JP3433097B2 - Insulated exhaust pipe for engine - Google Patents

Insulated exhaust pipe for engine

Info

Publication number
JP3433097B2
JP3433097B2 JP10977398A JP10977398A JP3433097B2 JP 3433097 B2 JP3433097 B2 JP 3433097B2 JP 10977398 A JP10977398 A JP 10977398A JP 10977398 A JP10977398 A JP 10977398A JP 3433097 B2 JP3433097 B2 JP 3433097B2
Authority
JP
Japan
Prior art keywords
exhaust
collecting pipe
pipe
downstream end
mesh member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10977398A
Other languages
Japanese (ja)
Other versions
JPH11303633A (en
Inventor
宏 橋本
和夫 石井
卓 小松田
達己 山田
誠司 加藤
浩一 藤森
一弘 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Yutaka Giken Co Ltd
Original Assignee
Honda Motor Co Ltd
Yutaka Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Yutaka Giken Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP10977398A priority Critical patent/JP3433097B2/en
Priority to DE19917604A priority patent/DE19917604C5/en
Priority to US09/293,957 priority patent/US6155046A/en
Publication of JPH11303633A publication Critical patent/JPH11303633A/en
Application granted granted Critical
Publication of JP3433097B2 publication Critical patent/JP3433097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は,内外二重に配置し
た内側管及び外側管の一端部を相互に固着すると共に,
他端部間に,それらの相対摺動を可能にする環状のメッ
シュ部材を介裝した,排気マニホールドを含む,エンジ
ンの保温型排気管の改良に関する。 【0002】 【従来の技術】かゝる保温型排気管における環状のメッ
シュ部材は,内側管及び外側管の間の断熱空間を確保す
ると共に,排ガスによる内側管及び外側管の軸方向の熱
伸びの差を吸収し,また内側管の自由端の振動を抑制す
る機能を有する。 【0003】ところで,従来,かゝる保温型排気管にお
けるメッシュ部材の保持構造として,メッシュ部材を外
側管の内周面に溶接したもの(例えば特開平9−280
046号公報参照)と,メッシュ部材を外側管の内周面
に形成した環状溝に固定的に保持させたもの(実開平4
−129830号公報参照)とが知られている。 【0004】 【発明が解決しようとする課題】従来の上記何れのもの
も,メッシュ部材は外側管に固定されるので,メッシュ
部材の内周面のみが摺動面となって内側管の外周面と相
対摺動し得るようになっている。したがって,排ガスに
よる内側管及び外側管の軸方向の熱伸びの差は,メッシ
ュ部材の内周面と内側管の外周面との摺動のみにより吸
収されるため,その摺動面間に酸化物等の異物が侵入す
ると,直ちにその摺動が阻害され,排気管各部に熱歪み
が発生して,その耐久性を損じる可能性がある。 【0005】本発明は,かゝる事情に鑑みてなされたも
ので,環状のメッシュ部材の内周面及び外周面の両方を
摺動面とすることを可能にして,一方の摺動面に摺動不
良が発生しても,内側管及び外側管の相対摺動に支障を
来さず,両者の軸方向の熱伸びの差を確実に吸収するこ
とができる,前記エンジンの保温型排気管を提供するこ
とを目的とする。 【0006】 【課題を解決するための手段】上記目的を達成するため
に,本発明は,上部フランジと,この上部フランジに各
上流側端部を結合する複数の排気単管と,これら排気単
管の下流側端部に結合される排気集合管と,この排気集
合管の下流側端部に結合される下部フランジとを備え,
各管部を二重壁で構成した,エンジンの保温型排気マニ
ホールドにおいて,前記排気集合管を,内外二重に配置
した内側集合管及び外側集合管から構成し,前記内側集
合管の上流側端部と前記外側集合管の上流側端部と前記
排気単管の下流側端部との三者を同一箇所で相互に一体
固着し,前記外側集合管の下流側端部内周面に形成し
た環状凹部に,前記内側集合管の外周面を摺動自在に
支承する環状のメッシュ部材を,該環状凹部に対し摺動
自在に装着し,前記外側集合管の下流側端部に前記下部
フランジを結合したことを徴とする。 【0007】この徴によれば,内側単管及び外側単管
の軸方向の熱伸びの差を,内側単管とメッシュ部材,外
側単管とメッシュ部材の各間の摺動により吸収すること
ができる。したがって,万一,一方の摺動部に異物の噛
み込み等により摺動不良が起こっても,他方の摺動部の
作動により支障なく軸方向の熱伸びの差の吸収を行うこ
とができ,排気マニホールドの耐久性を向上させること
ができる。 【0008】しかも,両摺動部が正常に作動するとき
は,内側管及び外側管の軸方向の熱伸びの差を両摺動部
が分担することになるから,各摺動部の摺動量は,摺動
部が1箇所しかない従来の場合に比して半減し,メッシ
ュ部材の耐久性の向上に寄与し得る。 【0009】また特に内側集合管の上流側端部と,外側
集合管の上流側端部と,排気単管の下流側端部とは,そ
の三者が同一箇所で相互に一体に固着される。 【0010】 【発明の実施の形態】本発明の実施の形態を,添付図面
に示す本発明の実施例に基づいて以下に説明する。 【0011】図1は,本発明の第1実施例に係る保温型
排気マニホールドを備えたエンジンの側面図,図2は,
その排気マニホールドの斜視図,図3は,その排気マニ
ホールドの一部縦断正面図,図4は図3の4部拡大図,
図5は図1の5−5線断面図,図6図5の6−6線断面
図であり,また図7は,本発明の第2実施例を示す排気
マニホールドの縦断正面図である。 【0012】先ず,図1ないし図6に基づいて,本発明
の第1実施例の説明から始める。 【0013】図1において,4気筒エンジンEのシリン
ダヘッド1の前面に,その気筒に対応して4本の排気ポ
ート21 〜24 が開口しており,これら排気ポート21
〜24 から排出される排ガスを誘導する,本発明の保温
型排気管としての排気マニホールドMが複数のスタッド
ボルト3及びナット4によりシリンダヘッド1に取付け
られる。 【0014】図2ないし図4に示すように,上記排気マ
ニホールドMは,前記4本の排気ポート21 〜24 に個
別に連通する4本の排気単管51 〜54 を備えており,
これらを図3で左側から第1〜第4排気単管と呼ぶこと
にする。 【0015】第1〜第4排気単管51 〜54 の上流側端
部に上部フランジ7が接続され,第2及び第3排気単管
2 ,53 の下流側端部に第1排気集合管61 が接続さ
れ,第1及び第4排気単管51 4 の下流側端部に第2
排気集合管62 が接続される。そして第1及び第2排気
集合管61 ,62 の下流側端部に下部フランジ8が接続
される。上部フランジ7は,前記スタッドボルト3及び
ナット4によりシリンダヘッド1に固着されるものであ
り,下部フランジ8には,車両の床下に配置される図示
しない共通の触媒コンバータ(排気浄化装置)に連なる
中間排気管21が接続される。尚,下部フランジ8に
は,上記触媒コンバータを直接接続することもできる。 【0016】各排気単管51 〜54 は,内外2重に配置
した内側単管10及び外側単管11からなるもので,内
側及び外側単管10,11間には筒状の断熱空間12が
形成される。内側単管10は薄肉のステンレス鋼管製で
あり,外側単管11もステンレス鋼管製であるが,内側
単管10よりは厚肉である。 【0017】外側単管11の上流側端部は,内側単管1
0の上流側端部外周面に嵌合するように縮径され,それ
らの上流側端部が上部フランジ7の,対応する排気ポー
ト21 〜24 に連なる通孔131 〜134 に嵌合される
と共に,その通孔131 〜134 の内周面に溶接により
固着される(図4参照)。 【0018】内側単管10の下流側端部には,その内周
側からの拡径により外周面に隆起する横断面円弧状の環
状突起14が形成され,この環状突起14が外側単管1
1の内周面に摺動自在に嵌合される。こうして内側単管
10の下流側端部は,外側単管11に摺動自在に支承さ
れる。 【0019】また各排気集合管61 ,62 は,内外二重
に配置した内側集合管15(内側管)及び外側集合管1
6(外側管)からなるもので,内側及び外側集合管1
5,16にも断熱空間17が形成される。内側集合管1
5は,薄肉のステンレス鋼板製の一対の内側集合管半体
15a,15bの相対向する端部を相互に重ね,その重
ね部全体を溶接して構成される。その際,内側集合管1
5の上流側端部には,内側二股管18,18が形成さ
れ,これらに,対応する2本の前記外側単管11,11
の下流側端部が嵌入される。 【0020】また外側集合管16もステンレス鋼板製の
一対の外側集合管半体16a,16bの相対向する端部
を相互に重ね,その重ね部全体を溶接して構成される
が,その板厚は内側集合管15より厚い。この外側集合
管16の上流側端部には,上記内側二股管18,18を
それぞれ覆う外側二股管19,19が形成される。この
外側二股管19,19の先端部は内側二股管18,18
の外周面に嵌合するように縮径され,それらの嵌合部
が,対応する2本の前記外側単管11,11の下流側端
部外周面に溶接により固着される。 【0021】図5及び図6に示すように,外側集合管1
6の下流側端部に前記下部フランジ8が溶接により固着
される。この外側集合管16の下流側端部の内周面に
は,環状凹部21が形成され,この環状凹部21にステ
ンレスワイヤを編んでなる環状二つ割りのメッシュ部材
20,即ち一対のメッシュ半体20a,20bが摺動可
能に装着され,これらメッシュ半体20a,20bの内
周面に内側集合管15の下流側端部が摺動自在に嵌合さ
れる。 【0022】その際,一対のメッシュ半体20a,20
bの間に,内側集合管15を構成する内側集合管半体1
5a,15bの溶接部22及び外側集合管半体16a,
16bの溶接部23が配置される。而して,一対のメッ
シュ半体20a,20bを環状凹部21へ順次挿入する
ことにより,メッシュ部材20の外側集合管16への装
着を容易に行うことができ,その上,両メッシュ半体2
0a,20bの間に内側集合管半体15a,15bの外
方へ突出した溶接部22が介入することにより,該溶接
部22とメッシュ部材20との干渉を避けると共に,各
メッシュ半体20a,20bの無用な回転を拘束するこ
とができる。 【0023】次に,この第1実施例の作用について説明
する。 【0024】エンジンEの作動中,排ガスが4本の排気
ポート21 ,22 ,24 ,23 から第1排気単管51
第2排気単管52 ,第4排気単管54 ,第3排気単管5
3 に順次排出される。そして第1及び第4排気単管
1 ,54 を通過した排ガスは第1排気集合管61 で合
流し,第2及び第3排気単管52 ,53 を通過した排ガ
スは第2排気合流管62 で合流し,その後,排ガスは中
間排気管21で更に合流しながら,図示しない共通の触
媒コンバータへと誘導されて,浄化される。 【0025】ところで,各排気単管51 〜54 は内外二
重配置の内側単管10及び外側単管11から構成され,
その内側単管10は薄肉に形成されると共に,内側及び
外側単管10,11の間には断熱空間12が形成され,
また各排気集合管61 ,62も内外二重配置の内側集合
管15及び外側集合管16から構成され,その内側集合
管15は薄肉に形成されると共に,内側及び外側集合管
15,16の間にも断熱空間17が形成されるので,ヒ
ートマスの小なる内側単管10及び内側集合管15は,
その内部を流れる高温の排ガスにより加熱されて速やか
に昇温し,これが断熱空間12,17により保温され
る。したがって,後続の排ガスを,その温度低下を抑え
ながら前記触媒コンバータへ誘導して,その活性化を促
進し,排ガスの浄化効率を高めることができる。 【0026】その間に,各排気単管51 〜54 において
は,内側単管10に外側単管11側よりも大きな軸方向
の熱伸びが生ずるが,その伸びに伴い内側単管10の下
流側端部外周面の環状突起14が,それを支承する外側
単管11の内周面に対して摺動し,内側及び外側単管1
0,11の軸方向の熱伸びの差が吸収される。 【0027】また各排気集合管61 ,62 においても,
内側集合管15に外側集合管16側よりも大きな軸方向
の熱伸びが生ずるが,その伸びに伴い内側集合管15の
下流側端部が外側集合管16に対しメッシュ部材20を
介して摺動し,内側及び外側集合管15,16の軸方向
の熱伸びの差が吸収される。 【0028】こゝで注目すべき点は,環状のメッシュ部
材の内周面及び外周面の両方が摺動面となっていること
である。したがって,内側単管10及び外側単管11の
間に軸方向の熱伸びの差が発生したときは,内側単管1
0とメッシュ部材20,外側単管11とメッシュ部材2
0の各間で摺動が生じて,上記熱伸びの差を吸収するこ
とができる。したがって,万一,メッシュ部材20の内
周面側及び外周面側の一方が異物の噛み込み等により摺
動不良を起こしても,他方の摺動により支障なく熱伸び
の差の吸収を行うことができ,排気マニホールドMの耐
久性の向上を図ることができる。しかも,メッシュ部材
20の内周面側及び外周面側の両方が正常に摺動し得る
ときは,内側単管10及び外側単管11の軸方向の熱伸
びの差の吸収をメッシュ部材20の内外両周面側で分担
することになるから,各摺動部の摺動量は,摺動部が1
箇所しかない従来の場合に比して半減し,メッシュ部材
20の耐久性の向上をもたらすことができる。そしてメ
ッシュ部材20の必要以上の移動は外側単管11の環状
凹部21の端面により規制される。 【0029】また内側及び外側集合管15,16の下流
側端部は比較的大径であるから,これらの周方向の熱伸
びの差も無視できないが,その差はメッシュ部材20の
圧縮変形により吸収される。 【0030】さらにメッシュ部材20は,内側単管10
の自由端,即ち下流端の振動を抑制して,その振動によ
る騒音の発生を回避することができる。 【0031】このように,保温型排気マニホールドMに
おいて,内外二重壁の軸方向の熱伸びの差を吸収する摺
動部を各排気単管51 〜54 の下流側端部と各排気集合
管61 ,62 の下流側端部とに分けて設けることによ
り,各摺動部での摺動ストロークを小さく設定すること
が可能となり,摺動中,その摺動部相互の傾きが起こり
難くなり,排気マニホールドM各部に熱歪みが生ずるこ
とを効果的に防ぎ,その耐久性の向上を図ることができ
る。 【0032】図7に示す本発明の第3実施例に係る保温
型排気マニホールドMは,4本の排気単管51 〜54
共通1個の排気集合管6を接続したもので,その保温構
造及び熱伸び吸収構造は前記第1実施例のものと実質的
に同一であり,図中,第1実施例との対応部分には同一
の参照符号を付して,その説明を省略する。 【0033】以上,本発明の実施例を詳述したが,本発
明はその要旨を逸脱しない範囲で種々の設計変更を行う
ことができる。例えば,排気単管及び排気集合管の本数
や形状は,エンジンの気筒数や形式に応じて自由に選定
することができる。また断熱空間12,17には断熱材
を充填することもできる。 【0034】 【発明の効果】以上のように本発明よれば,上部フラ
ンジと,この上部フランジに各上流側端部を結合する複
数の排気単管と,これら排気単管の下流側端部に結合さ
れる排気集合管と,この排気集合管の下流側端部に結合
される下部フランジとを備え,各管部を二重壁で構成し
た,エンジンの保温型排気マニホールドにおいて,前記
排気集合管を,内外二重に配置した内側集合管及び外側
集合管から構成し,前記内側集合管の上流側端部と前記
外側集合管の上流側端部と前記排気単管の下流側端部と
を相互に一体に固着し,前記外側集合管の下流側端部内
周面に形成した環状凹部に,前記内側集合管の外周面
を摺動自在に支承する環状のメッシュ部材を,該環状凹
部に対し摺動自在に装着し,前記外側集合管の下流側端
部に前記下部フランジを結合したので,側集合管及び
外側集合管の軸方向の熱伸びの差を,側集合管とメッ
シュ部材,外側集合管とメッシュ部材間の何れの摺動
っても吸収することができる。したがって,万一,
一方の摺動部に異物の噛み込み等により摺動不良が起こ
っても,他方の摺動部の作動により支障なく軸方向の熱
伸びの差の吸収を行うことができ,排気マニホールドの
耐久性を向上させることができる。しかも,両摺動部が
正常に作動するときは,内側集合管及び外側集合管の軸
方向の熱伸びの差を両摺動部が分担することになるか
ら,各摺動部の摺動量は小さく,メッシュ部材の耐久性
の向上に寄与し得る。 【0035】また特に内側集合管の上流側端部と,外側
集合管の上流側端部と,排気単管の下流側端部とは,そ
の三者が同一箇所で相互に一体に固着される。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of fixing one end of an inner pipe and an outer pipe which are arranged inside and outside doubly.
The present invention relates to an improvement in a warm exhaust pipe of an engine including an exhaust manifold having an annular mesh member interposed between the other end portions thereof to enable relative sliding therebetween. 2. Description of the Related Art An annular mesh member in such a heat-insulating exhaust pipe secures an adiabatic space between an inner pipe and an outer pipe, and also has a thermal expansion in the axial direction of the inner pipe and the outer pipe due to exhaust gas. It has the function of absorbing the difference between the two and suppressing the vibration of the free end of the inner tube. [0003] Conventionally, as a structure for holding a mesh member in such a heat retaining type exhaust pipe, a mesh member welded to the inner peripheral surface of an outer pipe (for example, Japanese Patent Laid-Open No. 9-280).
No. 046) and a mesh member fixedly held in an annular groove formed in the inner peripheral surface of the outer tube (Japanese Utility Model Laid-Open No.
129830). [0004] In any of the above-mentioned conventional ones, the mesh member is fixed to the outer tube, so that only the inner peripheral surface of the mesh member serves as a sliding surface and the outer peripheral surface of the inner tube. And can slide relative to each other. Therefore, the difference in the thermal expansion between the inner pipe and the outer pipe due to the exhaust gas is absorbed only by the sliding between the inner peripheral surface of the mesh member and the outer peripheral surface of the inner pipe. If foreign matter such as enters the slide pipe, the sliding is immediately inhibited, and thermal distortion occurs in each part of the exhaust pipe, which may impair its durability. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it has been made possible to use both the inner and outer peripheral surfaces of an annular mesh member as sliding surfaces so that one of the sliding surfaces can be used. Even if a sliding failure occurs, the relative displacement between the inner pipe and the outer pipe is not hindered, and the difference in thermal expansion in the axial direction between the two pipes can be reliably absorbed. The purpose is to provide. [0006] To achieve the above object, according to an aspect of the present invention includes an upper flange, and a plurality of exhaust single pipe coupling each upstream end to the upper flange, these exhaust An exhaust manifold connected to the downstream end of the single pipe, and a lower flange connected to the downstream end of the exhaust manifold;
Each tube portion is constituted by a double wall, in heat insulation type exhaust manifold of the engine, constitute the exhaust collecting pipe, the inner collecting pipe and the outer collecting pipe arranged on the inner and outer double, the inner current
The upstream end of the joint pipe, the upstream end of the outer collecting pipe and the
Integrate the three parts with the downstream end of the exhaust pipe at the same location
Secured to, wherein the annular recess formed in the downstream end portion peripheral surface of the outer collection tube, an annular mesh member slidably supporting the outer circumferential surface of the inner collector pipe, sliding with respect to the annular recess freely mounted, and feature that combines the lower flange on the downstream end of the outer collecting pipe. [0007] According to this feature, the difference in axial thermal expansion of the inner monotube and outer monotube, inner single tube and the mesh member, be absorbed by sliding between the outer monotube mesh member Can be. Therefore, even if a sliding failure occurs due to foreign matter being caught in one of the sliding parts, the difference in the thermal elongation in the axial direction can be absorbed without any trouble by the operation of the other sliding part. The durability of the exhaust manifold can be improved. In addition, when the two sliding portions operate normally, the difference in thermal expansion between the inner tube and the outer tube in the axial direction is shared by the two sliding portions. Can be reduced by half as compared with the conventional case having only one sliding portion, which can contribute to the improvement of the durability of the mesh member. In particular, the upstream end of the inner collecting pipe and the outer end
The upstream end of the collecting pipe and the downstream end of the exhaust pipe are
Are integrally fixed to each other at the same place. Embodiments of the present invention will be described below based on embodiments of the present invention shown in the accompanying drawings. FIG. 1 is a side view of an engine provided with a warmed exhaust manifold according to a first embodiment of the present invention, and FIG.
FIG. 3 is a perspective view of the exhaust manifold, FIG. 3 is a partially longitudinal front view of the exhaust manifold, FIG.
5 is a sectional view taken along line 5-5 in FIG. 1, FIG. 6 is a sectional view taken along line 6-6 in FIG. 5, and FIG. 7 is a vertical sectional front view of an exhaust manifold showing a second embodiment of the present invention. First, a description will be given of a first embodiment of the present invention with reference to FIGS. [0013] In FIG. 1, the front surface of the cylinder head 1 of a four-cylinder engine E, in correspondence with its cylinder four exhaust ports 21 to 24 are opened, these exhaust ports 2 1
Induces exhaust gas discharged from 21 to 24, the exhaust manifold M as insulation type exhaust pipe of the present invention is mounted by a plurality of stud bolts 3 and nuts 4 on the cylinder head 1. [0014] As shown in FIGS. 2 to 4, the exhaust manifold M includes a four exhaust monotube 5 1 to 5 4 of which communicates separately with the four exhaust ports 21 to 24 of ,
These are referred to as first to fourth exhaust single tubes from the left side in FIG. [0015] The first to the first to the upper flange 7 is connected to the fourth upstream end of the exhaust monotube 5 1 to 5 4, the downstream end of the second and third exhaust monotube 5 2, 5 3 exhaust collecting pipe 61 is connected, the second to the downstream end of the first and fourth exhaust monotube 5 1 5 4
Exhaust collecting pipe 6 2 are connected. The lower flange 8 is connected to the downstream end of the first and second exhaust manifolds 6 1 , 6 2 . The upper flange 7 is fixed to the cylinder head 1 by the stud bolts 3 and the nuts 4, and the lower flange 8 is connected to a common catalytic converter (exhaust gas purifier) (not shown) arranged under the floor of the vehicle. The intermediate exhaust pipe 21 is connected. The above-mentioned catalytic converter can be directly connected to the lower flange 8. [0016] Each exhaust monotube 5 1 to 5 4, made of an inner monotube 10 and the outer single tube 11 was placed inside and outside double, cylindrical insulation space is between the inner and outer monotube 10,11 12 are formed. The inner single pipe 10 is made of a thin stainless steel pipe, and the outer single pipe 11 is also made of a stainless steel pipe, but is thicker than the inner single pipe 10. The upstream end of the outer tube 11 is connected to the inner tube 1
0 is reduced in diameter to fit the upstream end outer peripheral surface of, their upstream end upper flange 7, fitted to a through hole 131-134 leading to the corresponding exhaust port 21 to 24 together we are engaged, is fixed by welding to the inner peripheral surface of the through hole 131-134 (see FIG. 4). At the downstream end of the inner single tube 10, there is formed an annular projection 14 having an arc-shaped cross section which rises to the outer peripheral surface due to the diameter expansion from the inner peripheral side.
1 is slidably fitted to the inner peripheral surface. Thus, the downstream end of the inner single pipe 10 is slidably supported by the outer single pipe 11. Each of the exhaust manifolds 6 1 , 6 2 is composed of an inner manifold 15 (inner pipe) and an outer manifold 1 arranged in an inner / outer double.
6 (outer tube), the inner and outer collecting tubes 1
A heat insulating space 17 is also formed in 5 and 16. Inner collecting pipe 1
Reference numeral 5 denotes a structure in which a pair of inner collecting pipe halves 15a and 15b made of a thin stainless steel plate are opposed to each other at opposite ends, and the entire overlapping portion is welded. At that time, the inner collecting pipe 1
5 are formed at the upstream end thereof with two corresponding outer single tubes 11, 11.
Is inserted at the downstream end. The outer collecting pipe 16 is also formed by overlapping opposing ends of a pair of outer collecting pipe halves 16a and 16b made of stainless steel and welding the entire overlapping portion. Is thicker than the inner collecting pipe 15. At the upstream end of the outer collecting pipe 16, outer bifurcated pipes 19, 19 respectively covering the inner bifurcated pipes 18, 18 are formed. The distal ends of the outer bifurcated pipes 19, 19 are connected to the inner bifurcated pipes 18, 18
The outer diameters of the outer single tubes 11 and 11 are fixed to each other by welding. As shown in FIG. 5 and FIG.
The lower flange 8 is fixed to a downstream end of the lower flange 6 by welding. An annular concave portion 21 is formed on the inner peripheral surface of the downstream end portion of the outer collecting pipe 16, and an annular split mesh member 20 formed by knitting a stainless steel wire into the annular concave portion 21, that is, a pair of mesh half bodies 20a, 20b is slidably mounted, and the downstream end of the inner collecting pipe 15 is slidably fitted to the inner peripheral surfaces of the mesh halves 20a and 20b. At this time, a pair of mesh halves 20a, 20a
b, the inner collecting pipe half 1 constituting the inner collecting pipe 15
5a, 15b weld 22 and outer collecting pipe half 16a,
16b welding part 23 is arranged. Thus, by sequentially inserting the pair of mesh halves 20a and 20b into the annular concave portion 21, the mesh member 20 can be easily mounted on the outer collecting pipe 16, and furthermore, the mesh halves 2a and 20b can be easily inserted.
By interposing a weld 22 protruding outwardly of the inner collecting pipe halves 15a and 15b between 0a and 20b, interference between the weld 22 and the mesh member 20 is avoided, and each mesh half 20a, Unnecessary rotation of 20b can be restrained. Next, the operation of the first embodiment will be described. [0024] During operation of the engine E, an exhaust port 2 1 of the exhaust gas is four, 2 2, 2 4, 2 3 from the first exhaust monotube 5 1,
Second exhaust monotube 5 2, fourth exhaust monotube 5 4, the third exhaust monotube 5
It is sequentially discharged to 3 . The exhaust gas which has passed through the first and fourth exhaust monotube 5 1, 5 4 merged in the first exhaust collecting pipe 61, which has passed through the second and third exhaust monotube 5 2, 5 3 and the second merge at an exhaust merging pipe 6 2, then, the exhaust gas while further merges with the intermediate exhaust pipe 21, is guided to a common catalytic converter (not shown) to be purified. By the way, the exhaust monotube 5 1 to 5 4 are composed of an inner monotube 10 and the outer single tube 11 of the inner and outer double arrangement,
The inner single tube 10 is formed to be thin, and a heat insulating space 12 is formed between the inner and outer single tubes 10 and 11.
Each of the exhaust manifolds 6 1 , 6 2 is also composed of an inner manifold 15 and an outer manifold 16 in a double inner / outer arrangement. The inner manifold 15 is formed to be thin, and the inner and outer manifolds 15, 16 are formed. The heat insulating space 17 is also formed between the inner single pipe 10 and the inner collecting pipe 15 having a small heat mass.
It is heated by the high-temperature exhaust gas flowing through the inside thereof and quickly rises in temperature, and this is kept warm by the heat insulating spaces 12 and 17. Therefore, the subsequent exhaust gas can be guided to the catalytic converter while suppressing its temperature decrease, thereby promoting its activation and improving the purification efficiency of the exhaust gas. [0026] Meanwhile, in the exhaust monotube 5 1 to 5 4, the thermal expansion of greater axial than the outer single tube 11 side inside the single tube 10 is caused, downstream of the inner monotube 10 along with its elongation The annular projection 14 on the outer peripheral surface of the side end slides on the inner peripheral surface of the outer single tube 11 supporting the same, and the inner and outer single tubes 1 are moved.
The difference in thermal expansion in the axial direction of 0, 11 is absorbed. In each of the exhaust manifolds 6 1 and 6 2 ,
Thermal expansion in the axial direction of the inner collecting pipe 15 is larger than that of the outer collecting pipe 16, and the downstream end of the inner collecting pipe 15 slides with respect to the outer collecting pipe 16 via the mesh member 20 with the expansion. Then, the difference in the thermal expansion between the inner and outer collecting pipes 15, 16 in the axial direction is absorbed. It should be noted that both the inner peripheral surface and the outer peripheral surface of the annular mesh member are sliding surfaces. Therefore, when a difference in thermal elongation in the axial direction occurs between the inner single tube 10 and the outer single tube 11, the inner single tube 1
0 and mesh member 20, outer single tube 11 and mesh member 2
In this case, sliding occurs between the values of 0 and the difference in thermal elongation can be absorbed. Therefore, even if one of the inner peripheral surface side and the outer peripheral surface side of the mesh member 20 causes sliding failure due to foreign matter biting in, the difference in thermal elongation can be absorbed by the other sliding member without hindrance. Therefore, the durability of the exhaust manifold M can be improved. Moreover, when both the inner peripheral surface and the outer peripheral surface of the mesh member 20 can slide normally, the difference in the thermal expansion between the inner single tube 10 and the outer single tube 11 in the axial direction is absorbed. Since the inner and outer peripheral surfaces are shared, the sliding amount of each sliding part is 1 unit.
It is halved as compared with the conventional case having only a portion, and the durability of the mesh member 20 can be improved. Unnecessary movement of the mesh member 20 is restricted by the end surface of the annular concave portion 21 of the outer single tube 11. Since the downstream ends of the inner and outer collecting pipes 15 and 16 have relatively large diameters, the difference in the thermal expansion in the circumferential direction cannot be ignored, but the difference is caused by the compressive deformation of the mesh member 20. Absorbed. Further, the mesh member 20 is formed by the inner single pipe 10.
, That is, the free end, that is, the downstream end, can be suppressed from generating noise due to the vibration. [0031] Thus, in thermal insulation type exhaust manifold M, the downstream end of each exhaust monotube 5 1 to 5 4 a sliding portion for absorbing the difference in axial thermal expansion of the inner and outer double wall and the exhaust by providing divided into the downstream end of the collecting pipe 6 and 62, it is possible to set a sliding stroke in the sliding portions small, in sliding, the inclination of the sliding portion mutually This hardly occurs, and it is possible to effectively prevent the occurrence of thermal distortion in each part of the exhaust manifold M, and to improve the durability thereof. The insulation type exhaust manifold M in accordance with a third embodiment of the present invention shown in FIG. 7 is obtained by connecting a single common exhaust collecting pipe 6 to the four exhaust monotube 5 1 to 5 4, the The heat retaining structure and the thermal elongation absorbing structure are substantially the same as those of the first embodiment. In the drawing, the same reference numerals are given to the parts corresponding to those of the first embodiment, and the description is omitted. . Although the embodiment of the present invention has been described in detail, various design changes can be made in the present invention without departing from the gist thereof. For example, the number and shape of the single exhaust pipe and the exhaust collecting pipe can be freely selected according to the number and type of cylinders of the engine. Further, the heat insulating spaces 12 and 17 can be filled with a heat insulating material. As described above , according to the present invention , an upper flange, a plurality of exhaust pipes connecting each upstream end to the upper flange, and a downstream end of these exhaust pipes are provided. An exhaust manifold connected to the exhaust manifold, and a lower flange connected to a downstream end of the exhaust manifold, wherein each of the pipes is formed of a double wall. The pipe is composed of an inner collecting pipe and an outer collecting pipe arranged in a double inner and outer pipe, and the upstream end of the inner collecting pipe and the
The upstream end of the outer collecting pipe and the downstream end of the exhaust single pipe;
Mutually fixed integrally, wherein the annular recess formed in the downstream end portion peripheral surface of the outer collection tube, an annular mesh member slidably supporting the outer circumferential surface of the inner collector pipe, the annular concave
Part slidably mounted with respect to the so bound the lower flange, the difference in axial thermal expansion of the inner side collecting pipe and the outer collecting pipe, the inner side collecting pipe at the downstream end of the outer collecting pipe and between the mesh member, it is possible to absorb I by the one of the sliding <br/> between the outer collecting pipe and the mesh member. Therefore,
Even if sliding failure occurs due to foreign matter being caught in one of the sliding parts, the difference in thermal expansion in the axial direction can be absorbed without any trouble by the operation of the other sliding part. Can be improved. In addition, when both sliding parts operate normally, the difference in thermal expansion between the inner collecting pipe and the outer collecting pipe in the axial direction is shared by the two sliding parts. It is small and can contribute to improving the durability of the mesh member. In particular, the upstream end of the inner collecting pipe and the outer end
The upstream end of the collecting pipe and the downstream end of the exhaust pipe are
Are integrally fixed to each other at the same place.

【図面の簡単な説明】 【図1】本発明の第1実施例に係る保温型排気マニホー
ルドを備えたエンジンの側面図 【図2】上記排気マニホールドの斜視図 【図3】上記排気マニホールドの一部縦断正面図 【図4】図3の4部拡大図 【図5】図1の5−5線断面図 【図6】図5の6−6線断面図 【図7】本発明の第2実施例を示す排気マニホールドの
縦断正面図 【符号の説明】 E・・・・・エンジン M・・・・・排気マニホールド 21 〜24 ・・・排気ポート 51 〜54 ・・・排気単管 61 ,62 ,6・・・排気集合管 15・・・・内側管(内側集合管) 16・・・・外側管(外側集合管) 17・・・・断熱空間 20・・・・メッシュ部材
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view of an engine provided with a heat retaining type exhaust manifold according to a first embodiment of the present invention. FIG. 2 is a perspective view of the exhaust manifold. FIG. FIG. 4 is an enlarged view of part 4 in FIG. 3 FIG. 5 is a sectional view taken along line 5-5 of FIG. 1 FIG. 6 is a sectional view taken along line 6-6 of FIG. 5 FIG. exemplary longitudinal sectional front view of the exhaust manifold of an example eXPLANATION oF REFERENCE nUMERALS E · · · · · engine M · · · · · exhaust manifold 21 to 24 ... exhaust port 5 1 to 5 4 ... exhaust single Pipes 6 1 , 6 2 , 6 ... Exhaust collecting pipe 15 ... Inner pipe (inner collecting pipe) 16 ... Outer pipe (outer collecting pipe) 17 ... Insulated space 20 ... Mesh member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松田 卓 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (72)発明者 山田 達己 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (72)発明者 加藤 誠司 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (72)発明者 藤森 浩一 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (72)発明者 古橋 一弘 静岡県浜松市豊町508番地の1 株式会 社ユタカ技研内 (56)参考文献 特開 平7−42547(JP,A) 特開 平8−74566(JP,A) 特開 平9−280046(JP,A) (58)調査した分野(Int.Cl.7,DB名) F01N 7/10 F01N 7/08 F01N 7/14 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Taku Komatsuda 1-4-1 Chuo, Wako-shi, Saitama Pref. Inside of Honda R & D Co., Ltd. (72) Tatsumi Yamada 1-4-1 Chuo, Wako-shi, Saitama Pref. Inside the Honda R & D Co., Ltd. (72) Inventor Seiji Kato 1-4-1, Chuo, Wako-shi, Saitama Prefecture Stock Company Inside the Honda R & D Co., Ltd. (72) Koichi Fujimori 1-4-1, Chuo Wako-shi, Saitama Stock Company Within the Technical Research Institute (72) Inventor Kazuhiro Furuhashi 508-1, Yutakamachi, Hamamatsu-shi, Shizuoka Prefecture Inside Yutaka Giken Co., Ltd. (56) References JP-A-7-42547 (JP, A) JP-A 8-74566 (JP) , A) JP-A-9-280046 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F01N 7/10 F01N 7/08 F01N 7/14

Claims (1)

(57)【特許請求の範囲】 【請求項1】 部フランジ(7)と,この上部フラン
ジ(7)に各上流側端部を結合する複数の排気単管(5
1 〜54 )と,これら排気単管(51 〜54)の下流側
端部に結合される排気集合管(61 ,62 ,6)と,こ
の排気集合管(61 ,62 ,6)の下流側端部に結合さ
れる下部フランジ(8)とを備え,各管部を二重壁で構
成した,エンジンの保温型排気マニホールドにおいて, 前記排気集合管(61 ,62 ,6)を,内外二重に配置
した内側集合管(15)及び外側集合管(16)から構
成し,前記内側集合管(15)の上流側端部と前記外側
集合管(16)の上流側端部と前記排気単管(5 1 〜5
4 )の下流側端部との三者を同一箇所で相互に一体に
着し,前記外側集合管(16)の下流側端部内周面に形
成した環状凹部(21)に,前記内側集合管(15)
の外周面を摺動自在に支承する環状のメッシュ部材(2
0)を,該環状凹部(21)に対し摺動自在に装着し,
前記外側集合管(16)の下流側端部に前記下部フラン
ジ(8)を結合したことを特徴とする,エンジンの保温
型排気マニホールド。
(57) and the Patent Claims 1] upper flange (7), a plurality of exhaust single pipe coupling each upstream end to the upper flange (7) (5
And 1-5 4), the downstream exhaust collecting pipe which is coupled to an end portion (6 1, 6 2, 6), the exhaust collecting pipe (6 1 of the exhaust monotube (5 1 to 5 4), 6 2, 6) and a lower flange (8) which is coupled to the downstream end of each tube portion is constituted by a double wall, in heat insulation type exhaust manifold of an engine, the exhaust collecting pipe (6 1, 6 2 , 6) are composed of an inner collecting pipe (15) and an outer collecting pipe (16) arranged in an inner and outer doubly, and the upstream end of the inner collecting pipe (15) and the outer collecting pipe (15).
The exhaust monotube the upstream end of the collecting pipe (16) (5 1 to 5
4 ) and the downstream end of the outer collecting pipe (16) are integrally fixed to each other at the same location, and the annular recess (21) formed on the inner peripheral surface of the downstream end of the outer collecting pipe (16). Is the inner collecting pipe (15)
Annular mesh member (2) that slidably supports the outer peripheral surface of
0) is slidably mounted on the annular recess (21) ,
A warm exhaust manifold for an engine, wherein the lower flange (8) is connected to a downstream end of the outer collecting pipe (16).
JP10977398A 1998-04-20 1998-04-20 Insulated exhaust pipe for engine Expired - Fee Related JP3433097B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10977398A JP3433097B2 (en) 1998-04-20 1998-04-20 Insulated exhaust pipe for engine
DE19917604A DE19917604C5 (en) 1998-04-20 1999-04-19 Heat insulated exhaust manifold
US09/293,957 US6155046A (en) 1998-04-20 1999-04-19 Heat-insulation type exhaust manifold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10977398A JP3433097B2 (en) 1998-04-20 1998-04-20 Insulated exhaust pipe for engine

Publications (2)

Publication Number Publication Date
JPH11303633A JPH11303633A (en) 1999-11-02
JP3433097B2 true JP3433097B2 (en) 2003-08-04

Family

ID=14518872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10977398A Expired - Fee Related JP3433097B2 (en) 1998-04-20 1998-04-20 Insulated exhaust pipe for engine

Country Status (1)

Country Link
JP (1) JP3433097B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319847B2 (en) 2018-09-19 2022-05-03 Tenneco Automotive Operating Company Inc. Exhaust device with noise suppression system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505288B2 (en) * 2004-08-30 2010-07-21 三恵技研工業株式会社 Engine exhaust system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742547A (en) * 1993-08-03 1995-02-10 Calsonic Corp Double pipe for exhaust system for vehicle
JP3257906B2 (en) * 1994-09-05 2002-02-18 本田技研工業株式会社 Engine exhaust purification device
JP3736894B2 (en) * 1996-04-15 2006-01-18 株式会社ユタカ技研 Engine exhaust pipe structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319847B2 (en) 2018-09-19 2022-05-03 Tenneco Automotive Operating Company Inc. Exhaust device with noise suppression system

Also Published As

Publication number Publication date
JPH11303633A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
JP3433097B2 (en) Insulated exhaust pipe for engine
EP1149993B1 (en) Vehicle engine exhaust system
JP4262381B2 (en) Double exhaust pipe for engine and exhaust manifold for engine
JP3433096B2 (en) Heated exhaust manifold for engine
JP3554482B2 (en) Engine warmed exhaust manifold
JP3999382B2 (en) Insulated exhaust manifold for engine
JP2009203804A (en) Silencer
US6687996B2 (en) Method of making an exhaust gas collector
JPH11303632A (en) Insulating type exhaust manifold of engine
JPH09280046A (en) Exhaust pipe structure for engine
JP3964321B2 (en) Vehicle exhaust system
JP3248744B2 (en) Engine exhaust system layout structure
JPS593136Y2 (en) Heat-retaining exhaust pipe
JP3971523B2 (en) Insulated exhaust manifold for engine
JP2959307B2 (en) Exhaust pipe of internal combustion engine
JPH0636271Y2 (en) Double exhaust pipe for engine
JP2000145442A (en) Heat-insulating exhaust manifold of engine
JP3355989B2 (en) Exhaust system for internal combustion engine
JP2000027642A (en) Exhaust manifold for multi-cylinder internal combustion engine
JP3497392B2 (en) Heated exhaust pipe for engine
JP2962438B2 (en) Exhaust manifold
CN218844414U (en) Improved structure of exhaust device
JP2000145448A (en) Thermal insulating type exhaust manifold of engine
JP2000154716A (en) Heat insulation type exhaust pipe for engine
JP4187838B2 (en) Double exhaust single pipe manufacturing method for exhaust manifold

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees