an evaporator to obtain a colorless liquid.
This was dried at 0.05 mmHg and 100 ° C. for 2 hours, and the residual acid was removed by sublimation. As a result, [(CF 3 ) 3 CHOSO in the form of a white powder having a very high hygroscopicity is obtained.
2 ] 2 N-Li 1g was obtained. The analysis results of this compound are shown below.

【0046】融点:194−197℃(分解)1 H−NMR(CD3 CN/TMS):δ;3.76
(b,H2 O)、5.50(m,CH, 2J(F−H)
=6Hz)19 F−NMR(CD3 CN/C6 5 ):δ;90.8
4(d、CF3 2J(F−H)=7Hz)
Melting point: 194-197 ° C. (decomposition) 1 H-NMR (CD 3 CN / TMS): δ; 3.76
(B, H 2 O), 5.50 (m, CH, 2 J (F-H)
= 6 Hz) 19 F-NMR (CD 3 CN / C 6 F 5 ): δ; 90.8
4 (d, CF 3 , 2 J (F-H) = 7 Hz)

【0047】合成例2 50mlのバブルカウンターと塩化カルシウム乾燥管を
備えた二口フラスコにビス(クロロスルホニル)アミン
2.75gと無水ベンゼン20mlを入れ、マグネッチ
クスターラーで攪拌しながら、蒸留した2,2,3,
3,3−ペンタフルオロプロパノール3.85gを加え
て、反応混合物を還流条件下1時間反応させた。上記反
応の間に塩化水素ガスの発生が認められた。反応溶媒の
ベンゼンと未反応のアルコールはエバポレーターで取り
除き、吸湿性の高い着色した固体を5.67g得た。
Synthesis Example 2 2.75 g of bis (chlorosulfonyl) amine and 20 ml of anhydrous benzene were placed in a two-necked flask equipped with a 50 ml bubble counter and a calcium chloride drying tube, and distilled while stirring with a magnetic stirrer 2. 2, 3,
3.85 g of 3,3-pentafluoropropanol was added, and the reaction mixture was reacted for 1 hour under reflux conditions. Generation of hydrogen chloride gas was observed during the above reaction. The reaction solvent benzene and unreacted alcohol were removed by an evaporator to obtain 5.67 g of a highly hygroscopic colored solid.

【0048】この着色固体を90℃、0.15mmHg
の条件下でICE−TRAPを用いて昇華精製を行い、
無色の結晶〔CF3 CF2 CH2 OSO2 2 N−Hを
5.11g得た。
This colored solid was dried at 90 ° C. and 0.15 mmHg.
Sublimation purification using ICE-TRAP under the conditions of
The colorless crystals [CF 3 CF 2 CH 2 OSO 2] 2 N-H to obtain 5.11 g.

【0049】この結晶4.42gを50mlの二口フラ
スコ中で20mlの水に溶解し、室温中でマグネチック
スターラーで攪拌しながら、炭酸リチウム(純度99.
999%)を0.3699g徐々に加え、100℃1時
間反応した。上記反応の間に炭酸ガスの発生が認められ
た。得られた反応混合物のpHは約7であった。
4.42 g of this crystal was dissolved in 20 ml of water in a 50 ml two-necked flask, and lithium carbonate (purity 99.
0.3699 g (999%) was gradually added, and the mixture was reacted at 100 ° C. for 1 hour. Generation of carbon dioxide was observed during the above reaction. The pH of the resulting reaction mixture was about 7.

【0050】反応溶液を濾過した後、溶媒の水をエバポ
レーターで取り除き、無色の固体を得た。この無色固体
を0.05mmHgの圧力下、100℃で1.5時間乾
燥した。これによって非常に吸湿性の高い白色粉状の
〔CF3 CF2 CH2 OSO22 N−Liを4.10
g得た。この化合物の分析結果を以下に示す。
After filtering the reaction solution, the solvent water was removed by an evaporator to obtain a colorless solid. The colorless solid was dried at 100 ° C. for 1.5 hours under a pressure of 0.05 mmHg. This highly hygroscopic high white powder of [CF 3 CF 2 CH 2 OSO 2] 4.10 2 N-Li
g was obtained. The analysis results of this compound are shown below.

【0051】融点:210℃(分解)1 H−NMR(CD3 CN/TMS):δ;3.05
(s,H2 O)、4.67(t,q,CH2, 2J(F
−H)=13Hz, 3J(F−H)=0.98Hz)19 F−NMR(CD3 CN/C6 6 ):δ;40.3
2(CF2 ),80.19(CF3
Melting point: 210 ° C. (decomposition) 1 H-NMR (CD 3 CN / TMS): δ; 3.05
(S, H 2 O), 4.67 (t, q, CH2, 2 J (F
−H) = 13 Hz, 3 J (F−H) = 0.98 Hz) 19 F-NMR (CD 3 CN / C 6 F 6 ): δ; 40.3
2 (CF 2), 80.19 ( CF 3)

【0052】合成例3 50mlのバブルカウンターと塩化カルシウム乾燥管を
備えた二口フラスコにビス(クロロスルホニル)アミン
2.88gと無水ベンゼン20mlを入れ、マグネッチ
クスターラーで攪拌しながら、蒸留した2,2,3,3
−テトラフルオロプロパノール3.56gを加えて、反
応混合物を還流条件下1時間加熱した。その間に塩化水
素ガスの発生が認められた。反応溶媒のベンゼンはエバ
ポレーターで取り除き、吸湿性の高い茶色の固体を5.
99g得た。
Synthesis Example 3 2.88 g of bis (chlorosulfonyl) amine and 20 ml of anhydrous benzene were placed in a two-necked flask equipped with a 50 ml bubble counter and a calcium chloride drying tube, and distilled while stirring with a magnetic stirrer 2. 2, 3, 3
3.56 g of tetrafluoropropanol was added and the reaction mixture was heated under reflux conditions for 1 hour. During that time, generation of hydrogen chloride gas was observed. Benzene as a reaction solvent was removed by an evaporator, and a brown solid having high hygroscopicity was removed.
99 g were obtained.

【0053】この茶色固体を120℃、0.05mmH
gの条件下で−90℃のコールド−フィンガートラップ
を用いて昇華精製を行った。このようにして、無色の結
晶〔HCF2 CF2 CH2 OSO2 2 N−Hを5.2
6g得た。
This brown solid was heated at 120 ° C. and 0.05 mmH
Sublimation purification was carried out using a cold-finger trap at -90 ° C under the condition of g. Thus, 5.2 colorless crystals [HCF 2 CF 2 CH 2 OSO 2 ] 2 NH were obtained.
6 g were obtained.

【0054】この結晶4.19gを50mlの二口フラ
スコ中で20mlの水に溶解し、室温中でマグネチック
スターラーで攪拌しながら、炭酸リチウム(純度99.
999%)を0.3824g徐々に加え、100℃まで
昇温した後、同温度で1時間反応させた。上記反応の間
に炭酸ガスの発生が認められた。反応混合物のpHは約
7であった。
4.19 g of this crystal was dissolved in 20 ml of water in a 50 ml two-necked flask, and lithium carbonate (purity 99.
(999%) was gradually added, the temperature was raised to 100 ° C., and the reaction was carried out at the same temperature for 1 hour. Generation of carbon dioxide was observed during the above reaction. The pH of the reaction mixture was about 7.

【0055】反応溶液を濾過した後、溶媒の水をエバポ
レーターで取り除き、無色の固体を得た。この固体を
0.05mmHgの圧力下、100℃で2時間乾燥し
た。これによって非常に吸湿性の高い白色粉状の〔HC
2 CF2 CH2 OSO2 2 N−Liを3.86g得
た。この化合物の分析結果を以下に示す。
After filtering the reaction solution, the solvent water was removed by an evaporator to obtain a colorless solid. The solid was dried at 100 ° C. for 2 hours under a pressure of 0.05 mmHg. As a result, the white powdery [HC
F 2 CF 2 CH 2 OSO 2] to give 3.86g of the 2 N-Li. The analysis results of this compound are shown below.

【0056】融点:200℃(分解)1 H−NMR(CD3 CN/TMS):δ;2.91
(s,H2 O)、4.42(t,t,CH2 2J(F
−H)=13Hz, 3J(F−H)=1.7Hz),
6.19(t,t,CF2 H, 1J(F−H)=52H
z, 2J(F−H)=5Hz)19 F−NMR(CD3 CN/C6 6 ):δ;23.8
2(d,t,CF2 1J(F−H)=52Hz, 2
(F−H)=5Hz),37.88(m,CF2
Melting point: 200 ° C. (decomposition) 1 H-NMR (CD 3 CN / TMS): δ; 2.91
(S, H 2 O), 4.42 (t, t, CH 2 , 2 J (F
-H) = 13 Hz, 3 J (F-H) = 1.7 Hz),
6.19 (t, t, CF 2 H, 1 J (F-H) = 52H
z, 2 J (F−H) = 5 Hz) 19 F-NMR (CD 3 CN / C 6 F 6 ): δ; 23.8
2 (d, t, CF 2 , 1 J (F−H) = 52 Hz, 2 J
(F-H) = 5Hz) , 37.88 (m, CF 2)

【0057】合成例4 50mlのバブルカウンターと塩化カルシウム乾燥管を
備えた二口フラスコにビス(クロロスルホニル)アミン
2.24gと無水ベンゼンを入れ、マグネッチクスター
ラーで攪拌しながら、蒸留した2,2,2−トリフルオ
ロエタノール2.25gを加えて、反応混合物を還流条
件下、塩化水素ガスの発生が終了した後、1時間反応さ
せた。反応溶媒のベンゼンと未反応のアルコールはエバ
ポレーターで取り除き、吸湿性の高い着色固体を3.7
0g得た。
Synthesis Example 4 2.24 g of bis (chlorosulfonyl) amine and anhydrous benzene were placed in a two-necked flask equipped with a 50 ml bubble counter and a calcium chloride drying tube, and distilled under stirring with a magnetic stirrer 2,2 , 2-trifluoroethanol (2.25 g) was added, and the reaction mixture was reacted under reflux conditions for 1 hour after the generation of hydrogen chloride gas was completed. Benzene as a reaction solvent and unreacted alcohol were removed by an evaporator to obtain a highly hygroscopic colored solid at 3.7.
0 g was obtained.

【0058】この着色固体を80℃、0.2mmHgの
条件下でICE−TRAPを用いて昇華精製を行い、無
色の結晶〔CF3 CH2 OSO2 2 N−Hを3.48
g得た。
This colored solid was purified by sublimation using ICE-TRAP under the conditions of 80 ° C. and 0.2 mmHg to give colorless crystals [CF 3 CH 2 OSO 2 ] 2 N-H 3.48.
g was obtained.

【0059】この反応を2回行った後、この化合物6.
10gを50mlの二口フラスコ中で20mlの水に溶
解し、室温でマグネチックスターラーで攪拌しながら、
炭酸リチウム(純度99.999%)を0.6610g
徐々に加え、100℃で1時間反応を行った。上記反応
の間に炭酸ガスの発生が認められた。反応混合物のpH
は約7であった。
After carrying out this reaction twice, this compound 6.
10 g was dissolved in 20 ml of water in a 50 ml two-necked flask and stirred at room temperature with a magnetic stirrer.
0.6610 g of lithium carbonate (purity 99.999%)
The mixture was gradually added and reacted at 100 ° C. for 1 hour. Generation of carbon dioxide was observed during the above reaction. PH of reaction mixture
Was about 7.

【0060】反応溶液を濾過した後、溶媒の水をエバポ
レーターで取り除き、無色の固体を得た。この固体を
0.4mmHgの圧力下、100℃で3時間乾燥した。
これによって、非常に吸湿性の高い白色粉状の〔CF3
CH2 OSO2 2 N−Liを6.03g得た。この化
合物の分析結果を以下に示す。
After filtering the reaction solution, the solvent water was removed by an evaporator to obtain a colorless solid. This solid was dried at 100 ° C. for 3 hours under a pressure of 0.4 mmHg.
As a result, [CF 3
CH 2 OSO 2] the 2 N-Li to give 6.03 g. The analysis results of this compound are shown below.

【0061】融点:210℃(分解)1 H−NMR(CD3 CN/TMS):δ;2.93
(s,H2 O)、4.46(q,CH2 2J(H−
F)=8Hz)19 F−NMR(CD3 CN/C6 6 ):δ;89.7
8(t,6F,CF3 2J(H−F)=8Hz)
Melting point: 210 ° C. (decomposition) 1 H-NMR (CD 3 CN / TMS): δ; 2.93
(S, H 2 O), 4.46 (q, CH 2 , 2 J (H-
F) = 8 Hz) 19 F-NMR (CD 3 CN / C 6 F 6 ): δ; 89.7.
8 (t, 6F, CF 3 , 2 J (H-F) = 8Hz)

【0062】合成例5 50mlのバブルカウンターと塩化カルシウム乾燥管を
備えた二口フラスコに2,2,3,3,4,4,5,5
−オクタフルオロ−1,6−ヘキサンジオール2.57
gと無水ベンゼン20mlを入れ、マグネッチクスター
ラーで攪拌しながら、ビス(クロロスルホニル)アミン
2.10gを溶解したベンゼン溶液を加え、還流条件下
5時間反応させた。上記反応の間に塩化水素ガスの発生
が認められた。反応終了後、反応容器中にポリマーの沈
殿生成物が得られた。
Synthesis Example 5 2,2,3,3,4,4,5,5 in a two-necked flask equipped with a 50 ml bubble counter and a calcium chloride drying tube.
-Octafluoro-1,6-hexanediol 2.57
g and 20 ml of anhydrous benzene were added, and a benzene solution in which 2.10 g of bis (chlorosulfonyl) amine was dissolved was added with stirring with a magnetic stirrer, and the mixture was reacted under reflux conditions for 5 hours. Generation of hydrogen chloride gas was observed during the above reaction. After the reaction was completed, a polymer precipitation product was obtained in the reaction vessel.

【0063】沈殿物を濾過分離し、乾燥して固体の〔H
−NSO2 OCH2 (CF2 4 CH2 OSO2
m (mは9〜10)を3.26g得た。
The precipitate is filtered off and dried to give a solid [H
-NSO 2 OCH 2 (CF 2) 4 CH 2 OSO 2 ]
3.26 g of m (m is 9 to 10) was obtained.

【0064】この固体1.30gを50mlの二口フラ
スコ中で15mlの水に溶解し、室温でマグネチックス
ターラーで攪拌しながら、水酸化リチウムを0.080
g徐々に加えた。反応溶液を濾過した後、溶媒の水をエ
バポレーターで取り除き、その残査をアセトニトリルで
精製した。溶媒をエバポレーターで除去し、非常に粘稠
な液体を得た。この液体を0.05mmHgの圧力下、
100℃で3時間乾燥し、粉砕した。これによって、非
常に吸湿性の高い薄茶色粉状の〔Li−NSO2 OCH
2 (CF2 4 CH2 OSO2 m (mは9〜10)を
1.30g得た。この化合物の分子量をゲルパーミエイ
ションクロマトグラフィーで測定したところ、数平均分
子量が3400、重量部平均分子量が4300であっ
た。この化合物の分析結果を以下に示す。
In a 50 ml two-necked flask, 1.30 g of this solid was dissolved in 15 ml of water, and 0.080 of lithium hydroxide was added while stirring with a magnetic stirrer at room temperature.
g was added slowly. After filtering the reaction solution, the solvent water was removed by an evaporator, and the residue was purified with acetonitrile. The solvent was removed on the evaporator to give a very viscous liquid. This liquid under a pressure of 0.05 mmHg,
It was dried at 100 ° C. for 3 hours and crushed. Thus, highly hygroscopic pale brown powdery [Li-NSO 2 OCH
2 (CF 2) 4 CH 2 OSO 2] m (m is 9-10) was obtained 1.30 g. When the molecular weight of this compound was measured by gel permeation chromatography, the number average molecular weight was 3,400 and the weight average molecular weight was 4,300. The analysis results of this compound are shown below.

【0065】融点:150℃以下1 H−NMR(CD3 CN/TMS):δ;3.00
(b,H2 O)、4.56(t,CH2 ),4.00
(t,CH2 19 F−NMR(CD3 CN/C6 6 ):δ;40.6
3(m),44.08(m),41.80(m)
Melting point: 150 ° C. or lower 1 H-NMR (CD 3 CN / TMS): δ; 3.00
(B, H 2 O), 4.56 (t, CH 2 ), 4.00
(T, CH 2) 19 F -NMR (CD 3 CN / C 6 F 6): δ; 40.6
3 (m), 44.08 (m), 41.80 (m)

【0066】なお、上記合成例1〜5において、融点は
ヤナコ社製のMP−S3融点測定器を用いて測定したも
のであり、NMRスペクトルはJEOL FX−100
FTNMRを用いて測定したものである。
In the above Synthesis Examples 1 to 5, the melting point was measured by using an MP-S3 melting point measuring instrument manufactured by Yanaco Co., Ltd., and the NMR spectrum was JEOL FX-100.
It is measured using FTNMR.

【0067】実施例1 電解質として、上記の合成例1で得た〔(CF32
HOSO22 NLiを用い、以下に示すようにして液
状イオン伝導体(電解液)を調製した。なお、上記の
〔(CF32 CHOSO22 NLiでは、そのアニ
オン部となる(−SO22 N−にO(酸素)原子を介
して電子求引性の有機置換基〔(CF32 CH−〕が
結合している。
Example 1 [(CF 3 ) 2 C obtained in Synthesis Example 1 above was used as an electrolyte.
HOSO 2 ] 2 NLi was used to prepare a liquid ionic conductor (electrolytic solution) as shown below. In the above [(CF 3) 2 CHOSO 2] 2 NLi, its the anion (-SO 2) organic electron-attracting substituent via 2 N- to O (oxygen) atom [(CF 3 ) 2 CH-] is bonded.

【0068】液状イオン伝導体(電解液)の調製は、上
記の〔(CF32 CHOSO2 2 NLiにプロピレ
ンカーボネートを加えて混合して、〔(CF32 CH
OSO22 NLiをプロピレンカーボネートに溶解す
ることによって行った。液状イオン伝導体(電解液)中
における〔(CF32 CHOSO22 NLiの濃度
は0.1mol/lであり、この液状イオン伝導体(電
解液)の組成を0.1mol/l〔(CF32 CHO
SO22 NLi/PCで示す。上記液状イオン伝導体
(電解液)におけるPCはプロピレンカーボネートの略
称である。
Preparation of the liquid ionic conductor (electrolytic solution)
Note [(CF3 )2 CHOSO2 ] 2 NLi Propile
Carbonate and add, [(CF3 )2 CH
OSO2 ]2 Dissolve NLi in propylene carbonate
I went by. In liquid ionic conductor (electrolyte)
In [(CF3 )2 CHOSO2 ]2 NLi concentration
Is 0.1 mol / l, and this liquid ionic conductor (electric
The composition of the solution is 0.1 mol / l [(CF3 )2 CHO
SO2 ]2 Shown as NLi / PC. Liquid ionic conductor
PC in (electrolytic solution) is an abbreviation for propylene carbonate
It is a name.

【0069】したがって、上記液状イオン伝導体(電解
液)を示す0.1mol/l〔(CF32 CHOSO
22 NLi/PCは、液状イオン伝導体(電解液)が
プロピレンカーボネートに〔(CF32 CHOSO
22 NLiを0.1mol/l溶解させたものである
ことを示している。
Therefore, 0.1 mol / l [(CF 3 ) 2 CHOSO showing the above liquid ionic conductor (electrolytic solution) is used.
2 ] 2 NLi / PC is a liquid ionic conductor (electrolyte solution) of propylene carbonate [(CF 3 ) 2 CHOSO
2 ] 2 NLi was dissolved in 0.1 mol / l.

【0070】つぎに、ポリフッ化ビニリデン4重量部を
N−メチルピロリドンに溶解し、これに正極活物質であ
るLiCoO2 90重量部と導電助剤としての黒鉛6重
量部を加えて混合してスラリーにした。この正極合剤ス
ラリーを厚さ20μmのアルミニウム箔からなる正極集
電体の両面に均一に塗付して乾燥し、その後、ローラー
プレス機により圧縮成形した後、所定の寸法に切断し、
リード体の溶接を行って、正極を作製した。
Next, 4 parts by weight of polyvinylidene fluoride was dissolved in N-methylpyrrolidone, and 90 parts by weight of LiCoO 2 as a positive electrode active material and 6 parts by weight of graphite as a conduction aid were added and mixed to form a slurry. I chose This positive electrode mixture slurry is uniformly applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 20 μm and dried, and then compression molded by a roller press machine, and then cut into predetermined dimensions,
The lead body was welded to produce a positive electrode.

【0071】上記正極に、厚さ34μmの微孔性ポリエ
チレンフィルムからなるセパレータを介して負極のリチ
ウムホイルにリード体を取り付けたものを正極を取り巻
くように重ねた後、それら全体をポリエチレンバックに
挿入した。これに上記の液状イオン伝導体(電解液)を
注入した後、上部を熱シールし、薄形の非水二次電池を
作製した。
The positive electrode was attached to the lithium foil of the negative electrode through a separator made of a microporous polyethylene film having a thickness of 34 μm so as to surround the positive electrode, and then the whole was inserted into a polyethylene bag. did. After injecting the above liquid ionic conductor (electrolytic solution) into this, the upper part was heat-sealed to produce a thin non-aqueous secondary battery.

【0072】実施例2 〔(CF32 CHOSO22 NLiに代えて、合成
例2で得た(CF3 CF2 CH2 OSO22 NLiを
用いた以外は、実施例1と同様に液状イオン伝導体(電
解液)を調製し、その液状イオン伝導体(電解液)を用
いた以外は、実施例1と同様に非水二次電池を作製し
た。
Example 2 The same as Example 1 except that (CF 3 CF 2 CH 2 OSO 2 ) 2 NLi obtained in Synthesis Example 2 was used in place of [(CF 3 ) 2 CHOSO 2 ] 2 NLi. A non-aqueous secondary battery was produced in the same manner as in Example 1 except that a liquid ionic conductor (electrolytic solution) was prepared in Example 1 and the liquid ionic conductor (electrolytic solution) was used.

【0073】実施例3 〔(CF32 CHOSO22 NLiに代えて、合成
例3で得た(HCF2CF2 CH2 OSO22 NLi
を用いた以外は、実施例1と同様に液状イオン伝導体
(電解液)を調製し、その液状イオン伝導体(電解液)
を用いた以外は、実施例1と同様に非水二次電池を作製
した。
Example 3 [(CF 3 ) 2 CHOSO 2 ] 2 NLi was replaced with (HCF 2 CF 2 CH 2 OSO 2 ) 2 NLi obtained in Synthesis Example 3.
A liquid ionic conductor (electrolytic solution) was prepared in the same manner as in Example 1 except that the liquid ionic conductor (electrolytic solution) was used.
A non-aqueous secondary battery was produced in the same manner as in Example 1 except that was used.

【0074】実施例4 〔(CF32 CHOSO22 NLiに代えて、合成
例4で得た(CF3 CH2 OSO22 NLiを用いた
以外は、実施例1と同様に液状イオン伝導体(電解液)
を調製し、その液状イオン伝導体(電解液)を用いた以
外は、実施例1と同様に非水二次電池を作製した。
Example 4 Liquid crystal was prepared in the same manner as in Example 1 except that (CF 3 CH 2 OSO 2 ) 2 NLi obtained in Synthesis Example 4 was used in place of [(CF 3 ) 2 CHOSO 2 ] 2 NLi. Ion conductor (electrolyte)
Was prepared, and a non-aqueous secondary battery was produced in the same manner as in Example 1 except that the liquid ionic conductor (electrolytic solution) was used.

【0075】実施例5 〔(CF32 CHOSO22 NLiに代えて、合成
例5で得た〔Li−NSO2 OCH2 (CF2 4 CH
2 OSO2 m (mは9〜10)を用い、液状イオン伝
導体の濃度が0.01mol/lとなるように、プロピ
レンカーボネートと1,2−ジメトキシエタンとの体積
比1:2の混合溶媒に溶解させて、液状イオン伝導体
(電解液)を調製した。た。この液状イオン伝導体(電
解液)を用いた以外は、実施例1と同様に非水二次電池
を作製した。
Example 5 [Li-NSO 2 OCH 2 (CF 2 ) 4 CH obtained in Synthesis Example 5 was used in place of [(CF 3 ) 2 CHOSO 2 ] 2 NLi.
2 OSO 2 ] m (m is 9 to 10), and a mixture of propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1: 2 so that the concentration of the liquid ionic conductor is 0.01 mol / l. It was dissolved in a solvent to prepare a liquid ionic conductor (electrolytic solution). It was A non-aqueous secondary battery was produced in the same manner as in Example 1 except that this liquid ionic conductor (electrolytic solution) was used.

【0076】比較例1 〔(CF32 CHOSO22 NLiに代えて、(C
3 SO22 NLiを用いた以外は、実施例1と同様
に液状イオン伝導体(電解液)を調製し、その液状イオ
ン伝導体(電解液)を用いた以外は、実施例1と同様に
非水二次電池を作製した。
Comparative Example 1 Instead of [(CF 3 ) 2 CHOSO 2 ] 2 NLi, (C
A liquid ionic conductor (electrolytic solution) was prepared in the same manner as in Example 1 except that F 3 SO 2 ) 2 NLi was used, and the liquid ionic conductor (electrolytic solution) was used. Similarly, a non-aqueous secondary battery was produced.

【0077】上記のようにして調製した実施例1〜4お
よび比較例1の液状イオン伝導体(電解液)の耐酸化性
を次に示すようにして測定した。
The oxidation resistance of the liquid ionic conductors (electrolyte solutions) of Examples 1 to 4 and Comparative Example 1 prepared as described above was measured as follows.

【0078】耐酸化性測定用セルの作用極にはニラコ社
製の直径0.3mmの白金線を使用し、対極には旭東金
属社製のリチウムフィルムを21mm幅にして使用し
た。この対極の対向面積は0.2cm2 である。作用極
と対極との間にはセパレータとしてポリエチレン製微多
孔膜を配置した。このように作製したセルを北斗電工社
製ポテンショスタット(HA−501)およびファンク
ションジェネレーター(HB−104)を用いて50m
V/sの走査速度で電位走査を行い、電流密度0.5m
A/cm2 に達した電位をもって酸化電位とし、液状イ
オン伝導体(電解液)の耐酸化性を評価した。
A platinum wire with a diameter of 0.3 mm manufactured by Niraco was used as the working electrode of the cell for measuring oxidation resistance, and a lithium film manufactured by Asahi Tohkin Co., Ltd. with a width of 21 mm was used as the counter electrode. The facing area of this counter electrode is 0.2 cm 2 . A polyethylene microporous membrane was placed as a separator between the working electrode and the counter electrode. The cell thus prepared was 50 m using a Hokuto Denko potentiostat (HA-501) and a function generator (HB-104).
The potential is scanned at a scanning speed of V / s, and the current density is 0.5 m.
The oxidation resistance of the liquid ionic conductor (electrolytic solution) was evaluated by setting the potential reaching A / cm 2 as the oxidation potential.

【0079】上記の酸化電位は、液状イオン伝導体(電
解液)の高電圧安定性を示すための尺度であって、酸化
電位が高いほど高電圧安定性が優れていることを示す
が、その電圧までまったく液状イオン伝導体(電解液)
が分解しないことを示すものではない。
The above oxidation potential is a measure for showing the high voltage stability of the liquid ionic conductor (electrolyte), and the higher the oxidation potential is, the better the high voltage stability is. Completely liquid ionic conductor up to voltage (electrolyte)
Does not indicate that it will not decompose.

【0080】このようにして測定した実施例1〜4およ
び比較例1の液状イオン伝導体(電解液)の酸化電位を
表3に示す。
Table 3 shows the oxidation potentials of the liquid ionic conductors (electrolyte solutions) of Examples 1 to 4 and Comparative Example 1 measured as described above.

【0081】[0081]

【表3】 [Table 3]

【0082】表3に示すように、実施例1〜4の液状イ
オン伝導体(電解液)は、比較例1の液状イオン伝導体
(電解液)に比べて、酸化電位が高い。
As shown in Table 3, the liquid ionic conductors (electrolytic solutions) of Examples 1 to 4 have a higher oxidation potential than the liquid ionic conductors (electrolytic solution) of Comparative Example 1.

【0083】つぎに、上記実施例1〜5および比較例1
の電池をドライ雰囲気中、0.5mA/cm2 で3時間
充電し、上限電圧4.2Vで充電を終了した。その後、
それらの電池を0.5mA/cm2 で2.75Vまで放
電し、放電容量を調べた。その結果を表4に実施例1の
放電容量を100とした比率(容量比)で示す。
Next, the above Examples 1 to 5 and Comparative Example 1
The battery was charged at 0.5 mA / cm 2 for 3 hours in a dry atmosphere, and the charging was completed at an upper limit voltage of 4.2V. afterwards,
The batteries were discharged at 0.5 mA / cm 2 to 2.75 V, and the discharge capacity was examined. The results are shown in Table 4 as a ratio (capacity ratio) with the discharge capacity of Example 1 as 100.

【0084】[0084]

【表4】 [Table 4]

【0085】表4に示す結果のように、実施例1〜5の
電池の容量比は、比較例1の電池の容量比に比べて大き
く、本発明のイオン伝導体を用いることによって、高電
圧で充電した場合の放電容量が大きくなった。
As shown in the results shown in Table 4, the capacity ratios of the batteries of Examples 1 to 5 were larger than the capacity ratio of the battery of Comparative Example 1, and by using the ion conductor of the present invention, high voltage The discharge capacity increased when charged at.

【0086】この原因を調べるため、電池を分解したと
ころ、比較例1の電池では、正極集電体のアルミニウム
が液状イオン伝導体(電解液)に溶出したり、負極に付
着していたが、実施例1〜5の電池には、そのような形
跡がほとんどみられなかった。
In order to investigate the cause, the battery was disassembled, and in the battery of Comparative Example 1, the aluminum of the positive electrode current collector was eluted in the liquid ionic conductor (electrolytic solution) or adhered to the negative electrode. The batteries of Examples 1 to 5 showed almost no such trace.

【0087】[0087]

【発明の効果】以上説明したように、本発明では、たと
えば〔(CF3 2 CHOSO2 2NLiのような金
属イオンを対イオンとし、アニオン部となるVb族原子
を含む共鳴構造体がVIb族原子を介して電子求引性の有
機置換基に結合した化合物をイオン伝導体に用いること
によって、高電圧安定性の優れた非水電池用イオン伝導
体および非水電池を提供することができた。
As described above, according to the present invention, a resonance structure containing a metal ion such as [(CF 3 ) 2 CHOSO 2 ] 2 NLi as a counter ion and containing a Vb group atom as an anion part is provided. By using a compound bonded to an electron-withdrawing organic substituent through a VIb group atom as an ionic conductor, it is possible to provide an ionic conductor for a non-aqueous battery and a non-aqueous battery having excellent high voltage stability. did it.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲ニエ▼ ▲ジン▼ 福岡県春日市春日原東町3−64 (72)発明者 小林 宏 福岡県筑紫野市原695−18 (72)発明者 園田 高明 福岡県福岡市博多区光丘町2−1−23 (56)参考文献 特開 平7−6786(JP,A) 特開 平7−65843(JP,A) 特開 平8−45544(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 6/16 H01B 1/06 C07C 309/06 C07F 1/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor ▲ Nie ▼ ▲ Jin ▼ 3-64 Kasugahara Higashimachi, Kasuga City, Fukuoka Prefecture (72) Inventor Hiroshi Kobayashi 695-18 Hara, Chikushino, Fukuoka Prefecture (72) Inventor Takaaki Sonoda Fukuoka Prefecture 2-1-23 Mitsuoka-cho, Hakata-ku, Fukuoka (56) References JP-A-7-6786 (JP, A) JP-A-7-65843 (JP, A) JP-A-8-45544 (JP, A) ( 58) Fields surveyed (Int.Cl. 7 , DB name) H01M 10/40 H01M 6/16 H01B 1/06 C07C 309/06 C07F 1/02

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属イオンまたは水素イオンを対イオン
とし、アニオン部となるVb族原子を含む共鳴構造体が
VIb族原子を介して電子求引性の有機置換基に結合した
化合物を用いたことを特徴とする非水電池用イオン伝導
体。
1. A resonance structure comprising a metal ion or hydrogen ion as a counter ion and containing a Vb group atom as an anion part,
An ionic conductor for a non-aqueous battery , which uses a compound bonded to an electron-withdrawing organic substituent through a VIb group atom.
【請求項2】 共鳴構造体が、Vb族原子にSO 2 基ま
たはCO基が結合していることを特徴とする請求項1記
載の非水電池用イオン伝導体。
2. A resonance structure comprising a group Vb atom containing an SO 2 group.
Or a CO group bonded thereto.
Ion conductor for non-aqueous batteries.
【請求項3】 化合物が、金属イオンを対イオンとし、
アニオン部となるチッ素原子を含む共鳴構造体が酸素原
子を介して電子求引性の有機置換基に結合し、その有機
置換基の酸素原子との結合部の原子にハロゲン原子が結
合していないか、または少なくとも1個の水素原子が結
合した構造を有するものであることを特徴とする請求項
1記載の非水電池用イオン伝導体。
3. The compound has a metal ion as a counter ion,
A resonance structure containing a nitrogen atom, which serves as the anion part, is bound to an electron-withdrawing organic substituent through an oxygen atom, and a halogen atom is bound to the atom at the part of the organic substituent that binds to the oxygen atom. The ionic conductor for a non-aqueous battery according to claim 1 , wherein the ionic conductor has no structure or has a structure in which at least one hydrogen atom is bonded.
【請求項4】 化合物が、金属イオンを対イオンとし、
アニオン部においてチッ素原子にSO2 基またはCO基
が結合し、そのSO2 基またはCO基を含む共鳴構造体
が酸素原子を介して電子求引性の有機置換基に結合し、
下記の式(I)で表されるものであることを特徴とする
請求項1記載の非水電池用イオン伝導体。 〔(Rf−O−Y)2 −X〕n M (I) ここで、 M:金属原子で、nは上記金属原子の価数 X:Vb族原子 Y:SO2 基またはCO基 O:酸素原子 Rf:フッ素原子を含む電子求引性基であって、酸素原
子との結合部の原子にハロゲン原子が結合していない
か、または少なくとも1個の水素原子が結合している。
また、このRfは2箇所以上でO−Y−Xに結合しても
よい。
4. The compound has a metal ion as a counter ion,
SO 2 group or CO group is attached to the nitrogen atom in the anion portion, bonded to organic electron-attracting substituent resonant structure including the SO 2 group or CO group through an oxygen atom,
The ionic conductor for a non-aqueous battery according to claim 1, which is represented by the following formula (I). [(Rf-O-Y) 2 -X ] n M (I) wherein, M: a metal atom, n represents the valence of the metal atoms X: Vb group atoms Y: SO 2 group or CO group O: Oxygen Atom Rf: an electron-withdrawing group containing a fluorine atom, in which a halogen atom is not bonded to the atom at the bonding portion with the oxygen atom, or at least one hydrogen atom is bonded.
Further, this Rf may be bonded to OYX at two or more positions.
【請求項5】 金属イオンまたは水素イオンを対イオン
とし、アニオン部となるVb族原子を含む共鳴構造体が
VIb族原子を介して電子求引性の有機置換基に結合した
化合物を用いたイオン伝導体を使用したことを特徴とす
非水電池
5. A resonance structure comprising a metal ion or hydrogen ion as a counter ion and containing a Vb group atom as an anion part.
A non-aqueous battery comprising an ionic conductor using a compound bonded to an electron-withdrawing organic substituent through a VIb group atom.
【請求項6】 共鳴構造体が、Vb族原子にSO 2 基ま
たはCO基が結合していることを特徴とする請求項5記
載の非水電池
6. A resonance structure comprising an SO 2 group at a Vb group atom.
Or a CO group is bonded thereto.
Non-aqueous battery mounted .
【請求項7】 化合物が、金属イオンを対イオンとし、
アニオン部となるチッ素原子を含む共鳴構造体が酸素原
子を介して電子求引性の有機置換基に結合し、その有機
置換基の酸素原子との結合部の原子にハロゲン原子が結
合していないか、または少なくとも1個の水素原子が結
合した構造を有するものであることを特徴とする請求項
記載の非水電池
7. The compound has a metal ion as a counter ion,
A resonance structure containing a nitrogen atom, which serves as an anion part, is bound to an electron-withdrawing organic substituent through an oxygen atom, and a halogen atom is bound to the atom at the part of the organic substituent that is bonded to the oxygen atom. A structure having no or at least one hydrogen atom bonded thereto.
5. The non-aqueous battery according to item 5 .
【請求項8】 化合物が、金属イオンを対イオンとし、
アニオン部においてチッ素原子にSO2 基またはCO基
が結合し、そのSO2 基またはCO基を含む共鳴構造体
が酸素原子を介して電子求引性の有機置換基に結合し、
下記の式(I)で表されるものであることを特徴とする
請求項記載の非水電池。 〔(Rf−O−Y)2 −X〕n M (I) ここで、 M:金属原子で、nは金属原子の価数 X:Vb原子 Y:SO2 基またはCO基 O:酸素原子 Rf:フッ素原子を含む電子求引性基であって、酸素原
子との結合部の原子にハロゲン原子が結合していない
か、または少なくとも1個の水素原子が結合している。
また、このRfは2箇所以上でO−Y−Xに結合しても
よい。
8. The compound has a metal ion as a counter ion,
SO 2 group or CO group is attached to the nitrogen atom in the anion portion, bonded to organic electron-attracting substituent resonant structure including the SO 2 group or CO group through an oxygen atom,
The non-aqueous battery according to claim 5, which is represented by the following formula (I). [(Rf-O-Y) 2 -X ] n M (I) wherein, M: a metal atom, n valence of the metal atom X: Vb atom Y: SO 2 group or CO group O: an oxygen atom Rf : An electron-withdrawing group containing a fluorine atom, in which a halogen atom is not bonded to the atom at the bonding portion with the oxygen atom, or at least one hydrogen atom is bonded.
Further, this Rf may be bonded to OYX at two or more positions.
JP11561996A 1995-04-14 1996-04-12 Ion conductor for non-aqueous battery and non-aqueous battery using the same Expired - Fee Related JP3456561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11561996A JP3456561B2 (en) 1995-04-14 1996-04-12 Ion conductor for non-aqueous battery and non-aqueous battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-113549 1995-04-14
JP11354995 1995-04-14
JP11561996A JP3456561B2 (en) 1995-04-14 1996-04-12 Ion conductor for non-aqueous battery and non-aqueous battery using the same

Publications (2)

Publication Number Publication Date
JPH08339827A JPH08339827A (en) 1996-12-24
JP3456561B2 true JP3456561B2 (en) 2003-10-14

Family

ID=26452493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11561996A Expired - Fee Related JP3456561B2 (en) 1995-04-14 1996-04-12 Ion conductor for non-aqueous battery and non-aqueous battery using the same

Country Status (1)

Country Link
JP (1) JP3456561B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176871A1 (en) * 2011-06-24 2012-12-27 セントラル硝子株式会社 Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery
WO2013031551A1 (en) 2011-08-31 2013-03-07 セントラル硝子株式会社 Electrolytic solution for nonaqueous electrolytic solution cell, and nonaqueous electrolytic solution cell

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3563929B2 (en) 1997-07-31 2004-09-08 株式会社コンポン研究所 Substrate for ion conductor and ion conductor
JP2001055441A (en) 1999-06-11 2001-02-27 Toyota Motor Corp Ion-conductive molecule, ionic conductor and production of ionic conductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176871A1 (en) * 2011-06-24 2012-12-27 セントラル硝子株式会社 Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery
WO2013031551A1 (en) 2011-08-31 2013-03-07 セントラル硝子株式会社 Electrolytic solution for nonaqueous electrolytic solution cell, and nonaqueous electrolytic solution cell
KR20140040283A (en) 2011-08-31 2014-04-02 샌트랄 글래스 컴퍼니 리미티드 Electrolytic solution for nonaqueous electrolytic solution cell, and nonaqueous electrolytic solution cell
US10777847B2 (en) 2011-08-31 2020-09-15 Central Glass Company, Limited Electrolytic solution for nonaqueous electrolytic solution cell, and nonaqueous electrolytic solution cell

Also Published As

Publication number Publication date
JPH08339827A (en) 1996-12-24

Similar Documents

Publication Publication Date Title
JP6634415B2 (en) Power storage device
JP3498905B2 (en) Electrolyte for electrochemical devices
EP1442489B1 (en) Non-aqueous electrolytes for lithium electrochemical cells
US11050087B2 (en) Silane functionalized ionic liquids
US8722242B2 (en) Electrolyte for magnesium battery
KR100709084B1 (en) A lithium battery, a lithium fluoroborate and a lithium electrolyte
JP6593802B2 (en) Inorganic coordination polymers as gelling agents
JP2002110235A (en) Electrolyte for electrochemical device and battery using the same
EP3025389A1 (en) Oxiranyl derivatives as additives for electrolytes in lithium-ion batteries
CN111512488A (en) Non-aqueous electrolyte composition comprising lithium bis (fluorosulfonyl) imide
JP3456561B2 (en) Ion conductor for non-aqueous battery and non-aqueous battery using the same
JP2019133895A (en) Additive for electrolyte
JP3687283B2 (en) Solvent for lithium ion secondary battery
JP4070734B2 (en) Electrolytic solution and electrochemical device
KR20200109296A (en) Poly(ketone)-based polymer electrolyte for high voltage lithium ion batteries
JP5134783B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2006206457A (en) Molten cyclic ammonium salt and use thereof
US5902698A (en) Ion conductive material and electrochemical device comprising the same
EP3605698A1 (en) New components for electrolyte compositions
JP3724903B2 (en) Ionic conductor and electrochemical device using the same
CN113632285B (en) Additive for electrolyte
JP2002184465A (en) Electrolyte for electrochemical device, electrolytic solution or solid electrolyte thereof, and battery
JP2003338320A (en) Electrolyte for electrochemical device, its electrolytic solution or solid electrolyte, and battery
JP3007114B2 (en) Non-aqueous electrolyte for lithium secondary batteries and lithium secondary batteries
JP2000323170A (en) Non-protonic solvent excellent in electrochemical stability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees