JP3456309B2 - Continuous casting mold and continuous casting method - Google Patents

Continuous casting mold and continuous casting method

Info

Publication number
JP3456309B2
JP3456309B2 JP16731195A JP16731195A JP3456309B2 JP 3456309 B2 JP3456309 B2 JP 3456309B2 JP 16731195 A JP16731195 A JP 16731195A JP 16731195 A JP16731195 A JP 16731195A JP 3456309 B2 JP3456309 B2 JP 3456309B2
Authority
JP
Japan
Prior art keywords
mold
continuous casting
side plate
alternating current
long side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16731195A
Other languages
Japanese (ja)
Other versions
JPH08323450A (en
Inventor
浩光 柴田
祐司 三木
聡 井戸川
永康 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP16731195A priority Critical patent/JP3456309B2/en
Publication of JPH08323450A publication Critical patent/JPH08323450A/en
Application granted granted Critical
Publication of JP3456309B2 publication Critical patent/JP3456309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、連続鋳造鋳片の
品質向上を狙いとし、鋳型内溶湯に交番磁場を印加する
溶融金属の連続鋳造に関し、特に、鋳型に直接交流電流
を通電して効果的に交番磁場を発生せしめる連続鋳造用
鋳型とその鋳型を用いての連続鋳造法を提案するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to continuous casting of molten metal in which an alternating magnetic field is applied to a molten metal in a mold with the aim of improving the quality of a continuously cast slab, and in particular, it is effective when an alternating current is directly applied to the mold. We propose a continuous casting mold that can generate an alternating magnetic field and a continuous casting method using the mold.

【0002】溶融金属の連続鋳造において、交番磁場を
利用する方法が鋼やアルミニュウムの鋳造に多く用いら
れている。この技術は、連続鋳造用鋳型内溶湯浴面近傍
に交番磁場を印加し、その電磁力により溶湯浴面を上方
に凸形状に湾曲させて鋳型内壁面に沿ったモールドパウ
ダーの通路を拡げモールドパウダーの送り込みを促進す
るとともに鋳型による抜熱量を低減し、さらに、溶湯浴
面近傍を電磁誘導加熱して浴面に沿って水平方向にはり
出す所期凝固殻のはり出しを抑え、初期凝固シェルへの
介在物や気泡のトラップを抑制して鋳片の表面品質を向
上しようとするものである。
In continuous casting of molten metal, a method utilizing an alternating magnetic field is often used for casting steel and aluminum. This technology applies an alternating magnetic field near the surface of the molten bath in the casting mold for continuous casting, and the electromagnetic force causes the surface of the molten bath to curve upwards to expand the mold powder passage along the inner wall surface of the mold. The amount of heat removed by the mold is reduced and the amount of heat removed by the mold is reduced, and the vicinity of the molten metal bath surface is electromagnetically induction-heated to prevent the expected solidified shell from protruding horizontally along the bath surface to the initial solidified shell. It is intended to improve the surface quality of the slab by suppressing the inclusions and the trapping of bubbles.

【0003】[0003]

【従来の技術】鋳型内に交番磁場を発生させる方法とし
ては、例えば、特公昭57−21408 号公報(溶融金属の鋳
造方法)に提案開示されているように、鋳型材質にステ
ンレス鋼などの比較的に電気伝導度の低い金属を用い、
鋳型背面に誘導コイルを設置してその鋳型壁を通して鋳
型内溶湯に磁場を印加する方法がある。
2. Description of the Related Art As a method for generating an alternating magnetic field in a mold, for example, as disclosed in Japanese Patent Publication No. 57-21408 (a method for casting molten metal), stainless steel or the like is used as a mold material. Using a metal with low electrical conductivity,
There is a method of installing an induction coil on the back surface of the mold and applying a magnetic field to the molten metal in the mold through the wall of the mold.

【0004】しかしながら、この方法においては誘導コ
イルが鋳型の外周に設置されているため、鋳型自体が誘
導加熱されることおよび誘導コイルと溶融金属との間隔
が離れていることによって磁場の印加効率が低減するこ
となどあって、その印加効率に限界を生じていた。この
傾向は、印加する磁場の周波数が高くなるにつれ顕著と
なり、周波数が1kHz 以上の高周波領域では、その効率
は著しく低下し実質的に磁場の制御は不可能であった。
However, in this method, since the induction coil is installed on the outer periphery of the mold, the induction heating of the mold itself and the distance between the induction coil and the molten metal increase the magnetic field application efficiency. As a result, the application efficiency has been limited. This tendency becomes more remarkable as the frequency of the applied magnetic field becomes higher, and in the high frequency region where the frequency is 1 kHz or more, the efficiency is remarkably lowered and it is practically impossible to control the magnetic field.

【0005】このような問題を解決する方法としては、
特開平4−100658号公報(連続鋳造用鋳型)に開示され
ている手段がある。この手段は鋳型に交流電流を直接通
電するもので、鋳型に誘導コイルの役割を担わせている
ため、上記したような鋳型における磁場の遮へいや発熱
による磁場の印加効率の低下がなく、また溶湯と誘導コ
イルとの間隔が大きくなることによって生じる効率の低
下もなくなる。
As a method for solving such a problem,
There is a means disclosed in JP-A-4-100658 (mold for continuous casting). This means is to directly apply an alternating current to the mold, and since the mold plays the role of an induction coil, there is no decrease in magnetic field application efficiency due to magnetic field shielding or heat generation in the mold as described above, and the molten metal There is also no decrease in efficiency caused by the increased distance between the induction coil and the induction coil.

【0006】しかし、この手段では、鋳型の背面を含む
全体に電流が流れることにより、本来電流を流したい部
位である溶湯浴面近傍に流れる電流密度が大幅に低下
し、やはり磁場の印加効率が低下するという問題があっ
た。さらに、「電学論A.110 巻、9号、P591 〜597
(平成2年)」に示されているように、交流電流を導体
平板に通電した場合、電流とその電流の作る磁場との相
互作用により、図1に示すように電流が両端エッジ部分
に集中するという現象があり、鋳型両端部以外の箇所
で、磁場の印加効率が低下するという問題がある。
[0006] However, in this means, since the current flows through the entire mold including the back surface of the mold, the current density flowing near the surface of the molten metal, which is the area where the current should originally flow, is greatly reduced, and the magnetic field application efficiency is also reduced. There was a problem of lowering. In addition, "Electrical Theory A.110, Volume 9, P591-597
(1990), when an alternating current is applied to a conductor plate, the current concentrates on both edges as shown in Fig. 1 due to the interaction between the current and the magnetic field created by the current. There is a problem that the efficiency of applying a magnetic field is reduced at a place other than both ends of the mold.

【0007】ここで、図1は鋳型長辺板の左右方向に通
電した場合の電流密度分布を示す説明図である。図1に
おいて、1は交流電源、2は導線接続端子、3は溶湯浴
面、4は鋳型長辺板および5は電流経路を示す。
Here, FIG. 1 is an explanatory view showing a current density distribution when electricity is applied in the left-right direction of the long side plate of the mold. In FIG. 1, 1 is an AC power source, 2 is a lead wire connection terminal, 3 is a molten metal bath surface, 4 is a long side plate of a mold, and 5 is a current path.

【0008】そこで、この問題を解決しようとするもの
として、特開平6−142854号公報(電磁力を用いる鋼の
連続鋳造方法および連続鋳造用金型)には、磁場を印加
したい箇所近傍に相当する鋳型部位の材質を他の部位の
材質と比較して、電気伝導度の高い材質とすることによ
り、磁場の印加効率を向上させる手段が提案開示されて
いる。
In order to solve this problem, Japanese Unexamined Patent Publication No. 6-142854 (a method for continuously casting steel using electromagnetic force and a die for continuous casting) corresponds to the vicinity of a portion to which a magnetic field is applied. There has been proposed and disclosed a means for improving the efficiency of applying a magnetic field by using a material having a high electric conductivity as the material of the template portion to be used in comparison with the material of other portions.

【0009】しかし、この手段では、電気伝導度の異な
る材質を用いて鋳型に流れる電流密度分布を調整し磁場
の印加効率の向上をはかっているが、鋳型材質として使
用できる物質は、実際には高い熱伝導度を有するものに
限られており、一般に熱伝導度の高い物質は電気伝導度
も高いという傾向があるため、鋳型材質として用いられ
る2種類の材質の電気伝導度の比は1:2〜3程度にし
かできなかった。しかも、交流電流の周波数が高い場合
には、電流の流れる領域が表皮効果による表皮深さに比
例して減少するが、表皮深さは電気伝導度が高いほど浅
くなるため、その分高電気伝導度を有する部位へ電流を
集中させる効果が阻害され期待するほどのことはなかっ
た。したがって、電気伝導度を高くするのみでは目標と
する鋳型内溶湯浴面付近への交番磁場の印加効率の向上
効果は不十分であった。
However, in this means, materials having different electric conductivities are used to adjust the distribution of current density flowing in the mold to improve the magnetic field application efficiency. It is limited to those having a high thermal conductivity, and in general, a substance having a high thermal conductivity tends to have a high electrical conductivity. Therefore, the ratio of the electrical conductivity of the two types of materials used as the mold material is 1: It was possible to do only a few. Moreover, when the frequency of the alternating current is high, the region where the current flows decreases in proportion to the skin depth due to the skin effect, but since the skin depth becomes shallower as the electrical conductivity becomes higher, the higher electric conductivity The effect of concentrating the electric current on the part having a certain degree was hindered, which was not expected. Therefore, the effect of improving the application efficiency of the alternating magnetic field near the target molten metal bath surface in the mold was insufficient only by increasing the electrical conductivity.

【0010】[0010]

【発明が解決しようとする課題】この発明は、前記した
問題点を有利に改善しようとするものであり、電流の集
中効果を格段に向上させる、すなわち鋳型内溶湯浴面近
傍への交番磁場の印加効率を著しく向上し、かつ、耐久
性にも優れる連続鋳造用鋳型とその鋳型を用いる連続鋳
造法を提案することを目的とする。
SUMMARY OF THE INVENTION The present invention intends to advantageously improve the above-mentioned problems and to remarkably improve the current concentration effect, that is, to prevent the alternating magnetic field near the molten metal bath surface in the mold. It is an object of the present invention to propose a continuous casting mold which is remarkably improved in application efficiency and is excellent in durability, and a continuous casting method using the mold.

【0011】[0011]

【課題を解決するための手段】この発明の要旨は以下の
通りである。 鋳型に直接交流電流を流し、その鋳型内容湯に交番
磁場を印加する連続鋳造用鋳型であって、該鋳型の交流
電流を流したい部位に通電路を形成させ、その通電路の
材質が、交流電流を流したくない部位の少なくとも鋳型
表層部の材質に比し低透磁率である連続鋳造用鋳型(第
1発明)。
The summary of the present invention is as follows. A continuous casting mold in which an alternating current is directly applied to the mold, and an alternating magnetic field is applied to the hot water of the mold, and an energization path is formed in a portion of the mold where an alternating current is to be applied, and the material of the energization path is an alternating current. A continuous casting mold (first invention) having a magnetic permeability lower than that of the material of at least the surface layer of the mold in a portion where current should not flow.

【0012】 通電路の材質が弱磁性体であり、交流
電流を流したくない部位の少なくとも鋳型表層部の材質
が強磁性体である第1発明に記載の連続鋳造用鋳型(第
2発明)。
The continuous casting mold (second invention) according to the first invention, wherein the material of the energization path is a weak magnetic material, and at least the surface layer of the mold in a portion where an alternating current is not desired to flow is a ferromagnetic material.

【0013】 通電路を、鋳型内溶湯浴面近傍に設け
てなる第1または第2発明に記載の連続鋳造用鋳型(第
3発明)。
The continuous casting mold (third invention) according to the first or second invention, wherein an electric current path is provided near the surface of the molten metal in the mold.

【0014】 通電路の上下幅が、少なくとも溶湯浴
面からその下方50mmまでを満たしてなる第1,第2また
は第3発明に記載の連続鋳造用鋳型(第4発明)。
The continuous casting mold (fourth invention) according to the first, second or third invention, wherein the vertical width of the current path is at least 50 mm below the surface of the molten metal.

【0015】 通電路が、低透磁率材質のめっき層か
らなる第1、第2、第3または第4発明に記載の連続鋳
造用鋳型(第5発明)。
The continuous casting mold (fifth invention) according to the first, second, third or fourth invention, wherein the energization path comprises a plated layer of a low magnetic permeability material.

【0016】 交流電流を流したくない部位の鋳型表
層部が、高透磁率材質のめっき層からなる第1、第2、
第3、第4または第5発明に記載の連続鋳造用鋳型(第
6発明)。
The first, second, and third parts of the surface layer of the mold where the alternating current does not flow include a plating layer of a high magnetic permeability material.
The continuous casting mold according to the third, fourth or fifth invention (sixth invention).

【0017】 交流電流を流したくない部位の鋳型内
壁面の高透磁率材質のめっき層が、めっき表層部を耐久
性に優れる材質とし、その内層を透磁率が十分に高い強
磁性体材質とする複合めっき層あるいは傾斜めっき層か
らなる第1、第2、第3、第4、第5または第6発明に
記載の連続鋳造用鋳型(第7発明)。
The plating layer of a high magnetic permeability material on the inner wall surface of the mold where the alternating current does not flow is made of a material having excellent durability at the plating surface layer, and the inner layer is made of a ferromagnetic material having a sufficiently high magnetic permeability. A continuous casting mold (seventh invention) according to the first, second, third, fourth, fifth or sixth invention, which comprises a composite plating layer or an inclined plating layer.

【0018】 第1,第2,第3,第4,第5,第6
または第7発明に記載の連続鋳造用鋳型であって、矩形
断面内輪郭の鋳造空間を形成する長辺板と短辺板とから
なる組立鋳型の長辺板に、交流電源端子を設けて鋳型内
溶湯浴面近傍の長辺板内面に通電路を形成させるととも
に、この通電路に接する短辺板の端部を絶縁材料でコー
ティングしてなる連続鋳造用鋳型(第8発明)。
First, second, third, fourth, fifth and sixth
Alternatively, the mold for continuous casting according to the seventh invention, wherein an AC power supply terminal is provided on a long side plate of an assembled mold including a long side plate and a short side plate forming a casting space having a rectangular cross-section inner contour. A continuous casting mold (8th invention), in which an electric current path is formed on the inner surface of the long side plate near the inner molten metal bath surface, and the end of the short side plate in contact with the electric current path is coated with an insulating material.

【0019】 第1,第2,第3,第4,第5,第
6,第7または第8発明に記載の連続鋳造用鋳型を用
い、該鋳型に交流電流を流しての連続鋳造に、モールド
パウダーを使用する連続鋳造法(第9発明)。
For continuous casting by using an alternating current through the casting mold according to the first, second, third, fourth, fifth, sixth, seventh or eighth invention, Continuous casting method using mold powder (ninth invention).

【0020】ここで、第2発明における弱磁性体とは、
強磁性体以外の反磁性体、常磁性体および反強磁性体の
ことをいい、Cu, Crなどがある。また、第7発明におい
て耐久性に優れる材質とは、特に耐熱性、耐摩耗性およ
び耐スプラッシュ性(溶湯が溶着しにくい性質)に優れ
るものをいう。
Here, the weak magnetic material in the second invention is
It refers to diamagnetic materials other than ferromagnetic materials, paramagnetic materials and antiferromagnetic materials, such as Cu and Cr. Further, in the seventh invention, a material having excellent durability means a material having particularly excellent heat resistance, abrasion resistance and splash resistance (a property in which molten metal does not easily adhere).

【0021】[0021]

【発明の実施の形態】この発明の作用について以下に述
べる。この発明は、連続鋳造用鋳型の部位により透磁率
を変え、相対的に交流電流を流したい部位を低透磁率に
して通電路を形成させ、交流電流を流したくない部位を
高透磁率とすることを骨子とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION The operation of the present invention will be described below. This invention changes the magnetic permeability depending on the part of the casting mold for continuous casting, relatively lowers the part to which an alternating current is to be made to have a low magnetic permeability, and forms a current path, and makes the part to which an alternating current is not to be made to have a high magnetic permeability. It is the main idea.

【0022】この発明によれば、鋳型の電流を流したく
ない部位を高透磁率を有する材質で形成しているため、
この部位では、交流電流に働く表皮効果が大きくなり、
実質的な電気伝導度が著しく低下し交流電流が流れにく
くなる。逆に低透磁率の材質で形成している通電路の交
流電流に働く表皮効果は小さく実質的な電気伝導度の低
下も小さい。したがって、交流電流を流したい低透磁率
の通電路に優先的に電流が流れるようになる。かくする
ことにより、鋳型内の任意の箇所に効率よく交番磁界を
発生させることが容易になる。
According to the present invention, the portion of the mold where the current does not flow is formed of a material having a high magnetic permeability.
At this site, the skin effect acting on the alternating current becomes large,
Substantially reduced electrical conductivity makes it difficult for an alternating current to flow. On the contrary, the skin effect acting on the alternating current in the current-carrying path made of a material with low magnetic permeability is small, and the substantial decrease in electrical conductivity is also small. Therefore, the current will preferentially flow in the current-carrying path of low magnetic permeability in which the alternating current is desired to flow. By doing so, it becomes easy to efficiently generate an alternating magnetic field at an arbitrary position in the mold.

【0023】さらに詳細に以下に述べる。鋳型材質の電
気伝導度をσ、透磁率をμ、交流電流の角振動数をωと
すると、表皮深さδは
Further details will be described below. If the electric conductivity of the mold material is σ, the permeability is μ, and the angular frequency of the alternating current is ω, the skin depth δ is

【数1】 で表わされる。よって、表皮効果により鋳型表面に流れ
る電流:Iは、電気伝導度:σと表皮深さ:δとの積に
ほぼ比例すると考えられ下記式で表わされる。
[Equation 1] It is represented by. Therefore, it is considered that the current: I flowing on the mold surface due to the skin effect is almost proportional to the product of the electric conductivity: σ and the skin depth: δ, and is represented by the following formula.

【数2】 [Equation 2]

【0024】したがって、鋳型すなわち鋳型表面に流れ
る電流:Iは、鋳型の肉厚が表皮深さ:δに比し十分厚
い場合(鋳型の形状は考慮に入れない)、透磁率:μの
1/2乗に反比例し、電気伝導度:σの1/2 乗に比例する
ことになる。
Therefore, when the wall thickness of the mold is sufficiently thicker than the skin depth: δ (the shape of the mold is not taken into consideration), the current: I flowing through the mold, that is, the surface of the mold has a magnetic permeability of μ.
It is inversely proportional to 1/2 power, and is proportional to the electrical conductivity: 1/2 power of σ.

【0025】このことは、前記したように鋳型材質とし
て用いることのできる2種類の電気伝導度の比が1:2
〜3程度に対して、例えばNiやFe合金等の強磁性体は、
常磁性体に比較してその透磁率は、大きなものでは数千
倍以上となるため、実質的な電気抵抗が格段に大きくで
きる。そこで、このような強磁性体の材料を鋳型の交流
電流を流したくない部位に用い、交流電流を流したい部
位すなわち通電路に常磁性体を用いれば、通電路の常磁
性体に集中して電流を流すことができ、鋳型内の任意の
箇所すなわち連続鋳造時の溶湯浴面近傍に効率よく交番
磁場を発生させることができる。
This means that the ratio of the two types of electric conductivity which can be used as the mold material is 1: 2 as described above.
For about 3 to about 3, ferromagnetic materials such as Ni and Fe alloys,
Since the magnetic permeability thereof is several thousand times or more as large as that of the paramagnetic substance, the substantial electric resistance can be remarkably increased. Therefore, if such a ferromagnetic material is used in a portion of the mold where an alternating current is not desired to flow, and if a paramagnetic material is used in the portion where an alternating current is desired to flow, that is, the current path, the material is concentrated in the paramagnetic material of the current path. An electric current can be passed, and an alternating magnetic field can be efficiently generated at an arbitrary position in the mold, that is, near the molten metal bath surface during continuous casting.

【0026】このように、この発明においては相対的な
比較として交流電流を流したい部位の鋳型材質を低透磁
率にして通電路を形成させ、交流電流を流したくない部
位の鋳型材質を高透磁率とするものであるが、上記した
ように交流電流は表皮効果により鋳型表面近傍に集中し
て流れるため、鋳型表面に低透磁率材料および/または
高透磁率材料をめっきすることでもその効果を発揮させ
ることができる。
As described above, in the present invention, as a relative comparison, the material of the mold of the portion to which the alternating current is to be applied is made to have a low magnetic permeability so as to form a conduction path, and the material of the mold of the portion to which the alternating current is not applied is made to have a high permeability. Although it is magnetic susceptibility, as described above, the alternating current flows concentratedly near the surface of the mold due to the skin effect.Therefore, plating the surface of the mold with a low-permeability material and / or a high-permeability material also produces the same effect. Can be demonstrated.

【0027】すなわち、交流電流を流したい部位に鋳型
本体より低透磁率の材料をめっきする、または、交流電
流を流したくない部位に鋳型本体より高透磁率の材料を
めっきする、もしくは低透磁率および高透磁率の材料を
それぞれの部位にめっきすることなどでよい。
That is, a material having a lower magnetic permeability than that of the mold body is plated on a portion where an alternating current is desired to flow, or a material having a higher magnetic permeability than that of the mold body is plated on a portion where no alternating current is desired to flow, or a lower magnetic permeability. Alternatively, a material having a high magnetic permeability may be plated on each part.

【0028】上記において、鋳型母材に比透磁率がほぼ
1である銅または銅合金を用い、高透磁率材質に例えば
強磁性体であるNi, CoあるいはFeやそれらの合金等を用
いると、これらの材質が高い透磁率と鋳型材質として好
適な高い熱伝導率をかねそなえているため、交流電流の
集中効果が格段に高くかつ冷却能にも優れる鋳型とする
ことができる。
In the above, if copper or copper alloy having a relative magnetic permeability of about 1 is used as the mold base material and Ni, Co or Fe which is a ferromagnetic material or an alloy thereof is used as the high magnetic permeability material, Since these materials have a high magnetic permeability and a high thermal conductivity suitable as a mold material, a mold having a significantly high AC current concentration effect and an excellent cooling capacity can be obtained.

【0029】また、すでに溶融金属の連続鋳造用銅製鋳
型のめっき材質として用いられているNi, Coあるいはそ
れらの合金を交流電流を流したくない部位に薄くめっき
することは、それだけでめっきを施さない部位(通電
路)に交流電流を集中させることになり、特に交流電流
の周波数が高くなるとより交流電流の表層への集中効果
が大きくなるため極めて有効な手段となる。
Also, Ni, Co or their alloys, which have already been used as the plating material for copper molds for continuous casting of molten metal, can be thinly plated on a portion where an alternating current is not desired to flow, by itself. This is an extremely effective means because the alternating current is concentrated on a portion (current-carrying path), and especially when the frequency of the alternating current becomes higher, the effect of concentrating the alternating current on the surface layer becomes greater.

【0030】この発明において、通電路に交流電流を効
果的に集中させるためには、通電路の材質が、交流電流
を流したくない部位の材質に比し、印加する交流電流の
周波数での比透磁率が1/10以下、より好ましくは1/100
以下とすることが望ましく、これらの材質の組合せとし
ては例えば、交流電流の通電路に銅あるいは銅合金を用
い、流したくない部位には、36パーマロイ (36Ni-0.3Mn
-Fe), 45パーマロイ (45Ni-0.3Mn-Fe), 78パーマロイ
(78.5Ni-0.3Mn-Fo), 3.8-78.5Crパーマロイ (78.5Ni-3.
8Cr-Fe), 4-79Moパーマロイ (79Ni-4Mo-5Cu-Fe), ミュ
ーメタル (77Ni-2Cr-5Cu-Fe), 1040合金 (18Ni-3Mo-14C
u-Fe), スーパーマロイ (79Ni-5Mo-0.3Mn-Fe)等に代表
されるパーマロイや、バーミンバー (45Ni-30Fe-25Cr
等) などで代表されるNi, Fe等を主成分とした鉄損の小
さい高透磁率合金やセンダスト (5%Al- 10%Si-Fe
等) 、鉄損の低いけい素鋼、純鉄などの強磁性体合金を
用いることがより実用的である。
In the present invention, in order to effectively concentrate the alternating current in the energizing path, the material of the energizing path is compared with the material of the portion where the alternating current is not desired to flow, and the ratio of the applied alternating current at the frequency is higher. Magnetic permeability is 1/10 or less, more preferably 1/100
It is desirable to use the following, and as a combination of these materials, for example, copper or copper alloy is used in the alternating current conducting path, and 36 permalloy (36Ni-0.3Mn
-Fe), 45 permalloy (45Ni-0.3Mn-Fe), 78 permalloy
(78.5Ni-0.3Mn-Fo), 3.8-78.5Cr Permalloy (78.5Ni-3.
8Cr-Fe), 4-79Mo Permalloy (79Ni-4Mo-5Cu-Fe), Mumetal (77Ni-2Cr-5Cu-Fe), 1040 Alloy (18Ni-3Mo-14C)
u-Fe), supermalloy (79Ni-5Mo-0.3Mn-Fe), and other permalloys, and birming bar (45Ni-30Fe-25Cr)
Etc.) such as Ni, Fe, etc. as the main components with a low iron loss and high permeability alloys or sendust (5% Al-10% Si-Fe).
Etc.), it is more practical to use a ferromagnetic alloy such as silicon steel with low iron loss or pure iron.

【0031】このように、連続鋳造用鋳型に低透磁率材
質の通電路を形成させることは、連続鋳造において、交
番磁場を溶湯浴面近傍に効率よく印加し、その電磁力に
より溶湯浴面を上方に凸形状に湾曲させること、初期凝
固部分を加熱すること等により連続鋳造鋳片の表面品質
の向上をはかるものである。なお、その際の通電路の上
下方向の幅は、少なくとも溶湯浴面からその下方50mmの
範囲を満たすものであることが好ましい。しかし、その
幅が300mm を超えると溶湯の冷却凝固を阻害するので好
ましくない。
In this way, by forming a current path of a low magnetic permeability material in the continuous casting mold, in continuous casting, an alternating magnetic field is efficiently applied in the vicinity of the molten bath surface, and the electromagnetic force causes the molten bath surface to be applied. It is intended to improve the surface quality of the continuously cast slab by curving upwardly convex shape, heating the initially solidified portion, and the like. In this case, it is preferable that the width of the energizing path in the vertical direction is at least 50 mm below the molten metal bath surface. However, if the width exceeds 300 mm, the cooling and solidification of the molten metal is hindered, which is not preferable.

【0032】さらに、交流電流を流したくない部位に高
透磁率材質のめっき層を有する連続鋳造鋳型の場合、特
に鋳型内面のめっき層表面は、薄いモールドパウダーの
融体を介して溶湯と接したり、硬い凝固殻と接触した
り、溶湯のスプラッシュがかかったりするため、耐熱
性、耐摩耗性、耐スプラッシュ性など耐久性に優れるこ
とが重要である。
Further, in the case of a continuous casting mold having a plating layer of a high magnetic permeability material in a portion where an alternating current is not desired to flow, the surface of the plating layer on the inner surface of the mold is brought into contact with the molten metal through a thin mold powder melt. However, it is important to have excellent durability such as heat resistance, abrasion resistance, and splash resistance, because it will come into contact with hard solidified shells and splash the molten metal.

【0033】そのため、耐久性を重視しためっき材質と
すると、そのめっき材質には透磁率が十分に高いものが
ないこと、しかも鋳造中の熱膨張による割れを防止する
観点からめっき厚みには限界があって、表皮深さδに対
してめっき厚を十分にとることができなくなり、結果と
して鋳型母材にまで交流電流が流れてしまうことなどあ
って、交番磁場の印加効率が期待するほど向上できない
場合が生じる。
Therefore, if a plating material with a focus on durability is used, no plating material has a sufficiently high magnetic permeability, and there is a limit to the plating thickness from the viewpoint of preventing cracking due to thermal expansion during casting. As a result, the plating thickness cannot be set sufficiently with respect to the skin depth δ, and as a result AC current will flow even to the mold base material, and the application efficiency of the alternating magnetic field cannot be improved as expected. There are cases.

【0034】そこで、この発明(第7発明)では、交流
電流を流したくない部位の鋳型内壁面の高透磁率材質の
めっき層を、めっき表層部を耐久性に優れる材質とし、
その内層(鋳型母材側)を透磁率が十分に高い材質とす
る複合めっき層あるいは傾斜めっき層とするものであ
り、かくすることにより、耐久性に優れるとともに交番
磁場の印加効率をより向上できる鋳型が得られることに
なる。
Therefore, in the present invention (seventh invention), the plating layer of high magnetic permeability material on the inner wall surface of the mold at the portion where the alternating current is not allowed to flow is made of a material having excellent durability,
The inner layer (mold base material side) is a composite plating layer or a gradient plating layer made of a material having a sufficiently high magnetic permeability. By doing so, it is possible to improve durability and improve the efficiency of applying an alternating magnetic field. A mold will be obtained.

【0035】ここで、上記の耐久性に優れるめっき表層
部の材質には、例えば鋳型のめっき材質として実績のあ
る95Co-Ni 合金や、4〜6% Fe-Ni合金あるいはCrなど
を用いることがよく、透磁率が十分に高く、かつ抵鉄損
であるめっき内層部の材質には、例えば、前記したよう
なパーマロイやバーミンバーなどで代表されるNi, Fe等
を主成分とした合金、センダスト、けい素鋼および純鉄
などを用いることがよい。
Here, as the material of the plating surface layer portion having excellent durability, for example, 95Co-Ni alloy, 4-6% Fe-Ni alloy, or Cr, which has a proven track record as a plating material for molds, may be used. Well, the magnetic permeability is sufficiently high, and the material of the plating inner layer portion which is a ferritic loss is, for example, an alloy mainly composed of Ni, Fe or the like represented by permalloy or birming bar as described above, sendust, It is preferable to use silicon steel and pure iron.

【0036】一般に、連続鋳造ではスラブが多く鋳造さ
れているが、スラブの実用的な連続鋳造用鋳型として
は、矩形断面内輪郭の鋳造空間を形成する長辺板と短辺
板とからなる組立鋳型を用いることがよく、長辺板に交
流電源端子を設けて鋳型内溶湯浴面近傍の長辺板内面に
通電路を形成させ、この通電路に接する短辺板の端部を
電気的に絶縁することが適している。
Generally, a large number of slabs are cast in continuous casting, but a practical continuous casting mold for slabs is an assembly consisting of long side plates and short side plates that form a casting space with a rectangular cross-section inner contour. A mold is often used.An AC power supply terminal is provided on the long side plate to form an energization path on the inner surface of the long side plate near the molten metal bath surface in the mold, and the end of the short side plate in contact with this energization path is electrically connected. It is suitable to insulate.

【0037】一方、このような連続鋳造用鋳型を用い通
電路に交流電流を流しての連続鋳造には、モールドパウ
ダーを使用することがよい。そして使用するモールドパ
ウダーは連続鋳造用鋳型と凝固シェル間の電気的絶縁を
良好にするという観点から導電率の低いものがよく、そ
の値は2.5 Ω-1/cm 以下が望ましい。なお、通常のモー
ルドパウダーの導電率は1.5 〜3.5 Ω-1/cm の範囲にあ
るが、導電率を低くするためにモールドパウダー中のCa
O を少なくしAl2O3 を多くすることが好ましい。
On the other hand, it is preferable to use mold powder for continuous casting using such a continuous casting mold in which an alternating current is passed through the energizing path. The mold powder used is preferably one having a low electrical conductivity from the viewpoint of improving the electrical insulation between the continuous casting mold and the solidified shell, and its value is preferably 2.5 Ω -1 / cm or less. Note that the conductivity of normal mold powder is in the range of 1.5 to 3.5 Ω -1 / cm, but Ca in the mold powder should be reduced to reduce the conductivity.
It is preferable to reduce O 2 and increase Al 2 O 3 .

【0038】[0038]

【実施例】スラブの連続鋳造において、鋳型に直接交流
電流を流しての鋳造は、通常鋳型の長辺板に電流を流し
て行われる。以下に述べる実施例も長辺板に電流を流す
場合のものである。
EXAMPLE In continuous casting of a slab, casting in which an alternating current is directly applied to the mold is usually performed by applying an electric current to the long side plate of the mold. The embodiments described below are also those in which a current is passed through the long side plate.

【0039】実施例1 この発明に適合する適合例1の連続鋳造用鋳型の長辺板
の説明図を図2(a) および(b) に示す。(a) は長辺板の
縦断面の説明図、(b) は長辺板の内面の説明図である。
Example 1 FIGS. 2 (a) and 2 (b) are explanatory views of a long side plate of a continuous casting mold according to a first conforming example of the present invention. (a) is an explanatory view of a longitudinal section of the long side plate, and (b) is an explanatory view of an inner surface of the long side plate.

【0040】これらの図において、1は交流電源、2は
導線接続端子、3は溶湯浴面および4は鋳型長辺板であ
り、7は鋳型内面の溶湯浴面近傍を除く長辺板表面(長
辺板背面を含む)にめっきした耐久性に優れる強磁性体
金属のめっき層および8は溶湯浴面付近に露出している
低透磁率材質の長辺板母材面を示す。
In these figures, 1 is an AC power source, 2 is a lead wire connection terminal, 3 is a molten metal bath surface and 4 is a mold long side plate, and 7 is the long side plate surface of the inner surface of the mold excluding the vicinity of the molten bath surface ( A plating layer of a ferromagnetic metal having excellent durability plated on the back surface of the long side plate (8) and a long side plate base material surface 8 of a low magnetic permeability material exposed near the surface of the molten metal.

【0041】この鋳型では、溶湯浴面近傍に効率よく交
番磁場を印加するため、溶湯浴面付近を除く長辺板4の
表面にはたとえば耐久性に優れるCo−Ni−Fe合金などの
強磁性体金属のめっき層7を設け、溶湯浴面近傍は、た
とえば銅などの低透磁率の長辺板母材面8を露出させ通
電路としている。
In this mold, in order to efficiently apply an alternating magnetic field near the surface of the molten metal, the surface of the long side plate 4 excluding the vicinity of the surface of the molten metal is made of a ferromagnetic material such as a Co-Ni-Fe alloy having excellent durability. A body metal plating layer 7 is provided, and a long-side plate base material surface 8 having a low magnetic permeability, such as copper, is exposed in the vicinity of the surface of the molten metal to provide a current path.

【0042】ここで、図3(a) および(b) に溶湯浴面付
近に高電気伝導度材質を配した従来例の連続鋳造用鋳型
の長辺板の説明図を示す。(a) は長辺板の縦断面の説明
図、(b) は長辺板内面の説明図である。
3 (a) and 3 (b) are explanatory views of the long side plate of the conventional continuous casting mold in which a high electric conductivity material is arranged near the surface of the molten metal. (a) is an explanatory view of a longitudinal section of the long side plate, and (b) is an explanatory view of the inner surface of the long side plate.

【0043】これらの図において、1は交流電源、2は
導線接続端子、3は溶湯浴面および4は長辺板であり、
鋳型内面の溶湯浴面近傍長辺板4の表面(通電路)には
高電気伝導度金属層9が配置され、その他の長辺板4の
表面は長辺板母材面8が露出した状態になっている。
In these figures, 1 is an AC power source, 2 is a lead wire connection terminal, 3 is a molten metal bath surface, and 4 is a long side plate,
A high electric conductivity metal layer 9 is arranged on the surface (current path) of the long side plate 4 near the molten metal bath surface on the inner surface of the mold, and the long side plate base material surface 8 is exposed on the other long side plate 4 surfaces. It has become.

【0044】上記した図2に示した長辺板を有するこの
発明に適合する適合例1の連続鋳造用鋳型と、図3に示
した長辺板を有する従来例の連続鋳造用鋳型とを用い、
空心状態で、電源電力:200kw ,電源周波数:1kHz の
通電を行って、鋳型長辺板内面から10mm位置での磁束密
度分布をそれぞれ測定した。
Using the continuous casting mold of the conforming example 1 having the long side plate shown in FIG. 2 and adapted to the present invention, and the conventional continuous casting mold having the long side plate shown in FIG. ,
In the air-core state, power was supplied at a power of 200 kw and a power frequency of 1 kHz, and the magnetic flux density distribution was measured at a position 10 mm from the inner surface of the long side plate of the mold.

【0045】なお、これらの適合例1および従来例の鋳
型とも寸法諸元は同じものを用い、適合例の図2におけ
る長辺板母材面8および従来例の図3における高電気伝
導度金属層9(共に通電路)の上下方向の幅は200mm と
し、溶湯浴面からその下方にわたって配置した。
It is to be noted that the same dimension specifications are used for the molds of the conforming example 1 and the conventional example, and the long side plate base material surface 8 in FIG. 2 of the conforming example and the high electric conductivity metal in FIG. The width of the layer 9 (both current paths) in the vertical direction was 200 mm, and the layer 9 was arranged from the surface of the molten metal to below the molten metal.

【0046】また、鋳型材質として適合例1は長辺板4
の材質:銅(比透磁率:1,電気伝導度:5×107 Ω-1
-1) 耐久性に優れる強磁性体金属めっき層7の材質:95%Co
−Ni合金(推定比透磁率:10, 電気伝導度:2×107 Ω
-1-1)とし、従来例は 長辺板4の材質:Cu−8%Cr−0.15%Zr合金(比透磁
率:1,電気伝導度:2.1 ×107 Ω-1-1) 高電気伝導度金属層9の材質:銅(比透磁率:1,電気
伝導度:5×107 Ω-1-1)とした。
Also, as a mold material, the first suitable example is the long side plate 4.
Material: Copper (Relative permeability: 1, Electrical conductivity: 5 × 10 7 Ω -1
m -1 ) Material of ferromagnetic metal plating layer 7 with excellent durability: 95% Co
-Ni alloy (estimated relative permeability: 10, electrical conductivity: 2 × 10 7 Ω
-1 m -1 ), and the conventional example is the material of the long side plate 4: Cu-8% Cr-0.15% Zr alloy (relative permeability: 1, electric conductivity: 2.1 × 10 7 Ω -1 m -1 ). The material of the high electric conductivity metal layer 9 was copper (relative magnetic permeability: 1, electric conductivity: 5 × 10 7 Ω −1 m −1 ).

【0047】磁束密度分布の測定結果を図4にまとめて
示す。図4は溶湯浴面相当位置からの距離と磁密度指数
との関係を示すグラフである。
The measurement results of the magnetic flux density distribution are shown collectively in FIG. FIG. 4 is a graph showing the relationship between the distance from the position corresponding to the molten metal bath surface and the magnetic density index.

【0048】ここで、図4は、同一の電源電力にて、こ
の発明の適合例1および従来例の鋳型内に磁場を発生さ
せた際の磁束密度分布を示したもので、磁束密度指数と
は、この発明での適合例1において測定された最大の磁
束密度を1とし、それに対する従来例の場合を含む他の
測定点での磁束密度の比を示したものである。
Here, FIG. 4 shows the magnetic flux density distribution when a magnetic field is generated in the mold of the adaptation example 1 of the present invention and the conventional example with the same power source power. Shows the ratio of the magnetic flux densities at other measuring points including the case of the conventional example to the maximum magnetic flux density measured in the first conformity example of the present invention.

【0049】図4から明らかなように、この発明の適合
例1の鋳型は交流電流を流したい部位(通電路)に効率
よく電流が集中するため、溶湯浴面相当部に強い磁場が
発生していることが分る。
As is clear from FIG. 4, in the mold of the adaptation example 1 of the present invention, the electric current is efficiently concentrated in the portion (current path) where the alternating current is desired to flow, so that a strong magnetic field is generated in the portion corresponding to the molten metal bath surface. I know that

【0050】なお、上記実施例において、この発明の適
合例1の鋳型には長辺板母材を純銅とし、交流電流を流
したくない部位の鋳型表面に高透磁率のCo−Ni合金をめ
っきしたが、長辺板母材を高透磁率材質とし、交流電流
を流したい部位すなわち通電路を低透磁率材質のめっき
層とすること、あるいは、交流電流を流したくない部位
に高透磁率材質のめっき層を設け、通電路を低透磁率材
質のめっき層とすること、さらには長辺板自体の材質を
それぞれの部位により高透磁率材料 および低透磁率材
料を用いた鋳型としても上記と同様の効果を得ることが
できる。
In the above-mentioned embodiment, the mold of the conforming example 1 of the present invention uses pure copper as the long-side plate base material, and a high-permeability Co-Ni alloy is plated on the surface of the mold where no alternating current flows. However, the long side plate base material is made of a material with high magnetic permeability, and the part where the alternating current is to be flown, that is, the energization path is a plated layer of the material with low magnetic permeability, or the material with high magnetic permeability is used for the part where the alternating current is not desired to flow. It is also possible to use the above-mentioned plating layer as the template, and to make the energization path a plating layer of a low magnetic permeability material, and the material of the long side plate itself as a mold using a high magnetic permeability material and a low magnetic permeability material. The same effect can be obtained.

【0051】実施例2 実施例1と同様の適合例1および従来例の鋳型を用い
て、C:0.005 %の極低炭素鋼を260mm ×1.000mm のス
ラブサイズにそれぞれ連続鋳造した。それらの鋳片の爪
深さの平均値を図5に表面欠陥発生指数を図6に示す。
図5は適合例1と従来例の鋳型を用いて鋳造したそれぞ
れの鋳片の爪深さの平均値を示すグラフであり、図6は
適合例1と従来例の鋳型を用いて鋳造したそれぞれの鋳
片の表面欠陥発生率指数を示すグラフである。ここで表
面欠陥発生率指数とは、鋳片を圧延した際に発生するキ
ズの単位面積当たりの個数を、従来例での値を1とし
て、算出したものである。これらの図から明らかなよう
に、適合例1の鋳型を用いた鋳片は従来例の鋳型を用い
た鋳片に比較して、爪深さ(オシレーションマーク深
さ)は減少し、また表面欠陥発生率も減少していること
がわかる。これは溶鋼メニスカス部への磁場の印加効率
が向上したことにより、より強い磁場を印加することが
可能になったことによるものである。
Example 2 Using the molds of the conforming example 1 and the conventional example similar to those of Example 1, ultra low carbon steel of C: 0.005% was continuously cast into a slab size of 260 mm x 1.000 mm. The average value of the claw depths of these cast pieces is shown in FIG. 5, and the surface defect generation index is shown in FIG.
FIG. 5 is a graph showing the average value of the claw depth of each of the cast pieces cast using the molds of the conforming example 1 and the conventional example, and FIG. 6 is cast using the casting molds of the conforming example 1 and the conventional example. 3 is a graph showing a surface defect occurrence rate index of the cast slab. Here, the surface defect occurrence rate index is the number of scratches per unit area generated when rolling a slab, calculated with the value in the conventional example being 1. As is clear from these figures, the slab using the mold of the fitting example 1 has a smaller claw depth (oscillation mark depth) than the slab using the mold of the conventional example, and the surface It can be seen that the defect occurrence rate is also decreasing. This is because the application efficiency of the magnetic field to the molten steel meniscus portion is improved, and thus it is possible to apply a stronger magnetic field.

【0052】実施例3 交流電流を流したくない部位の鋳型内壁面のめっき層
が、めっき表層部を耐久性に優れる強磁性体材質、その
内層を透磁率が十分に高い高透磁率材質とする複合めっ
きになるこの発明に適合する適合例2の連続鋳造用鋳型
の長辺板の説明図を図7(a)および(b)に示す。
(a)は長辺板の縦断面の説明図、(b)は長辺板内面
の説明図である。
Example 3 In the plating layer on the inner wall surface of the mold where the alternating current is not desired to flow, the plating surface layer portion is made of a ferromagnetic material having excellent durability, and the inner layer is made of a high magnetic permeability material having a sufficiently high magnetic permeability. FIGS. 7 (a) and 7 (b) are explanatory views of the long side plate of the continuous casting mold of the conforming example 2 adapted to the present invention, which is a composite plating.
(A) is an explanatory view of a longitudinal section of the long side plate, and (b) is an explanatory view of the inner surface of the long side plate.

【0053】これらの図において、1は交流電源、2は
導線接続端子、3は溶湯浴面および4は鋳型長辺板であ
り、6は鋳型内壁面の溶湯浴面近傍を除く長辺板表面
(長辺板背面を含む)にめっきした高透磁率金属めっき
層、7は鋳型内壁面のめっき層6の上に複合めっきした
耐久性に優れる強磁性体金属めっき層および10は溶湯
浴面近傍長辺板内壁面の通電路で低透磁率金属めっき層
を示す。
In these figures, 1 is an AC power source, 2 is a lead wire connection terminal, 3 is a molten metal bath surface, and 4 is a long side plate of the mold, and 6 is a long side plate surface of the inner wall surface of the mold excluding the vicinity of the molten bath surface. High-permeability metal plating layer (including the back surface of the long side plate), 7 is a composite metal plating layer on the plating layer 6 on the inner wall of the mold and has excellent durability, and 10 is a ferromagnetic metal plating layer, and 10 is near the molten metal bath surface. The low-permeability metal plating layer is shown in the current-carrying path on the inner wall surface of the long side plate.

【0054】この図7に示した適合例2の連続鋳造用鋳
型と前掲図2に示した適合例1の連続鋳造用鋳型とを用
い、実施例1と同様にして空心状態での磁束密度分布を
それぞれ測定した。なお、適合例2(図7)の長辺板や
その通電路10など寸法諸元は適合例1と同様とした。
A magnetic flux density distribution in an air-core state was obtained in the same manner as in Example 1 using the continuous casting mold of the conforming example 2 shown in FIG. 7 and the continuous casting mold of the conforming example 1 shown in FIG. Was measured respectively. The dimensions of the long side plate of the conforming example 2 (FIG. 7) and its current-carrying path 10 are the same as those of the conforming example 1.

【0055】また、適合例2の鋳型材質はそれぞれ長辺
板4の材質:Cu-1%Cr-0.2%Zr(比透磁率:1、電気伝
導度:2.8 ×107 Ω-1-1) 高透磁率金属めっき層6の材質:45%Ni-Fe 合金(推定
比透磁率:100 、電気伝導度:2.3 ×106 Ω-1-1、硬
度:110Hv) 耐久性に優れる強磁性金属めっき層7の材質:95%Co-N
i 合金(推定比透磁率:10、電気伝導度:7.5 ×105 Ω
-1-1、硬度:400Hv) 低透磁率金属めっき層10(通電路)の材質:Cu-1%Ag
(比透磁率:1、電気伝導度:3.1 ×107 Ω-1-1) と
し、めっき層6は高透磁率であることを優先させ、めっ
き層7は耐久性の観点から高硬度であることを優先させ
た。
Further, the mold material of the conformity example 2 is the material of the long side plate 4: Cu-1% Cr-0.2% Zr (relative magnetic permeability: 1, electric conductivity: 2.8 × 10 7 Ω -1 m -1). ) High permeability metal plating layer 6 material: 45% Ni-Fe alloy (estimated relative permeability: 100, electric conductivity: 2.3 × 10 6 Ω -1 m -1 , hardness: 110Hv) Ferromagnetism with excellent durability Material of metal plating layer 7: 95% Co-N
i alloy (estimated relative permeability: 10, electric conductivity: 7.5 × 10 5 Ω
-1 m -1 , hardness: 400Hv) Material of low magnetic permeability metal plating layer 10 (current path): Cu-1% Ag
(Relative magnetic permeability: 1, electric conductivity: 3.1 × 10 7 Ω -1 m -1 ), the plated layer 6 has a high magnetic permeability, and the plated layer 7 has a high hardness from the viewpoint of durability. I prioritized something.

【0056】磁束密度分布の測定結果を図8にまとめて
示す。図8に溶湯浴面相当位置からの距離と磁束密度指
数との関係を示すグラフである。
The measurement results of the magnetic flux density distribution are summarized in FIG. FIG. 8 is a graph showing the relationship between the distance from the position corresponding to the molten metal bath surface and the magnetic flux density index.

【0057】ここで、磁束密度指数とは、適合例2にお
いて測定された最大の磁束密度を1として、それに対す
る適合例1の場合を含む他の測定点での磁束密度の比を
示したものである。
Here, the magnetic flux density index indicates the ratio of the magnetic flux densities at the other measurement points including the case of the conforming example 1 with the maximum magnetic flux density measured in the conforming example 2 being 1. Is.

【0058】図8から明らかなように、適合例2の鋳型
は、交流電流を流したくない部位の長辺板表面に高透磁
率金属めっき層6を設け、かつ長辺板内壁面の高透磁率
めっき層6の表面は耐久性に優れる強磁性体金属めっき
層7で覆われているため、適合例1の場合に比し、交流
電流を流したい部位(通電路)により効率よく電流が集
中し、溶湯浴面相当部により強い磁場が発生しているこ
とが分かる。また、適合例1と適合例2との鋳型内壁面
のめっき層表面は共に耐久性に優れる95%Co-Ni 合金で
あるため、その耐久性は同等である。
As is apparent from FIG. 8, in the mold of the second conforming example, the high-permeability metal plating layer 6 is provided on the surface of the long side plate in the portion where the alternating current is not desired to flow and the high permeability of the inner wall surface of the long side plate is provided. Since the surface of the magnetic susceptibility plating layer 6 is covered with the ferromagnetic metal plating layer 7 having excellent durability, compared to the case of the conformity example 1, the current is efficiently concentrated at the portion (current path) where the alternating current is desired to flow. However, it can be seen that a strong magnetic field is generated in the portion corresponding to the molten metal bath surface. Further, since the surfaces of the plating layers on the inner wall surfaces of the molds of the conforming example 1 and the conforming example 2 are both 95% Co-Ni alloys, which have excellent durability, their durability is the same.

【0059】なお、適合例2の鋳型内壁面のめっき層表
層部7の材質は、その表層部のめっき層7が十分に薄い
あるいは、その内層のめっき層6の透磁率が十分に高い
場合には、上記で用いたCo-Ni 合金よりさらに低い透磁
率を有する材質としても何ら問題ない。
The material of the plating layer surface layer portion 7 on the inner wall surface of the mold of the conforming example 2 is such that the plating layer 7 of the surface layer portion is sufficiently thin or the magnetic permeability of the plating layer 6 of the inner layer is sufficiently high. Can be used as a material having a magnetic permeability lower than that of the Co—Ni alloy used above.

【0060】実施例4 実施例3と同様の適合例1と適合例2の鋳型を用いて、
実施例2と同様にC:0.005 %の極低炭素鋼を 260mm×
1000mmのサイズのスラブにそれぞれ連続鋳造した。それ
らの鋳片の爪深さの平均値を図9に表面欠陥発生指数を
図10に示す。
Example 4 Using the molds of adaptation example 1 and adaptation example 2 similar to that of example 3,
As in Example 2, C: 0.005% ultra low carbon steel 260 mm x
Continuously cast into slabs with a size of 1000 mm. The average value of the claw depths of these cast pieces is shown in FIG. 9, and the surface defect generation index is shown in FIG.

【0061】図9は適合例1と適合例2の鋳型を用いて
鋳造したそれぞれの鋳片の爪深さの平均値を示すグラフ
であり、図10は適合例1と適合例2の鋳型を用いて鋳造
したそれぞれの鋳片の表面欠陥発生指数を示すグラフで
ある。なお、表面欠陥発生指数は実施例2と同様に算出
したものである。
FIG. 9 is a graph showing an average value of the claw depths of the respective cast pieces cast by using the molds of the conforming example 1 and the conforming example 2, and FIG. 10 shows the molds of the conforming example 1 and the conforming example 2. It is a graph which shows the surface defect generation index of each cast piece cast using. The surface defect generation index is calculated in the same manner as in Example 2.

【0062】これらの図から明らかなように、適合例2
の鋳型を用いた鋳片は適合例1の鋳型を用いた鋳片に比
し、爪深さ(オシレーションマーク深さ)はより減少
し、表面欠陥発生率もより減少している。これは、溶湯
浴面近傍への磁場の印加効率が適合例1よりもさらに向
上し、より強い磁場が印加されたためである。
As is clear from these figures, the conformity example 2
The slab using the mold of No. 2 has a smaller claw depth (oscillation mark depth) and a smaller surface defect rate than the slab using the mold of Conformance Example 1. This is because the efficiency of applying the magnetic field to the vicinity of the molten metal bath surface was further improved as compared with the conformation example 1, and a stronger magnetic field was applied.

【0063】[0063]

【発明の効果】この発明は、金属溶湯に交番磁場を印加
しつつ連続鋳造を行うにあたり、交流電流を直接鋳型に
通電する連続鋳造用鋳型と連続鋳造法であって、該鋳型
において、交流電流を流したい部位に交流電流を流した
くない部位に比し低い透磁率材質の材料を用いるもので
あり、この発明によれば、鋳型の任意の部位に交流電流
を集中させることが容易となり、鋳型内溶湯の任意の箇
所に極めて効率よく交番磁場を印加させることができ、
連続鋳造鋳片の品質向上や電力量の削減に大きく寄与で
きる。
INDUSTRIAL APPLICABILITY The present invention is a continuous casting mold and a continuous casting method in which an alternating current is directly applied to a mold when an alternating magnetic field is applied to a molten metal, and the alternating current is applied to the mold. A material having a low magnetic permeability is used in a portion where the AC current is not to be passed to the portion where the AC current is to be passed. According to the present invention, it becomes easy to concentrate the AC current in an arbitrary portion of the mold, It is possible to apply an alternating magnetic field to any part of the inner molten metal very efficiently,
It can greatly contribute to the quality improvement of continuous cast slabs and the reduction of power consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋳型長辺板の左右方向に通電した場合の電流密
度分布を示す説明図である。
FIG. 1 is an explanatory diagram showing a current density distribution when electricity is applied to a long side plate of a mold in a left-right direction.

【図2】この発明に適合する適合例1の連続鋳造用鋳型
の長辺板の説明図である。(a)は、長辺板の縦断面の
説明図である。(b)は、長辺板の内面の説明図であ
る。
FIG. 2 is an explanatory view of a long side plate of a continuous casting mold according to a first conforming example of the present invention. (A) is explanatory drawing of the longitudinal cross section of a long side plate. (B) is an explanatory view of the inner surface of the long side plate.

【図3】従来例の連続鋳造用鋳型の長辺板の説明図であ
る。(a)は、長辺板の縦断面の説明図である。(b)
は、長辺板の内面の説明図である。
FIG. 3 is an explanatory view of a long side plate of a continuous casting mold of a conventional example. (A) is explanatory drawing of the longitudinal cross section of a long side plate. (B)
FIG. 6 is an explanatory diagram of an inner surface of a long side plate.

【図4】適合例1と従来例の鋳型を用いた場合の溶湯浴
面相当位置からの距離と磁束密度指数との関係を示すグ
ラフである。
FIG. 4 is a graph showing the relationship between the distance from the position corresponding to the molten metal bath surface and the magnetic flux density index in the case of using the molds of the conforming example 1 and the conventional example.

【図5】適合例1と従来例の鋳型を用いて鋳造したそれ
ぞれの鋳片の爪深さの平均値を示すグラフである。
FIG. 5 is a graph showing an average value of the claw depth of each of the cast pieces cast using the molds of the fitting example 1 and the conventional example.

【図6】適合例1と従来例の鋳型を用いて鋳造したそれ
ぞれの鋳片の表面欠陥発生率指数を示すグラフである。
FIG. 6 is a graph showing the surface defect occurrence rate index of each of the cast pieces cast using the molds of the fitting example 1 and the conventional example.

【図7】この発明に適合する適合例2の連続鋳造用鋳型
の長辺板の説明図である。(a)は、長辺板の縦断面の
説明図である。(b)は、長辺板の内面の説明図であ
る。
FIG. 7 is an explanatory view of a long side plate of a continuous casting mold according to a second conforming example of the present invention. (A) is explanatory drawing of the longitudinal cross section of a long side plate. (B) is an explanatory view of the inner surface of the long side plate.

【図8】適合例1と適合例2の鋳型を用いた場合の溶湯
浴面相当位置からの距離と磁束密度指数との関係を示す
グラフである。
FIG. 8 is a graph showing the relationship between the distance from the position corresponding to the molten metal bath surface and the magnetic flux density index in the case of using the molds of conforming example 1 and conforming example 2.

【図9】適合例1と適合例2の鋳型を用いて鋳造したそ
れぞれの鋳片の爪深さの平均値を示すグラフである。
FIG. 9 is a graph showing the average value of the claw depth of each of the cast pieces cast using the molds of the conforming example 1 and the conforming example 2.

【図10】適合例1と適合例2の鋳型を用いて鋳造した
それぞれの鋳片の表面欠陥発生指数を示すグラフであ
る。
FIG. 10 is a graph showing the surface defect occurrence index of each slab cast by using the molds of conforming example 1 and conforming example 2.

【符号の説明】[Explanation of symbols]

1 交流電源 2 導線接続端子 3 溶湯浴面 4 鋳型長辺板 5 電流経路 6 高透磁率金属めっき層 7 耐久性に優れる強磁性体金属めっき層 8 長辺板母材面 9 高電気伝導度金属層 10 低透磁率金属めっき層(通電路) 1 AC power supply 2 conductor connection terminal 3 Molten bath surface 4 Mold long side plate 5 Current path 6 High permeability metal plating layer 7 Ferromagnetic metal plating layer with excellent durability 8 Long side plate base material surface 9 High conductivity metal layer 10 Low magnetic permeability metal plating layer (current path)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 別所 永康 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所内 (56)参考文献 特開 平7−290197(JP,A) 特開 平6−142854(JP,A) 特開 平1−271033(JP,A) 特開 平7−284896(JP,A) 実開 昭64−38138(JP,U) (58)調査した分野(Int.Cl.7,DB名) B22D 11/04 311 B22D 11/059 110 B22D 11/108 B22D 27/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Bessho Nagayasu, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Works, Ltd. Technical Research Institute (56) Reference JP-A-7-290197 (JP, A) JP-A 6-142854 (JP, A) JP-A-1-271033 (JP, A) JP-A-7-284896 (JP, A) Actual development Sho 64-38138 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) B22D 11/04 311 B22D 11/059 110 B22D 11/108 B22D 27/02

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋳型に直接交流電流を流し、その鋳型内
容湯に交番磁場を印加する連続鋳造用鋳型であって、 該鋳型の交流電流を流したい部位に通電路を形成させ、
その通電路の材質が、交流電流を流したくない部位の少
なくとも鋳型表層部の材質に比し低透磁率である連続鋳
造用鋳型。
1. A continuous casting mold in which an alternating current is directly applied to the mold and an alternating magnetic field is applied to the hot water of the mold, wherein an electric current path is formed in a portion of the mold where the alternating current is desired to flow.
A continuous casting mold in which the material of the current path has a low magnetic permeability compared to at least the material of the surface layer of the mold in a portion where alternating current is not desired to flow.
【請求項2】 通電路の材質が弱磁性体であり、交流電
流を流したくない部位の少なくとも鋳型表層部の材質が
強磁性体である請求項1に記載の連続鋳造用鋳型。
2. The continuous casting mold according to claim 1, wherein the material of the energizing path is a weak magnetic material, and the material of at least the surface layer of the mold at a portion where an alternating current is not desired to flow is a ferromagnetic material.
【請求項3】 通電路を、鋳型内溶湯浴面近傍に設けて
なる請求項1または2に記載の連続鋳造用鋳型。
3. The continuous casting mold according to claim 1, wherein an electric current path is provided in the vicinity of the molten metal bath surface in the mold.
【請求項4】 通電路の上下幅が、少なくとも溶湯浴面
からその下方50mmまでを満たしてなる請求項1,2また
は3に記載の連続鋳造用鋳型。
4. The continuous casting mold according to claim 1, wherein the upper and lower widths of the energizing path are at least 50 mm below the molten metal bath surface.
【請求項5】 通電路が、低透磁率材質のめっき層から
なる請求項1,2,3または4に記載の連続鋳造用鋳
型。
5. The continuous casting mold according to claim 1, 2, 3 or 4, wherein the energization path comprises a plated layer of a low magnetic permeability material.
【請求項6】 交流電流を流したくない部位の鋳型表層
部が、高透磁率材質のめっき層からなる請求項1,2,
3,4または5に記載の連続鋳造用鋳型。
6. The surface layer of the mold, which is a portion where an alternating current is not desired to flow, is formed of a plated layer of a high magnetic permeability material.
The continuous casting mold according to 3, 4, or 5.
【請求項7】 交流電流を流したくない部位の鋳型内壁
面の高透磁率材質のめっき層が、めっき表層部を耐久性
に優れる材質とし、その内層を透磁率が十分に高い強磁
性体材質とする複合めっき層あるいは傾斜めっき層から
なる請求項1,2,3,4,5または6に記載の連続鋳
造用鋳型。
7. A ferromagnetic material having a high permeability of the plating layer on the inner wall surface of the mold at a portion where an alternating current is not desired to flow, the plating surface layer having excellent durability, and the inner layer having a sufficiently high permeability. The continuous casting mold according to claim 1, which comprises a composite plating layer or a gradient plating layer.
【請求項8】 請求項1,2,3,4,5,6または7
に記載の連続鋳造用鋳型であって、矩形断面内輪郭の鋳
造空間を形成する長辺板と短辺板とからなる組立鋳型の
長辺板に、交流電源端子を設けて鋳型内溶湯浴面近傍の
長辺板内面に通電路を形成させるとともに、この通電路
に接する短辺板の端部を絶縁材料でコーティングしてな
る連続鋳造用鋳型。
8. The method according to claim 1, 2, 3, 4, 5, 6 or 7.
In the continuous casting mold according to claim 1, the long side plate of the assembly mold consisting of the long side plate and the short side plate forming the casting space of the rectangular cross-section inner contour, the molten metal bath surface in the mold by providing an AC power supply terminal A continuous casting mold in which a current path is formed on the inner surface of a long side plate in the vicinity, and the end of the short side plate in contact with the current path is coated with an insulating material.
【請求項9】 請求項1,2,3,4,5,6,7また
は8に記載の連続鋳造用鋳型を用い、該鋳型に交流電流
を流しての連続鋳造に、モールドパウダーを使用するこ
とを特徴とする連続鋳造法。
9. A continuous casting mold according to claim 1, 2, 3, 4, 5, 6, 7 or 8, wherein a mold powder is used for continuous casting by passing an alternating current through the mold. A continuous casting method characterized in that
JP16731195A 1995-03-31 1995-07-03 Continuous casting mold and continuous casting method Expired - Fee Related JP3456309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16731195A JP3456309B2 (en) 1995-03-31 1995-07-03 Continuous casting mold and continuous casting method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-75195 1995-03-31
JP7519595 1995-03-31
JP16731195A JP3456309B2 (en) 1995-03-31 1995-07-03 Continuous casting mold and continuous casting method

Publications (2)

Publication Number Publication Date
JPH08323450A JPH08323450A (en) 1996-12-10
JP3456309B2 true JP3456309B2 (en) 2003-10-14

Family

ID=26416353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16731195A Expired - Fee Related JP3456309B2 (en) 1995-03-31 1995-07-03 Continuous casting mold and continuous casting method

Country Status (1)

Country Link
JP (1) JP3456309B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1295164B1 (en) * 1997-07-10 1999-04-30 Danieli Off Mecc ELECTROMAGNETIC STIRRING PROCEDURE FOR CRYSTALLIZER AND RELATED CRYSTALLIZER
JP2003019545A (en) * 2001-07-06 2003-01-21 Nippon Steel Corp Method for continuously casting molten metal

Also Published As

Publication number Publication date
JPH08323450A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
EP0691163B1 (en) Method of and apparatus for joining metal pieces
US6570141B2 (en) Transverse flux induction heating of conductive strip
US20070095499A1 (en) Method and apparatus for electromagnetic confinement of molten metal in horizontal casting systems
JP3456309B2 (en) Continuous casting mold and continuous casting method
CA1119898A (en) Method of producing areas of alloy metal on a metal part using electric currents
AU672145B2 (en) Apparatus and method for sidewall containment of molten metal with vertical magnetic fields
US4904497A (en) Electromagnetic solder tinning method
US6453983B1 (en) Device and method for casting metal strips, especially steel, in double roller continuous casting machines
JP2611559B2 (en) Metal continuous casting apparatus and casting method
US7156154B2 (en) Device for continuous or semi-continuous casting of metal material
JP2000176609A (en) Mold used in continuous casting
US4605054A (en) Casting apparatus including a conductor for electromagnetic induction heating
JPS5850186A (en) Impedor for medium frequency welding of seamless steel tube
JP2940942B2 (en) Electromagnetic casting of molten metal and its equipment.
CA2254195A1 (en) Electromagnetic meniscus control in continuous casting
JPH10340779A (en) Float melting device
JPH0411290B2 (en)
US5513692A (en) Electromagnetic confinement of molten metal with conduction current assistance
JP3056657B2 (en) Continuous casting method of molten metal
KR100191810B1 (en) Electromagnetic confinment of molten metal with conduction current assistance
JP3140631B2 (en) Molten metal holding device
JP3342771B2 (en) Continuous casting mold and continuous casting method
JP3145021B2 (en) Flow controller for molten metal
JPH08197212A (en) Method for continuously casting molten metal and mold for continuous casting
JPS63279591A (en) Inductor for metal pipe heating

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees