JP3455930B2 - Steel pipe exhaust manifold for multi-cylinder engine - Google Patents

Steel pipe exhaust manifold for multi-cylinder engine

Info

Publication number
JP3455930B2
JP3455930B2 JP19339194A JP19339194A JP3455930B2 JP 3455930 B2 JP3455930 B2 JP 3455930B2 JP 19339194 A JP19339194 A JP 19339194A JP 19339194 A JP19339194 A JP 19339194A JP 3455930 B2 JP3455930 B2 JP 3455930B2
Authority
JP
Japan
Prior art keywords
exhaust
pipe
cylinder engine
pipes
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19339194A
Other languages
Japanese (ja)
Other versions
JPH0861058A (en
Inventor
隆行 田中
佳邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP19339194A priority Critical patent/JP3455930B2/en
Publication of JPH0861058A publication Critical patent/JPH0861058A/en
Application granted granted Critical
Publication of JP3455930B2 publication Critical patent/JP3455930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Silencers (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明は、鋼管を使用した多気
筒エンジンの排気マニホールドの構造に関するものであ
る。
The present invention relates are those which relate to structure of an exhaust manifold of a multi-cylinder engine using steel pipes.

【0002】[0002]

【従来の技術】一般に各気筒毎の排気管を一体的に形成
した多気筒エンジンの排気マニホールドは、耐熱性の点
から鋳鉄で形成されているケースが多いが、鋳鉄性のも
のはかなり重くなり、エンジン自体の軽量化を損ねる。
また、内面の流体抵抗も大きい。
2. Description of the Related Art Generally, an exhaust manifold of a multi-cylinder engine in which an exhaust pipe for each cylinder is integrally formed is often made of cast iron from the viewpoint of heat resistance, but a cast iron type is considerably heavy. , Impairs the weight reduction of the engine itself.
Also, the fluid resistance on the inner surface is large.

【0003】このため、例えば実開平5−1819号公
報に示されるように、上記各気筒毎の排気管を鋼管で形
成、つまりステンレス鋼等の鋼製パイプ材を排気干渉を
招くことがないように曲げ加工して上記各排気管を含む
排気マニホールドを形成することにより、軽量化と流体
抵抗の低減を図るようにしたものが提案されている。こ
のように排気マニホールドの各排気管が鋼管製とされた
場合に、その排気下流側集合部の構造としては、一般に
各鋼管製排気管の排気下流側端部が一体に収束され、こ
の集束部がさらに一本の集合管に嵌合状態で接合される
ことになる。
Therefore, as disclosed in Japanese Utility Model Laid-Open No. 5-1819, for example, the exhaust pipe for each cylinder is formed of a steel pipe, that is, a steel pipe material such as stainless steel does not cause exhaust interference. It has been proposed that the exhaust manifold including the above exhaust pipes is formed by bending into a hollow shape to reduce the weight and the fluid resistance. In this way, when each exhaust pipe of the exhaust manifold is made of steel pipe, the structure of the exhaust downstream side collecting part is generally such that the exhaust downstream side end part of each steel pipe exhaust pipe is converged integrally and this collecting part Will be joined to one collecting pipe in a fitted state.

【0004】該従来の多気筒エンジンにおける鋼管製排
気マニホールドの構造の一例を図5〜図7に示す。
An example of the structure of a steel pipe exhaust manifold in the conventional multi-cylinder engine is shown in FIGS.

【0005】本例では、多気筒エンジンとして、例えば
直列4気筒エンジン(図示省略)が採用されており、それ
に対応して例えば図5に示すような構造の不干渉型の排
気マニホールド1が設けられている。
In this example, as a multi-cylinder engine, for example, an in-line 4-cylinder engine (not shown) is adopted, and correspondingly, a non-interference type exhaust manifold 1 having a structure as shown in FIG. 5 is provided. ing.

【0006】該排気マニホールド1は、上記直列4気筒
エンジンの第1〜第4の各気筒No1〜No4に対応した
第1〜第4の各排気管11〜14を有し、それら各排気
管11〜14の排気上流側端部11a〜14aにはエンジ
ン本体側の排気口部と接合するためのフランジ部2が一
体形成されている一方、他方、排気下流側端部11b〜
14bは図5、図6に示すように収束一体化されてい
る。該集束部3における上記各排気管11〜14の排気
下流側端部11b〜14bの各々は、それぞれ図6に示す
ように断面略扇形をなし、相交錯するX−Y軸方向のコ
ーナ部の2片同士が全体として略円形断面を形成するよ
うに嵌合され、かつ相互に溶接されて接合一体化されて
いる。そして、該一体化された円筒形の集束部3に対し
て下流側一本の集合管との接続用ブラケット4が嵌合さ
れるようになっている。
The exhaust manifold 1 has first to fourth exhaust pipes 11 to 14 corresponding to the first to fourth cylinders No1 to No4 of the in-line four-cylinder engine, and the exhaust pipes 11 to 14 are provided. Flange portions 2 for joining to the exhaust port portion on the engine body side are integrally formed on the exhaust upstream side end portions 11a to 14a, while the exhaust downstream side end portion 11b to
14b is converged and integrated as shown in FIGS. Each of the exhaust downstream side end portions 11b to 14b of the exhaust pipes 11 to 14 in the converging portion 3 has a substantially fan-shaped cross section as shown in FIG. 6, and the corner portions in the XY axial directions intersect with each other. The two pieces are fitted together so as to form a substantially circular cross section as a whole, and are welded to each other to be joined and integrated. Then, a bracket 4 for connecting with one downstream collecting pipe is fitted to the integrated cylindrical converging portion 3.

【0007】そして、上記収束された排気管各下流側端
部11b〜14bの溶接部は、例えば図7から明らかなよ
うに、上側左右に並列する共に管長の長い第1の排気管
11および第4の排気管14の各下部壁と下側左右に並
列する共に管長の短かい第2の排気管12および第3の
排気管13の各上壁部との接合ラインLXと左側上下に
並列する管長差の大きい第1の排気管11と第2の排気
管12の各縦壁部と右側に位置して上下に並列する管長
差の大きい第4の排気管14と第3の排気管13の各縦
壁部との接合ラインLYとに、各々当該接合ラインL
X,LYのLY側を先ず先に溶着した後、続いてLX側
を溶着することにより接合されており、その結果、形成
された各接合ラインのLX,LYの溶接ビードBX,BY
は、上記接合ラインLY側の溶接ビードBYの方が接合
ラインLX側の溶接ビードBXの排気上流側に位置して
集束部3中央O点部でクロスする構造となっている。
Then, the welded portions of the converged exhaust pipe downstream end portions 11b to 14b are arranged in parallel on the left and right sides of the first exhaust pipe 11 and the first exhaust pipe 11 having a long pipe length, as is apparent from FIG. 4 are arranged in parallel to the lower walls of the four exhaust pipes 14 and to the lower left and right, and are arranged vertically to the left and above the joining line LX with the upper wall portions of the second exhaust pipe 12 and the third exhaust pipe 13 having short pipe lengths. The first exhaust pipe 11 and the second exhaust pipe 12 having a large pipe length difference are vertically arranged in parallel with each other on the vertical wall portions of the fourth exhaust pipe 14 and the third exhaust pipe 13 having a large pipe length difference. Each of the joining lines L and the joining line LY with each vertical wall
The LY side of X and LY is welded first, and then the LX side is welded, and as a result, the weld beads BX and BY of LX and LY of the formed joining lines are joined.
Has a structure in which the welding bead BY on the joining line LY side is located on the exhaust upstream side of the welding bead BX on the joining line LX side and crosses at the center O point of the focusing portion 3.

【0008】[0008]

【発明が解決しようとする課題】ところが、図5のよう
な多気筒エンジンの鋼管製排気マニホールドの場合、上
述のように、その気筒位置との関係で上記集束部3まで
の各排気管11〜14の長さおよび曲成状態が異なり、
それに応じてエンジン運転時における各々の軸方向の熱
伸び量も相当に異なる。
However, in the case of a steel pipe exhaust manifold for a multi-cylinder engine as shown in FIG. 5, as described above, the exhaust pipes 11 to 11 up to the converging portion 3 are related to the cylinder position. 14 length and bending state are different,
Correspondingly, the amount of thermal expansion in each axial direction during engine operation also differs considerably.

【0009】その結果、上側左右に位置する共に管長の
長い第1および第4の排気管11,14の熱伸び量が下
側左右に位置する共に管長の短かい第2、第3の排気管
12,13の熱伸び量よりも相当に大きく、しかも第
1、第4の排気管11,14同士の溶接ビードBYは中
央O点部では溶接ビードBXによっても拘束されてい
る。従って、特に伸び変形側と拘束部との境界点である
1点部分の溶接ビードBYに応力歪みによるクラック
(図面の手前側の折れ)が発生する問題がある。その結
果、シール性が害される。
As a result, the first and fourth exhaust pipes 11 and 14 located on the upper left and right sides and having a long pipe length have the thermal expansion amounts located on the lower left and right sides, and the second and third exhaust pipes having a short pipe length. The weld bead BY of the first and fourth exhaust pipes 11 and 14 is also restrained by the weld bead BX at the central O point, which is considerably larger than the thermal elongation of 12 and 13. Therefore, cracks due to stress strain are generated especially in the weld bead BY at the point P 1 which is the boundary point between the extension deformation side and the restraint.
There is a problem that (folding on the front side of the drawing) occurs. As a result, the sealing property is impaired.

【0010】本願発明は、このような問題を解決するこ
とを目的とするものである。
The present invention aims to solve such a problem.

【0011】[0011]

【課題を解決するための手段】本願発明の多気筒エンジ
ンの鋼管製排気マニホールドは、上記の目的を達成する
ために、それぞれ次のような有効な課題解決手段を備え
て構成されている。
Steel pipe exhaust manifold of a multi-cylinder engine SUMMARY OF THE INVENTION The present invention, in order to achieve the above object, is constituted respectively provided with an effective means for solving the problems as follows.

【0012】すなわち、先ず本願発明の多気筒エンジン
の鋼管製排気マニホールドは、軸方向への熱伸び量が異
なる少なくとも3本の鋼管製排気管を排気下流側端部で
相互に集束させるとともに該集束部の各排気管の相互に
隣接する管壁部間を溶接することにより一体化してなる
多気筒エンジンの鋼管製排気マニホールドであって、上
記集束部中央において軸方向への熱伸び量の差が大きい
排気管同士の管壁部間の溶接ビードが軸方向への熱伸び
量の差が小さい排気管同士の管壁部間の溶接ビードより
も排気上流側に位置して重合されて形成されている。
That is, first, in the steel pipe-made exhaust manifold of the multi-cylinder engine of the present invention, at least three steel pipe-made exhaust pipes having different amounts of thermal expansion in the axial direction are made to converge with each other at the exhaust downstream side end portion. Is a steel pipe exhaust manifold of a multi-cylinder engine that is integrated by welding between mutually adjacent pipe wall portions of the exhaust pipe of the section, the difference in the amount of thermal expansion in the axial direction at the center of the focusing portion is The weld bead between the pipe walls of the large exhaust pipes is formed by being superposed on the exhaust upstream side of the weld bead between the pipe walls of the exhaust pipes with a small difference in the amount of thermal expansion in the axial direction. There is.

【0013】また、その場合、集束部中央の溶接ビード
重合部における排気下流側溶接ビードの溶接方向は、軸
方向への熱伸び量が大きい排気管同士の管壁部間側から
軸方向への熱伸び量が小さい排気管同士の管壁部間側方
向、又はその逆の方向に向けて溶接されて形成されてい
る。
Further, in that case, the welding direction of the exhaust bead on the downstream side of the exhaust gas at the weld bead overlapping portion at the center of the converging portion is from the side between the pipe wall portions of the exhaust pipes having a large thermal expansion in the axial direction to the axial direction. It is formed by welding in a direction between pipe wall portions of exhaust pipes having a small amount of thermal expansion, or in the opposite direction.

【0014】さらに、また、本願発明の多気筒エンジン
の鋼管製排気マニホールドは、第1および第4の排気管
の管長が第2、第3の排気管の管長よりも長い第1〜第
4の4本の排気管を排気下流側端部で相互に集束させる
とともに該集束部の各排気管の相互に隣接する管壁部間
を溶接することにより一体化してなる直列4気筒エンジ
ンの鋼管製排気マニホールドであって、上記集束部中央
において上記第1の排気管および第4の排気管と上記第
2の排気管および第3の排気管との管壁部間の溶接ビー
ドが上記第1の排気管および第2の排気管と上記第4の
排気管および第3の排気管との管壁部間の溶接ビードよ
りも排気上流側に位置して重合されて形成されている。
Further, in the steel pipe exhaust manifold of the multi-cylinder engine of the present invention, the first and fourth exhaust pipes have the pipe lengths longer than the pipe lengths of the second and third exhaust pipes. Steel pipe exhaust of in-line 4-cylinder engine in which four exhaust pipes are bundled together at the exhaust downstream side end and the exhaust pipes of the converging part are integrated by welding between mutually adjacent pipe wall portions In the manifold, the weld bead between the pipe walls of the first exhaust pipe and the fourth exhaust pipe and the second exhaust pipe and the third exhaust pipe at the center of the focusing portion has the first exhaust pipe. The pipe and the second exhaust pipe and the fourth exhaust pipe and the third exhaust pipe are formed by being superposed on the exhaust upstream side of the weld bead between the pipe wall portions.

【0015】[0015]

【0016】[0016]

【0017】[0017]

【作用】本願発明の多気筒エンジンの鋼管製排気マニホ
ールは、上記構成に対応して各々次のような作用を奏
する。
[Action] steel pipe exhaust Maniho <br/> Lumpur de multi-cylinder engine of the present invention exhibits an effect as each next in correspondence with the configuration.

【0018】すなわち、先ず本願発明の多気筒エンジン
の鋼管製排気マニホールドの構成では、上述のように、
軸方向への熱伸び量が異なる少なくとも3本の鋼管製排
気管を排気下流側端部で相互に集束させるとともに該集
束部の各排気管の相互に隣接する管壁部間を溶接するこ
とにより一体化してなる多気筒エンジンの鋼管製排気マ
ニホールドであって、上記集束部中央において軸方向へ
の熱伸び量の差が大きい排気管同士の管壁部間の溶接ビ
ードが軸方向への熱伸び量の差が小さい排気管同士の管
壁部間の溶接ビードよりも排気上流側に位置して重合状
態になるように形成されており、軸方向への熱伸び量の
差が小さい排気管同士の管壁部間の溶接ビードの拘束力
は小さくなり、上記熱伸び量の差による応力を同溶接ビ
ードの曲がりによって吸収することができるようにな
り、クラック抑止作用が実現される。
That is, first, in the structure of the steel pipe exhaust manifold of the multi-cylinder engine of the present invention, as described above,
By concentrating at least three steel pipe exhaust pipes having different amounts of thermal expansion in the axial direction at the exhaust downstream end, and by welding the mutually adjacent pipe wall portions of the exhaust pipes of the converging portion. In a steel pipe exhaust manifold of a multi-cylinder engine integrated, the welding bead between the pipe wall portions of the exhaust pipes having a large difference in the amount of thermal expansion in the axial direction at the center of the converging portion has a thermal expansion in the axial direction. Exhaust pipes that have a small difference in the amount of heat and are formed so as to be in a superposed state on the exhaust upstream side of the weld bead between the pipe walls of the exhaust pipes, and that have a small difference in the amount of thermal expansion in the axial direction. The restraining force of the weld bead between the pipe wall portions is reduced, and the stress due to the difference in the thermal elongation amount can be absorbed by the bending of the weld bead, and the crack suppressing action is realized.

【0019】また、該場合において、同集束部中央の溶
接ビード重合部における排気下流側溶接ビードの溶接方
向は、軸方向への熱伸び量が大きい排気管同士の管壁部
間側から軸方向への熱伸び量が小さい排気管同士の管壁
部間側方向、又はその逆の方向に向けて溶接されて形成
されていると、当該作用が、より有効に実現される。
Further, in this case, the welding direction of the exhaust downstream side welding bead in the weld bead overlapping portion in the center of the converging portion is such that the axial direction from the pipe wall portion side of the exhaust pipes is large in the axial direction. When the exhaust pipes having a small amount of thermal expansion toward the pipe wall portions are welded in the direction between the pipe wall portions or in the opposite direction, the action is more effectively realized.

【0020】さらに、また、本願発明の多気筒エンジン
の鋼管製排気マニホールドは、第1および第4の排気管
の管長が第2、第3の排気管の管長よりも長い第1〜第
4の4本の排気管を排気下流側端部で相互に集束させる
とともに該集束部の各排気管の相互に隣接する管壁部間
を溶接することにより一体化してなる直列4気筒エンジ
ンの鋼管製排気マニホールドであって、上記集束部中央
において上記第1の排気管および第4の排気管と上記第
2の排気管および第3の排気管との管壁部間の溶接ビー
ドが上記第1の排気管および第2の排気管と上記第4の
排気管および第3の排気管との管壁部間の溶接ビードよ
りも排気上流側に位置して重合されて形成されている
と、直列4気筒エンジンの鋼管製排気マニホールドの場
合において、上記と全く同様の作用を実現することがで
きる。
Further, in the steel pipe exhaust manifold of the multi-cylinder engine of the present invention, the first and fourth exhaust pipes have the pipe lengths longer than the pipe lengths of the second and third exhaust pipes. Steel pipe exhaust of in-line 4-cylinder engine in which four exhaust pipes are bundled together at the exhaust downstream side end and the exhaust pipes of the converging part are integrated by welding between mutually adjacent pipe wall portions In the manifold, the weld bead between the pipe walls of the first exhaust pipe and the fourth exhaust pipe and the second exhaust pipe and the third exhaust pipe at the center of the focusing portion has the first exhaust pipe. The in-line four-cylinder is formed by being overlapped and formed on the exhaust upstream side of the weld bead between the pipe wall portions of the pipe and the second exhaust pipe and the fourth exhaust pipe and the third exhaust pipe. In the case of an engine steel pipe exhaust manifold, Ku can achieve similar effects.

【0021】[0021]

【0022】[0022]

【0023】[0023]

【発明の効果】以上の結果、本願発明の多気筒エンジン
の鋼管製排気マニホールドによると、軸方向への熱伸び
量の差が大きな排気管間の応力を溶接ビードの曲げ変形
によって吸収させ得るようになり、従来のような歪み応
力によるクラックの発生が防止される。従って、シール
性を喪失することもない。その結果、耐久性が向上す
る。
[Effect of the Invention] As a result, according to the steel pipe exhaust manifold of the multi-cylinder engine of the present invention, to absorb the stress between the difference in thermal expansion amount in the axial direction is large exhaust pipe by bending deformation of the weld bead As a result, cracks due to strain stress as in the conventional case can be prevented. Therefore, the sealing property is not lost. As a result, durability is improved.

【0024】[0024]

【実施例】図1〜図3は、本願発明の実施例に係る多気
筒エンジンの鋼管製排気マニホールドの構造を示してい
る。
EXAMPLES 1 to 3 show the structure of steel pipe exhaust manifold of a multicylinder engine according to an embodiment of the present invention.

【0025】本実施例では、多気筒エンジンとして、例
えば従来例の場合と同様の直列4気筒エンジンが採用さ
れており、それに対応して例えば図5に示す従来と同様
の構造の排気マニホールド1が設けられている。
In this embodiment, as the multi-cylinder engine, for example, an in-line four-cylinder engine similar to that of the conventional example is adopted, and correspondingly, for example, the exhaust manifold 1 having the same structure as the conventional one shown in FIG. It is provided.

【0026】該排気マニホールド1は、上記直列4気筒
エンジンの第1〜第4の各気筒に対応した第1〜第4の
各排気管11〜14を有し、それら各排気管11〜14
の排気上流側端部(エンジン本体側端部)11a〜14aに
はエンジン本体側の排気口部と接合するためのフランジ
部2が一体的に形成されている一方、他方、排気下流側
端部11b〜14bは図6に示すように集束一体化されて
いる。該集束部3における上記排気管11〜14の排気
下流側端部11b〜14bの各々は、それぞれ断面略扇形
をなし、縦横2つのフラットな接合壁を有するコーナ面
同士を全体として略円形断面を形成するように相互に嵌
合させて一体化するようになっている。
The exhaust manifold 1 has first to fourth exhaust pipes 11 to 14 corresponding to the first to fourth cylinders of the in-line four-cylinder engine, and the exhaust pipes 11 to 14 are provided.
The exhaust upstream side ends (engine body side end portions) 11a to 14a are integrally formed with a flange portion 2 for joining to an engine body side exhaust port portion, while the other is exhaust downstream side end portions. 11b to 14b are converged and integrated as shown in FIG. Each of the exhaust downstream side end portions 11b to 14b of the exhaust pipes 11 to 14 in the converging portion 3 has a substantially fan-shaped cross section, and has a substantially circular cross section as a whole with corner surfaces having two flat joint walls in the vertical and horizontal directions. As they are formed, they are fitted together and integrated.

【0027】該嵌合は、上記直列4気筒エンジンの両端
側第1(No1)、第4(No4)気筒の管長が長く熱伸び量
が大きい第1、第4の排気管下流側端部11b,14bを
上部側左右に、又同直列4気筒エンジンの中間側第2
(No2)、第3(No3)気筒の管長が短く熱伸び量が小さ
い第2、第3の排気管下流側端部12b,13bを下部側
左右に、各々並設させた状態で実現されており、その結
果、該嵌合によって十字状に形成される第1〜第4の排
気管11〜14間の相互に直交するX−Y方向2本の溶
接接合ラインLX,LYは、X軸方向の第1の接合ライ
ンLXが熱伸び量の差が大きい第2の接合ライン、Y軸
方向の接合ラインLYが熱伸び量の差の小さい接合ライ
ンとなる。
The fitting is performed by the first (No1) and fourth (No4) cylinders on both ends of the in-line four-cylinder engine, which have long pipe lengths and large thermal expansion amounts. , 14b on the left and right on the upper side, and on the middle side of the same in-line 4-cylinder engine
(No2), the third (No3) cylinder has a short pipe length and a small amount of thermal expansion. The second and third exhaust pipe downstream end portions 12b, 13b are arranged side by side on the lower left and right sides, respectively. As a result, the two welding joint lines LX and LY in the XY directions which are orthogonal to each other between the first to fourth exhaust pipes 11 to 14 formed in a cross shape by the fitting are formed in the X-axis direction. The first joining line LX is a second joining line having a large difference in thermal expansion amount, and the joining line LY in the Y-axis direction is a joining line having a small difference in thermal expansion amount.

【0028】そして、上記集束された各排気管11〜1
4の下流側端部11b〜14bの上記X−Y方向2本の第
1、第2の接合ラインLX,LYは、図1に示すように
次のような関係で溶接される。
Then, the exhaust pipes 11 to 1 each of which is focused as described above.
The two first and second joining lines LX and LY in the XY direction of the downstream end portions 11b to 14b of No. 4 are welded in the following relationship as shown in FIG.

【0029】すなわち、先ず最初にX軸方向の第1の接
合ラインLXに沿って矢印(イ)方向(左側から右側にか
けて)の溶接を行う。この結果、図1中の符号BXで示
すような溶接ビードが形成され、それによって上下に位
置する熱伸び量の差の大きな第1の排気管11の下流側
端部11bと第2の排気管12の下流側端部12bおよび
第4の排気管14の下流側端部14bと第3の排気管1
3の下流側端部13bとの溶着接合が先に実現される。
That is, first, welding is performed along the first joining line LX in the X-axis direction in the arrow (a) direction (from the left side to the right side). As a result, a weld bead as indicated by reference numeral BX in FIG. 1 is formed, and as a result, the downstream side end portion 11b of the first exhaust pipe 11 and the second exhaust pipe 11 having a large difference in the amount of thermal expansion located between the upper and lower sides. 12 and the downstream end 14b of the fourth exhaust pipe 14 and the third exhaust pipe 1
The welding and joining with the downstream end portion 13b of 3 is realized first.

【0030】次に、その上でY軸方向の第2の接合ライ
ンLYに沿って矢印(ロ)方向(上側から下側にかけて)の
溶接を行う。この結果、図1〜図3中の符号BYで示す
ような上記第1の溶接ビードBXと集束部3の中央O点
で山状に交叉重合する第2の溶接ビードが形成され、そ
れによって左右に位置する熱伸び量の差の小さな第1の
排気管11の下流側端部11bと第4の排気管14の下
流側端部14bおよび第2の排気管12の下流側端部1
2bと第3の排気管13の下流側端部13bとの確実な溶
着接合が実現される。
Next, welding is carried out along the second joining line LY in the Y-axis direction in the arrow (B) direction (from the upper side to the lower side). As a result, the first weld bead BX shown in FIG. 1 to FIG. 3 and the second weld bead that is cross-polymerized in a mountain shape at the center O point of the focusing portion 3 are formed. Located at the lower end of the first exhaust pipe 11 having a small difference in thermal expansion amount, the downstream end 14b of the fourth exhaust pipe 14 and the downstream end 1 of the second exhaust pipe 12.
2b and the downstream end portion 13b of the third exhaust pipe 13 are reliably welded and joined together.

【0031】この結果、熱伸び量の差が大きく、熱伸び
時の歪応力によるクラックが発生しやすかった上記P1
点は第1、第2の2つの溶接ビードBX,BYの接合力
によって強固に固定されることになる一方、熱伸び応力
による歪みは、排気下流側に位置することになって拘束
力が低下した第2の溶接ビードBYの曲がり変形によっ
て吸収されてしまうので、P1点においても従来のよう
なクラックが発生しにくくなる。
[0031] As a result, the P 1 where difference in thermal extension amount is large, cracks due to strain stress at the time of thermal expansion is likely to occur
The point is firmly fixed by the joining force of the first and second weld beads BX and BY, while the strain due to the thermal elongation stress is located on the downstream side of the exhaust gas and the restraining force is reduced. Since it is absorbed by the bending deformation of the second weld bead BY, the conventional crack is unlikely to occur at the point P 1 .

【0032】なお、以上の実施例では、上記X軸方向第
1の接合ラインLXを左からの右の矢印(イ)方向に、ま
たY軸方向第2の接合ラインLYを上から下の矢印(ロ)
方向に各々溶接して行く溶接方法を採用したが、それら
2つの溶接方向は、それぞれ右から左(図示ハ方向)、下
から上(図示ニ方向)の上記とは逆の方向であっても良い
ことは言うまでもない。
In the above embodiment, the first joining line LX in the X-axis direction is in the right arrow (a) direction from the left, and the second joining line LY in the Y-axis direction is from the top to the bottom arrow. (B)
We adopted the welding method of welding in each direction, but the two welding directions are right to left (direction C in the figure) and from bottom to top (direction D in the figure) opposite to the above. Not to mention good things.

【0033】また、以上の実施例では、直列4気筒エン
ジンの排気マニホールドの場合を例として説明したが、
例えばV型6気筒エンジン等の左右各バンクの3本の排
気管11〜13を有する排気マニホールドの場合にも図
4に示すようにすれば、同様の作用効果を実現すること
ができる。
In the above embodiments, the case of the exhaust manifold of the in-line 4-cylinder engine has been described as an example.
For example, in the case of an exhaust manifold having three exhaust pipes 11 to 13 in each of the left and right banks, such as a V-type 6-cylinder engine, if the configuration shown in FIG.

【0034】すなわち、該場合においては、例えば第
1、第3、第5気筒又は第2、第4、第6気筒の内の第
1、第2,第5、第6気筒に対応する第1、第2,第5、
第6の排気管11、12,15、16の管長が長くて熱
伸び量が大きく、一方それらの間の第3、第4気筒に対
応する第3、第4の排気管13,14の管長が短くて熱
伸び量が小さい。そして、それら各排気管11,12、
13,14、15,16の各下流側端部11b,12b、1
3b,14b、15b,16bの集束部3の嵌合状態が図示の
ようになっているとすると(なお、図には左右両バンク
側の各排気管集束部を併せて示している)、上記実施例
の場合と同様に熱伸び量の差が大きい第1、第2、第
5、第6の排気管下流側端部11b,12b,15b,16b
と第3、第4の排気管下流側端部13b,14bとのへの
字状の接合ラインLAを先ず最初に矢印(ホ)方向(又は
その逆方向)に溶接して接合する。その結果、図示BA
のようなへの字状に連続する溶接ビードが形成される。
That is, in this case, for example, the first, third, fifth cylinder or the first, second, fifth, and sixth cylinders corresponding to the first, second, fifth, and sixth cylinders of the second, fourth, and sixth cylinders, for example. , Second, fifth,
The sixth exhaust pipes 11, 12, 15, 16 have a long pipe length and a large thermal expansion amount, while the third and fourth exhaust pipes 13, 14 corresponding to the third and fourth cylinders between them have the same pipe length. Is short and thermal expansion is small. And each of these exhaust pipes 11, 12,
13, 14, 15, 16 downstream end portions 11b, 12b, 1
If the fitting state of the focusing portions 3 of 3b, 14b, 15b and 16b is as shown in the drawing (the exhaust pipe focusing portions on both the left and right banks are also shown in the figure), Similar to the case of the embodiment, the first, second, fifth, and sixth exhaust pipe downstream-side end portions 11b, 12b, 15b, 16b having large differences in thermal expansion amount.
First, the V-shaped joining line LA between the third and fourth exhaust pipe downstream end portions 13b, 14b is welded in the arrow (e) direction (or the opposite direction) to join. As a result, illustrated BA
A continuous welding bead is formed in a V shape.

【0035】その後、続いて熱伸び量の差が小さい第
1、第2の排気管下流側端部11b,12bと第5、第6
の排気管下流側端部15b,16bとの直線状の接合ライ
ンLBを矢印(ヘ)方向(又はその逆方向)に溶接して接合
する。
After that, the first and second exhaust pipe downstream end portions 11b and 12b and the fifth and sixth exhaust pipes having a small difference in the amount of thermal expansion are subsequently.
A straight joining line LB with the exhaust pipe downstream side end portions 15b, 16b is welded and joined in the arrow (f) direction (or the opposite direction).

【0036】その結果、図示BBのような下端側が上記
への字状の第1の溶接ビードBAの頂点部P2に重合す
る第2の溶接ビードが形成される。
As a result, a second weld bead is formed such that the lower end side thereof as shown in BB overlaps with the apex P 2 of the first V-shaped weld bead BA.

【0037】したがって、該構成によっても、熱伸び量
の差が大きく、歪応力によるクラックが発生しやすい第
2の溶接ビードBBが排気下流側に位置するようにな
り、拘束力が低下して曲がり易くなるので、そのP2
部でのクラックの発生が防止される。
Therefore, also with this configuration, the second welding bead BB, which has a large difference in thermal expansion amount and is susceptible to cracks due to strain stress, is located on the downstream side of the exhaust gas, and the binding force is lowered to bend. Since it becomes easier, the occurrence of cracks at the point P 2 is prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本願発明の実施例に係る多気筒エンジ
ンの鋼管製排気マニホールド集束部の接合後の構造を示
す拡大正面図である。
FIG. 1 is an enlarged front view showing a structure after joining of a steel pipe exhaust manifold converging portion of a multi-cylinder engine according to an embodiment of the present invention.

【図2】図2は、図1のA−A線断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図3は、図1のB−B線断面図である。3 is a sectional view taken along line BB of FIG.

【図4】図4は、本願発明の他の実施例に係る多気筒エ
ンジンの鋼管製排気マニホールド集束部接合後の構造を
示す拡大正面図である。
FIG. 4 is an enlarged front view showing the structure of the multi-cylinder engine according to another embodiment of the present invention after joining the steel pipe exhaust manifold converging portion.

【図5】図5は、従来例および本願発明実施例に共通な
多気筒エンジンの排気マニホールドの全体的な構造を示
す正面図である。
FIG. 5 is a front view showing an overall structure of an exhaust manifold of a multi-cylinder engine common to a conventional example and an embodiment of the present invention.

【図6】図6は、同図5の排気マニホールドの排気下流
側集束部接合前の状態の拡大正面図である。
FIG. 6 is an enlarged front view of the exhaust manifold of FIG. 5 in a state before joining the exhaust downstream side focusing portion.

【図7】図7は、従来の多気筒エンジンの鋼管製排気マ
ニホールド集束部の接合後の状態の拡大正面図である。
FIG. 7 is an enlarged front view of the state after joining the steel pipe exhaust manifold converging portion of the conventional multi-cylinder engine.

【符号の説明】[Explanation of symbols]

1は排気マニホールド、3は集束部、11は第1の排気
管、12は第2の排気管、13は第3の排気管、14は
第4の排気管、LX、LAは第1の接合ライン、LY,
LBは第2の接合ライン、BX,BYは第1の溶接ビー
ド、BY,BBは第2の溶接ビードである。
1 is an exhaust manifold, 3 is a focusing part, 11 is a first exhaust pipe, 12 is a second exhaust pipe, 13 is a third exhaust pipe, 14 is a fourth exhaust pipe, and LX and LA are first joints. Line, LY,
LB is the second joining line, BX and BY are the first weld beads, and BY and BB are the second weld beads.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F01N 7/10 B23K 9/00 501 B23K 9/028 F01N 7/18 Front page continued (58) Fields surveyed (Int.Cl. 7 , DB name) F01N 7/10 B23K 9/00 501 B23K 9/028 F01N 7/18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軸方向への熱伸び量が異なる少なくとも
3本の鋼管製排気管を排気下流側端部で相互に集束させ
るとともに該集束部の各排気管の相互に隣接する管壁部
間を溶接することにより一体化してなる多気筒エンジン
の鋼管製排気マニホールドであって、上記集束部中央に
おいて軸方向への熱伸び量の差が大きい排気管同士の管
壁部間の溶接ビードが軸方向への熱伸び量の差が小さい
排気管の管壁部間の溶接ビードよりも排気上流側に位置
して重合形成されていることを特徴とする多気筒エンジ
ンの鋼管製排気マニホールド。
1. At least three steel pipe-made exhaust pipes having different amounts of thermal expansion in the axial direction are mutually focused at an end portion on the exhaust downstream side, and the exhaust pipes of the converging portion are located between mutually adjacent pipe wall portions. A steel pipe exhaust manifold for a multi-cylinder engine, which is integrated by welding, where the weld bead between the pipe wall portions of the exhaust pipes having a large difference in the amount of thermal expansion in the axial direction at the center of the converging portion is the shaft. An exhaust manifold made of steel pipe for a multi-cylinder engine, wherein the exhaust pipe is superposed and formed on the exhaust upstream side of a weld bead between the pipe wall portions of the exhaust pipe with a small difference in the amount of thermal expansion in the direction.
【請求項2】 集束部中央の溶接ビード重合部における
排気下流側溶接ビードの溶接方向は、軸方向への熱伸び
量が大きい排気管同士の管壁部間側から軸方向への熱伸
び量が小さい排気管同士の管壁部間側方向、又はその逆
の方向に向けて溶接されて形成されていることを特徴と
する請求項1記載の多気筒エンジンの鋼管製排気マニホ
ールド。
2. The welding direction of the exhaust bead on the downstream side of the exhaust gas in the weld bead overlapping portion at the center of the focusing portion is such that the amount of thermal expansion in the axial direction is large in the axial direction from the side between pipe wall portions of exhaust pipes. 2. A steel pipe exhaust manifold for a multi-cylinder engine according to claim 1, wherein the exhaust pipes are formed by welding in a direction between pipe walls of small exhaust pipes or in a direction opposite thereto.
【請求項3】 第1および第4の排気管の管長が第2、
第3の排気管の管長よりも長い第1〜第4の4本の排気
管を排気下流側端部で相互に集束させるとともに該集束
部の各排気管の相互に隣接する管壁部間を溶接すること
により一体化してなる直列4気筒エンジンの鋼管製排気
マニホールドであって、上記集束部中央において上記第
1の排気管および第4の排気管と上記第2の排気管およ
び第3の排気管との管壁部間の溶接ビードが上記第1の
排気管および第2の排気管と上記第4の排気管および第
3の排気管との管壁部間の溶接ビードよりも排気上流側
に位置して重合形成されていることを特徴とする多気筒
エンジンの鋼管製排気マニホールド。
3. The pipe lengths of the first and fourth exhaust pipes are second,
The first to fourth four exhaust pipes, which are longer than the pipe length of the third exhaust pipe, are focused on each other at the exhaust downstream end, and the exhaust pipes of the focusing portion are connected to each other between adjacent pipe wall portions. A steel pipe exhaust manifold for an in-line 4-cylinder engine integrated by welding, comprising: the first exhaust pipe, the fourth exhaust pipe, the second exhaust pipe, and the third exhaust gas at the center of the focusing portion. The weld bead between the pipe and the pipe wall is on the exhaust upstream side of the weld bead between the pipe walls of the first exhaust pipe and the second exhaust pipe and the fourth exhaust pipe and the third exhaust pipe. An exhaust manifold made of a steel pipe for a multi-cylinder engine, characterized in that the exhaust manifold is formed at the position of the cylinder.
JP19339194A 1994-08-17 1994-08-17 Steel pipe exhaust manifold for multi-cylinder engine Expired - Fee Related JP3455930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19339194A JP3455930B2 (en) 1994-08-17 1994-08-17 Steel pipe exhaust manifold for multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19339194A JP3455930B2 (en) 1994-08-17 1994-08-17 Steel pipe exhaust manifold for multi-cylinder engine

Publications (2)

Publication Number Publication Date
JPH0861058A JPH0861058A (en) 1996-03-05
JP3455930B2 true JP3455930B2 (en) 2003-10-14

Family

ID=16307165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19339194A Expired - Fee Related JP3455930B2 (en) 1994-08-17 1994-08-17 Steel pipe exhaust manifold for multi-cylinder engine

Country Status (1)

Country Link
JP (1) JP3455930B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112338331B (en) * 2020-09-16 2022-04-08 西部超导材料科技股份有限公司 Welding method for eliminating titanium and titanium alloy consumable electrode weld cracks

Also Published As

Publication number Publication date
JPH0861058A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
EP1039106B1 (en) Structure of an exhaust manifold branch collecting portion
JP3279162B2 (en) Exhaust manifold structure of exhaust manifold
JP3512664B2 (en) Exhaust pipe assembly of a multi-cylinder engine
JP3455930B2 (en) Steel pipe exhaust manifold for multi-cylinder engine
EP1149993B1 (en) Vehicle engine exhaust system
JP3509796B2 (en) exhaust manifold
US4132285A (en) Connecting line within an exhaust system of a motor vehicle
CN211851972U (en) Integral wave-shaped expansion joint of flow guide pipe
JP3331885B2 (en) Exhaust pipe for internal combustion engine
JP2553379Y2 (en) Exhaust manifold
JP3433096B2 (en) Heated exhaust manifold for engine
CN111173606B (en) Integral wave-shaped expansion joint of honeycomb duct
JP4069910B2 (en) Exhaust manifold assembly structure
JPH0533694Y2 (en)
JP2793607B2 (en) Exhaust pipe connection structure for motorcycle
JPH01138311A (en) Exhaust passage structure of engine
JP3433097B2 (en) Insulated exhaust pipe for engine
JP2533929Y2 (en) Scarf
JP2009036166A (en) Aggregate part structure of exhaust manifold
JP2000145442A (en) Heat-insulating exhaust manifold of engine
JPH067827U (en) Exhaust gas catalytic converter
JP3355989B2 (en) Exhaust system for internal combustion engine
JPS6023705A (en) Water wall tube for combustion apparatus
JP2001073760A (en) Egr structure of engine
JPS6316118A (en) Exhaust manifold for engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees