JP3453584B2 - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JP3453584B2
JP3453584B2 JP08534397A JP8534397A JP3453584B2 JP 3453584 B2 JP3453584 B2 JP 3453584B2 JP 08534397 A JP08534397 A JP 08534397A JP 8534397 A JP8534397 A JP 8534397A JP 3453584 B2 JP3453584 B2 JP 3453584B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
heat
boiling point
low boiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08534397A
Other languages
Japanese (ja)
Other versions
JPH10281580A (en
Inventor
至誠 藁谷
常雄 植草
和夫 千葉
健司 町沢
公治 山本
恭二 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP08534397A priority Critical patent/JP3453584B2/en
Publication of JPH10281580A publication Critical patent/JPH10281580A/en
Application granted granted Critical
Publication of JP3453584B2 publication Critical patent/JP3453584B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、冷熱取出媒体と
して低沸点冷媒を用いる吸収式冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator using a low boiling point refrigerant as a cold heat extraction medium.

【0002】[0002]

【従来の技術】蒸発器、吸収器、再生器、および凝縮器
を備え、再生器に温熱を与えるとともに、吸収器および
凝縮器に冷却水を導くことにより運転を行い、冷熱を得
る吸収式冷凍機がある。
2. Description of the Related Art An absorption refrigeration system provided with an evaporator, an absorber, a regenerator, and a condenser, which gives warm heat to the regenerator and operates by introducing cooling water to the absorber and the condenser to obtain cold heat. There is an opportunity.

【0003】蒸発器および凝縮器には冷媒(水など)が
収容され、吸収器および再生器には冷媒を吸収するため
の溶液が収容される。
A refrigerant (such as water) is contained in the evaporator and the condenser, and a solution for absorbing the refrigerant is contained in the absorber and the regenerator.

【0004】また、再生器に与えられる温熱として、エ
ンジンや燃料電池などの排熱あるいはガスバーナの温熱
等が利用される。この利用の仕方にも種々があり、例え
ば、高温側排熱を用いる二重効用吸収式冷凍機、低温側
排熱を用いる単効用吸収式冷凍機、高温熱と低温熱の両
方を用いる一重二重効用併用型吸収式冷凍機などがあ
る。
Further, as the heat applied to the regenerator, exhaust heat of the engine or fuel cell or the heat of the gas burner is used. There are various ways of using this, for example, a double-effect absorption chiller that uses high-temperature side exhaust heat, a single-effect absorption chiller that uses low-temperature side exhaust heat, and a single-duplex type that uses both high-temperature heat and low-temperature heat. There are heavy-duty combined-use absorption refrigerators.

【0005】このうち、単効用吸収式冷凍機は、蒸発
器、吸収器、再生器、凝縮器を有し、熱源機で得られる
温熱(低温熱)を再生器に与えるとともに、冷却塔を通
して得られる冷却水を吸収器および凝縮器に導くことに
より、運転を行う。この運転により蒸発器から冷熱が得
られ、その冷熱が熱輸送媒体を介して室内機に輸送され
る。
Of these, the single-effect absorption refrigerator has an evaporator, an absorber, a regenerator, and a condenser, and supplies the regenerator with warm heat (low-temperature heat) obtained from a heat source machine and obtains it through a cooling tower. The operation is carried out by introducing the cooling water to the absorber and the condenser. By this operation, cold heat is obtained from the evaporator, and the cold heat is transported to the indoor unit via the heat transport medium.

【0006】蒸発器で得られる冷熱を室内機に輸送する
ための熱輸送媒体としては、一般に水(冷水)が用いら
れるが、熱輸送動力の削減あるいは熱輸送配管からの漏
水事故を未然に防止することを目的として、低沸点冷媒
が採用される事例がある。
Water (cold water) is generally used as the heat transport medium for transporting the cold heat obtained by the evaporator to the indoor unit, but the heat transport power is reduced or water leakage from the heat transport pipe is prevented. In order to achieve this, there are cases where low boiling point refrigerants are adopted.

【0007】[0007]

【発明が解決しようとする課題】冷熱輸送に低沸点冷媒
を用いる吸収式冷凍機の場合、低沸点冷媒は蒸発器の伝
熱管内で凝縮する。この凝縮した液状の低沸点冷媒は伝
熱管内に溜まり込むことがあり、そうなると伝熱管が液
封された状態となり、凝縮熱伝達に寄与する有効伝熱面
積の割合が低くなってしまう問題が生じる。
In the case of an absorption refrigerating machine using a low boiling point refrigerant for transporting cold heat, the low boiling point refrigerant is condensed in the heat transfer tube of the evaporator. The condensed liquid low-boiling-point refrigerant may accumulate in the heat transfer tube, which causes the heat transfer tube to be in a liquid-sealed state, resulting in a problem that the ratio of the effective heat transfer area contributing to the condensation heat transfer becomes low. .

【0008】有効伝熱面積の割合の低下は、蒸発器にお
ける冷媒(または水)の蒸発温度の低下を招き、吸収式
冷凍機の運転効率を低下させる要因となる。
A decrease in the ratio of the effective heat transfer area leads to a decrease in the evaporation temperature of the refrigerant (or water) in the evaporator, which causes a reduction in the operating efficiency of the absorption refrigerator.

【0009】対策として、蒸発器の形状を相対的に大き
く設計する必要があるが、そうすると吸収式冷凍機の大
形化を招くという新たな問題が生じる。
As a countermeasure, the shape of the evaporator needs to be designed to be relatively large, but this causes a new problem that the size of the absorption refrigerator is increased.

【0010】本発明は上記の事情を考慮したもので、第
1の発明の吸収式冷凍機は、蒸発器の伝熱管内における
低沸点冷媒の凝縮熱伝達に寄与する有効伝熱面積の割合
を低沸点冷媒の凝縮量に関わらず高く確保することがで
き、これにより蒸発器の形状をコンパクトに設計するこ
とを可能にするとともに、蒸発温度の低下を防いで運転
効率の低下を回避できることを目的とする。
The present invention takes the above circumstances into consideration, and the absorption refrigerator of the first invention determines the ratio of the effective heat transfer area contributing to the condensation heat transfer of the low boiling point refrigerant in the heat transfer tube of the evaporator. It is possible to secure a high value regardless of the condensation amount of the low boiling point refrigerant, which makes it possible to design the shape of the evaporator compactly and to prevent the decrease of the evaporation temperature and avoid the decrease of the operating efficiency. And

【0011】第2の発明の吸収式冷凍機は、蒸発器の伝
熱管内における低沸点冷媒の凝縮熱伝達に寄与する有効
伝熱面積の割合を低沸点冷媒の凝縮量に関わらず高く確
保することができ、これにより蒸発器の形状をコンパク
トに設計することを可能にするとともに、蒸発温度の低
下を防いで運転効率の低下を回避でき、さらには外部へ
の冷熱供給効率の向上が図れることを目的とする。
The absorption refrigerating machine of the second invention ensures a high ratio of the effective heat transfer area contributing to the condensation heat transfer of the low boiling point refrigerant in the heat transfer tube of the evaporator regardless of the amount of condensation of the low boiling point refrigerant. As a result, it is possible to design the shape of the evaporator in a compact manner, prevent a decrease in the evaporation temperature, avoid a decrease in operating efficiency, and further improve the efficiency of supplying cold heat to the outside. With the goal.

【0012】[0012]

【課題を解決するための手段】第1の発明の吸収式冷凍
機は、蒸発器、吸収器、再生器、および凝縮器を備え、
再生器に温熱を与え、吸収器および凝縮器に冷却水を導
くことにより運転を行うものであって、蒸発器の伝熱管
に低沸点冷媒を導き、伝熱管内で凝縮した低沸点冷媒を
その伝熱管の中途部から出口部へバイパスする。
An absorption refrigerating machine of a first invention comprises an evaporator, an absorber, a regenerator, and a condenser,
It is operated by supplying heat to the regenerator and introducing cooling water to the absorber and the condenser.The low boiling point refrigerant is introduced into the heat transfer tube of the evaporator, and the low boiling point refrigerant condensed in the heat transfer tube is Bypass from the middle of the heat transfer tube to the outlet.

【0013】第2の発明の吸収式冷凍機は、蒸発器、吸
収器、再生器、および凝縮器を備え、再生器に温熱を与
え、吸収器および凝縮器に冷却水を導くことにより運転
を行うものであって、蒸発器の伝熱管に低沸点冷媒を循
環させ、その伝熱管の中途部の上流側から下流側にかけ
てバイパス流路を設けるとともに、伝熱管内で凝縮した
低沸点冷媒の過冷却を伝熱管の最終段で行う構成として
いる。
The absorption refrigerating machine of the second invention comprises an evaporator, an absorber, a regenerator, and a condenser, and heats the regenerator, and introduces cooling water into the absorber and the condenser to operate it. The low boiling point refrigerant is circulated in the heat transfer tube of the evaporator, a bypass flow path is provided from the upstream side to the downstream side of the heat transfer tube in the middle, and the low boiling point refrigerant condensed in the heat transfer tube is The cooling is performed at the final stage of the heat transfer tube.

【0014】[0014]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

(1)以下、この発明の第1実施例について図面を参照
して説明する。
(1) A first embodiment of the present invention will be described below with reference to the drawings.

【0015】吸収式冷凍機の全体的な構成を図2に示
す。
The overall structure of the absorption refrigerator is shown in FIG.

【0016】1は蒸発器で、容器内に、スプレヘッド1
a、伝熱管2、および液冷媒を収容するとともに、循環
用配管3および冷媒ポンプ4を付属して備える。冷媒ポ
ンプ4が運転されると、容器内の液冷媒が循環用配管3
を通って上下に循環する。循環する液冷媒は、後述の凝
縮器14から供給される液冷媒とともに、伝熱管2と熱
交換して蒸発する。
Reference numeral 1 is an evaporator, and a spray head 1 is provided in the container.
a, the heat transfer tube 2, and the liquid refrigerant are contained, and the circulation pipe 3 and the refrigerant pump 4 are additionally provided. When the refrigerant pump 4 is operated, the liquid refrigerant in the container is circulated in the piping 3 for circulation.
Circulate up and down through. The circulating liquid refrigerant exchanges heat with the heat transfer tube 2 and evaporates together with the liquid refrigerant supplied from the condenser 14 described later.

【0017】伝熱管2は配管21a,21bを介して室
内機23の熱交換器24に接続される。配管21a,2
1bには熱輸送媒体として低沸点冷媒が充填されてお
り、その低沸点冷媒が循環ポンプ22の運転により伝熱
管2と熱交換器24との間を循環する。
The heat transfer tube 2 is connected to the heat exchanger 24 of the indoor unit 23 via the pipes 21a and 21b. Piping 21a, 2
1b is filled with a low boiling point refrigerant as a heat transport medium, and the low boiling point refrigerant is circulated between the heat transfer tube 2 and the heat exchanger 24 by the operation of the circulation pump 22.

【0018】室内機23は、熱交換器24のほかに、室
内ファン25を備える。室内ファン25は、負荷である
室内空気を熱交換器24に通して循環させる。この循環
により、室内空気と低沸点冷媒との熱交換がなされる。
The indoor unit 23 includes an indoor fan 25 in addition to the heat exchanger 24. The indoor fan 25 circulates indoor air, which is a load, through the heat exchanger 24. By this circulation, heat exchange between the indoor air and the low boiling point refrigerant is performed.

【0019】蒸発器1の容器は、吸収器5の容器と連通
される。吸収器5は、容器内に、冷媒を吸収するための
溶液(LiBr溶液など)、および伝熱管6を収容して
いる。収容された溶液は、蒸発器1から流入する冷媒蒸
気を吸収し、低濃度となって容器内に溜まり込む。
The container of the evaporator 1 is in communication with the container of the absorber 5. The absorber 5 contains a solution (LiBr solution or the like) for absorbing a refrigerant and a heat transfer tube 6 in a container. The stored solution absorbs the refrigerant vapor flowing from the evaporator 1, becomes a low concentration, and accumulates in the container.

【0020】伝熱管6は、配管41a,41b,41c
および冷却水ポンプ42を介して冷却塔43に接続され
ており、冷媒が溶液に吸収されるときに発生するいわゆ
る吸収熱を冷却塔43から供給される冷却水に逃がす働
きをする。
The heat transfer tube 6 is composed of pipes 41a, 41b, 41c.
Also, it is connected to the cooling tower 43 via the cooling water pump 42, and has a function of releasing the so-called absorption heat generated when the refrigerant is absorbed in the solution to the cooling water supplied from the cooling tower 43.

【0021】冷却塔43は、ファン44を備え、そのフ
ァン44の運転によって冷却水の熱を外部に放出する。
The cooling tower 43 is equipped with a fan 44, and the heat of the cooling water is released to the outside by the operation of the fan 44.

【0022】吸収器5の容器の底部に配管7が接続さ
れ、その配管7に溶液ポンプ8が設けられる。配管7の
先は溶液熱交換器9の一方の流路を経由して再生器11
の上部に接続される。つまり、溶液ポンプ8の運転によ
り、吸収器5内の溶液が再生器11に供給される。
A pipe 7 is connected to the bottom of the container of the absorber 5, and a solution pump 8 is provided in the pipe 7. The end of the pipe 7 is passed through one of the flow paths of the solution heat exchanger 9 and the regenerator 11
Connected to the top of. That is, by operating the solution pump 8, the solution in the absorber 5 is supplied to the regenerator 11.

【0023】再生器11は、容器内に、スプレヘッド1
1a、伝熱管12、および溶液を収容している。伝熱管
12は、配管31a,31bを介して熱源機32に接続
されており、熱源機32から供給される温熱と吸収器5
から供給される溶液との熱交換を行なう。この熱交換に
より、溶液中の冷媒が蒸発する。
The regenerator 11 has a spray head 1 inside the container.
1a, the heat transfer tube 12, and the solution are contained. The heat transfer tube 12 is connected to the heat source device 32 via the pipes 31a and 31b, and the heat supplied from the heat source device 32 and the absorber 5 are connected.
Heat exchange with the solution supplied from. This heat exchange causes the refrigerant in the solution to evaporate.

【0024】再生器11の容器の底部に配管13が接続
され、その配管13の先は上記溶液熱交換器9の他方の
流路を経由して吸収器5の容器の上部に接続される。
A pipe 13 is connected to the bottom of the container of the regenerator 11, and the tip of the pipe 13 is connected to the upper part of the container of the absorber 5 via the other flow path of the solution heat exchanger 9.

【0025】再生器11の容器は、凝縮器14の容器と
連通される。凝縮器14は、容器内に液冷媒および伝熱
管15を収容している。伝熱管15は、上記吸収器5の
伝熱管6と共に配管41a,41b,41cおよび冷却
水ポンプ42を介して冷却塔43に接続されており、そ
の冷却塔43から供給される冷却水と再生器11から流
れてくる冷媒蒸気との熱交換を行なう。この熱交換によ
り、再生器11から流入する冷媒蒸気が液化し、その液
冷媒が容器内に溜まり込む。溜まり込んだ液冷媒は、配
管16を通って蒸発器1のスプレヘッド1aへと流れ
る。
The container of the regenerator 11 communicates with the container of the condenser 14. The condenser 14 accommodates the liquid refrigerant and the heat transfer tube 15 in a container. The heat transfer tube 15 is connected to the cooling tower 43 through the pipes 41a, 41b, 41c and the cooling water pump 42 together with the heat transfer tube 6 of the absorber 5, and the cooling water supplied from the cooling tower 43 and the regenerator. Heat exchange with the refrigerant vapor flowing from 11 is performed. By this heat exchange, the refrigerant vapor flowing from the regenerator 11 is liquefied, and the liquid refrigerant is accumulated in the container. The accumulated liquid refrigerant flows through the pipe 16 to the spray head 1a of the evaporator 1.

【0026】このような構成において、蒸発器1のとく
に伝熱管2に関し、図1に示す構成が採用される。
In such a structure, the structure shown in FIG. 1 is adopted for the heat transfer tube 2 of the evaporator 1.

【0027】すなわち、低沸点冷媒が流れる伝熱管2の
中途部から出口部(最終段)にかけて、バイパス流路5
1が接続される。バイパス流路51は、伝熱管2の中途
部2a,2bにそれぞれ接続される支流路51a,51
bを有し、これら支流路を伝熱管2の出口部2c近傍で
集合接続した形となっている。
That is, the bypass passage 5 is provided from the midway portion of the heat transfer tube 2 through which the low boiling point refrigerant flows to the outlet portion (final stage).
1 is connected. The bypass flow passage 51 is a tributary flow passage 51a, 51 connected to the midway portions 2a, 2b of the heat transfer tube 2, respectively.
b, and these tributary flow paths are collectively connected in the vicinity of the outlet 2c of the heat transfer tube 2.

【0028】伝熱管2の中途部2a,2bは、管路が屈
曲したところであり、熱交換によって凝縮した液状の低
沸点冷媒が溜まり易いところである。
The middle portions 2a and 2b of the heat transfer tube 2 are where the conduits are bent, and the liquid low boiling point refrigerant condensed by heat exchange is likely to accumulate.

【0029】つぎに、上記の構成の作用を説明する。Next, the operation of the above configuration will be described.

【0030】吸収器5内の溶液は、冷媒を吸収して低濃
度となる。この希溶液が溶液ポンプ8の運転により、配
管7を介して再生器11に送られる。
The solution in the absorber 5 absorbs the refrigerant to have a low concentration. This diluted solution is sent to the regenerator 11 via the pipe 7 by the operation of the solution pump 8.

【0031】熱源機32の温熱エネルギが再生器11に
与えられ、その温熱エネルギにより、再生器11内の溶
液中の冷媒が蒸発する。
The heat energy of the heat source device 32 is applied to the regenerator 11, and the heat energy causes the refrigerant in the solution in the regenerator 11 to evaporate.

【0032】再生器11に残る溶液は、冷媒が蒸発する
ことで高濃度となる。この濃溶液は配管13を通って吸
収器5に戻る。なお、配管13を通る濃溶液は熱エネル
ギを受けて温度が高まっており、その温熱が溶液熱交換
器9において、配管7を通る希溶液に移行する。この移
行により、熱エネルギが溶液の加熱に無駄なく有効利用
される。
The solution remaining in the regenerator 11 becomes highly concentrated as the refrigerant evaporates. This concentrated solution returns to the absorber 5 through the pipe 13. The concentrated solution passing through the pipe 13 has increased in temperature by receiving heat energy, and the heat of the concentrated solution is transferred to the dilute solution passing through the pipe 7 in the solution heat exchanger 9. By this transfer, thermal energy is effectively used for heating the solution without waste.

【0033】再生器11内に生じた冷媒蒸気は、凝縮器
14に流れ、そこで伝熱管15内を流れる冷却水に熱を
奪われて凝縮する。こうして、凝縮器14内に液冷媒が
溜まり、それが配管16を通って蒸発器1に流れる。
The refrigerant vapor generated in the regenerator 11 flows into the condenser 14, where heat is taken by the cooling water flowing in the heat transfer tube 15 and condensed. In this way, the liquid refrigerant accumulates in the condenser 14 and flows through the pipe 16 to the evaporator 1.

【0034】蒸発器1に流れた液冷媒は、スプレヘッド
1aから伝熱管2に向けスプレーされる。スプレーされ
た液冷媒は伝熱管2を通る低沸点冷媒から熱を奪って蒸
発する。伝熱管2内の低沸点冷媒は、熱を奪われること
により凝縮し、循環ポンプ22の運転により室内機23
に送られる。室内機23では、低沸点冷媒により室内空
気が冷却される。
The liquid refrigerant flowing into the evaporator 1 is sprayed from the spray head 1a toward the heat transfer tube 2. The sprayed liquid refrigerant takes heat from the low boiling point refrigerant passing through the heat transfer tube 2 and evaporates. The low-boiling-point refrigerant in the heat transfer tube 2 is condensed by being deprived of heat, and the circulation pump 22 is operated to operate the indoor unit 23.
Sent to. In the indoor unit 23, the indoor air is cooled by the low boiling point refrigerant.

【0035】蒸発器1内に生じた冷媒蒸気は、吸収器5
に流れて溶液に吸収される。以後、同様のサイクルが繰
り返される。
The refrigerant vapor generated in the evaporator 1 is absorbed by the absorber 5
Flows into and is absorbed by the solution. After that, the same cycle is repeated.

【0036】ところで、蒸発器1の伝熱管2内で凝縮し
た液状の低沸点冷媒は、中途部2a,2bからバイパス
流路51に流入し、そのバイパス流路51を通って伝熱
管2の出口部2cへ流れる。
By the way, the liquid low-boiling-point refrigerant condensed in the heat transfer tube 2 of the evaporator 1 flows into the bypass passage 51 from the midway portions 2a and 2b, passes through the bypass passage 51, and exits from the heat transfer tube 2. It flows to the part 2c.

【0037】このバイパスにより、伝熱管2には主とし
てガス状の低沸点冷媒が優先して流れることになり、そ
の低沸点冷媒ガスの凝縮熱伝達に寄与する有効伝熱面積
の割合は低沸点冷媒の凝縮量に関わらず高く確保され
る。
By virtue of this bypass, the gaseous low boiling point refrigerant will preferentially flow in the heat transfer tube 2, and the ratio of the effective heat transfer area contributing to the condensation heat transfer of the low boiling point refrigerant gas is low boiling point refrigerant. Highly secured regardless of the amount of condensation.

【0038】こうして、凝縮熱伝達に寄与する有効伝熱
面積の割合が高く確保されることにより、蒸発器1の形
状を大きく設計する必要がなく、逆にコンパクトに設計
することが可能であり、吸収式冷凍機の小形化に大きく
貢献できる。
By thus ensuring a high ratio of the effective heat transfer area contributing to the condensation heat transfer, it is not necessary to design the shape of the evaporator 1 to be large, and conversely, it is possible to design compactly. It can greatly contribute to the downsizing of absorption refrigerators.

【0039】また、凝縮熱伝達に寄与する有効伝熱面積
の割合が高く確保されることにより、蒸発器1における
冷媒の蒸発温度の低下を防ぐことができ、よって吸収式
冷凍機としての運転効率の低下を回避できる。
Further, since the ratio of the effective heat transfer area contributing to the condensation heat transfer is secured to be high, it is possible to prevent the evaporation temperature of the refrigerant in the evaporator 1 from being lowered, and hence the operation efficiency as the absorption refrigerator. Can be prevented from decreasing.

【0040】(2)次に、第2実施例について説明す
る。
(2) Next, a second embodiment will be described.

【0041】図3に示すように、低沸点冷媒が導かれる
伝熱管2の中途部の上流側から下流側にかけて、バイパ
ス流路52が接続される。バイパス流路52は、伝熱管
2の中途部上流域2a,2bにそれぞれ接続される支流
路52a,52bを有し、これら支流路を伝熱管2の中
途部下流域2cで集合接続した形となっている。
As shown in FIG. 3, a bypass flow path 52 is connected from the upstream side to the downstream side of the middle portion of the heat transfer tube 2 into which the low boiling point refrigerant is introduced. The bypass flow passage 52 has tributary flow passages 52a and 52b connected to the midstream upstream regions 2a and 2b of the heat transfer tube 2, respectively, and these tributary flow passages are collectively connected in the midstream downstream region 2c of the heat transfer pipe 2. ing.

【0042】伝熱管2の中途部上流域2a,2bは、管
路が屈曲したところであり、熱交換によって凝縮した液
状の低沸点冷媒が溜まり易いところである。
In the upstream areas 2a and 2b in the middle of the heat transfer tube 2, the pipe lines are bent and the liquid low boiling point refrigerant condensed by heat exchange is likely to accumulate.

【0043】また、バイパス流路52の支流路52a,
52bが集合接続されるところの中途部下流域2cに
は、低沸点冷媒受液器53が設けられる。低沸点冷媒受
液器53は、伝熱管2で凝縮した液状の低沸点冷媒をバ
イパス流路52からのバイパス分も含めて受容する。
Further, the tributary channels 52a of the bypass channel 52,
A low-boiling-point refrigerant receiver 53 is provided in the midstream downstream region 2c where 52b are collectively connected. The low-boiling-point refrigerant liquid receiver 53 receives the liquid low-boiling-point refrigerant condensed in the heat transfer tube 2 including the bypass portion from the bypass flow passage 52.

【0044】他の構成は第1実施例と同じである。The other structure is the same as that of the first embodiment.

【0045】作用を説明する。The operation will be described.

【0046】蒸発器1の伝熱管2内で凝縮した液状の低
沸点冷媒は、中途部上流域2a,2bからバイパス流路
52に流入し、そのバイパス流路52を通って伝熱管2
の中途部下流域2cへ流れる。このバイパスにより、伝
熱管2には主としてガス状の低沸点冷媒が優先して流れ
ることになり、低沸点冷媒ガスの凝縮熱伝達に寄与する
有効伝熱面積の割合は低沸点冷媒の凝縮量に関わらず高
く確保される。
The liquid low boiling point refrigerant condensed in the heat transfer tube 2 of the evaporator 1 flows into the bypass flow path 52 from the upstream areas 2a and 2b of the intermediate portion, and passes through the bypass flow path 52 to transfer the heat transfer tube 2 to the bypass flow path 52.
It flows to the downstream area 2c in the middle part. Due to this bypass, the gaseous low boiling point refrigerant is preferentially flown in the heat transfer tube 2, and the ratio of the effective heat transfer area that contributes to the condensation heat transfer of the low boiling point refrigerant gas is equal to the condensation amount of the low boiling point refrigerant. Highly secured regardless.

【0047】こうして、凝縮熱伝達に寄与する有効伝熱
面積の割合が高く確保されることにより、蒸発器1の形
状を大きく設計する必要がなく、逆にコンパクトに設計
することが可能であり、吸収式冷凍機の小形化に大きく
貢献できる。
By thus ensuring a high ratio of the effective heat transfer area contributing to the condensation heat transfer, it is not necessary to design the shape of the evaporator 1 to be large, and conversely, it is possible to design compactly. It can greatly contribute to the downsizing of absorption refrigerators.

【0048】また、凝縮熱伝達に寄与する有効伝熱面積
の割合が高く確保されることにより、蒸発器1における
冷媒の蒸発温度の低下を防ぐことができ、よって吸収式
冷凍機としての運転効率の低下を回避できる。
Further, since the ratio of the effective heat transfer area contributing to the condensation heat transfer is ensured to be high, it is possible to prevent the evaporation temperature of the refrigerant in the evaporator 1 from being lowered, and thus the operation efficiency as the absorption refrigerator. Can be prevented from decreasing.

【0049】ところで、伝熱管2で凝縮した液状の低沸
点冷媒は、バイパス流路52からのバイパス分も含め
て、低沸点冷媒受液器53に受容される。この受容によ
り、伝熱管2の中途部下流域2cから出口部2eにかけ
ての最終段領域2dには、液状の低沸点冷媒のみが流れ
る。
By the way, the liquid low boiling point refrigerant condensed in the heat transfer tube 2, including the bypass portion from the bypass passage 52, is received by the low boiling point refrigerant receiver 53. By this reception, only the liquid low boiling point refrigerant flows in the final stage region 2d from the midstream downstream region 2c to the outlet 2e of the heat transfer tube 2.

【0050】最終段領域2dにもスプレヘッド1aから
のスプレー液冷媒が十分に降りかかっており、よって最
終段領域2dを流れる液状の低沸点冷媒は過冷却され
る。最終段領域2dが低沸点冷媒過冷却熱交換器として
機能することになる。
The spray liquid refrigerant from the spray head 1a is sufficiently falling on the final stage region 2d, so that the liquid low boiling point refrigerant flowing through the final stage region 2d is supercooled. The final stage region 2d will function as a low boiling point refrigerant supercooling heat exchanger.

【0051】最終段領域2dで十分に過冷却された低沸
点冷媒は、配管21aを介して室内機23へと流れる。
室内機23へ流れる低沸点冷媒は、冷熱輸送過程で再蒸
発することのない安定した過冷却低沸点冷媒であるか
ら、外部の室内機23への冷熱供給効率が向上し、ひい
ては室内機23での冷房運転効率が高まる。
The low boiling point refrigerant which has been sufficiently supercooled in the final stage region 2d flows to the indoor unit 23 via the pipe 21a.
The low-boiling-point refrigerant flowing to the indoor unit 23 is a stable supercooled low-boiling-point refrigerant that does not re-evaporate in the cold heat transporting process, so that the efficiency of supplying cold heat to the external indoor unit 23 is improved, and thus the indoor unit 23 is improved. The cooling operation efficiency of is improved.

【0052】(3)第2実施例の変形例を図4に示して
いる。
(3) A modification of the second embodiment is shown in FIG.

【0053】蒸発器1の壁面に、上下方向に沿って複数
の連通室61が並設される。さらに、蒸発器1の壁面に
おいて、上記各連通室61と対向する側の壁面に、上下
方向に沿って複数の連通室62が並設される。
On the wall surface of the evaporator 1, a plurality of communication chambers 61 are arranged in parallel along the vertical direction. Further, on the wall surface of the evaporator 1, a plurality of communication chambers 62 are arranged side by side in the vertical direction on the wall surface on the side facing the communication chambers 61.

【0054】伝熱管2は複数本に分割されており、それ
ぞれの伝熱管2の両端開口が各連通室61および各連通
室62に接続される。この接続により、各伝熱管2が上
下方向に配列された状態で順次に連通される。
The heat transfer tube 2 is divided into a plurality of tubes, and the openings at both ends of each heat transfer tube 2 are connected to each communication chamber 61 and each communication chamber 62. By this connection, the heat transfer tubes 2 are sequentially communicated in a state where they are vertically arranged.

【0055】さらに、図5(図4に二点鎖線で囲む部分
の拡大図)に示すように、各連通室62の隔壁62aに
開口62bがそれぞれ形成されており、これら開口62
bを通して各連通室62間にバイパス流路が形成され
る。
Further, as shown in FIG. 5 (enlarged view of the portion surrounded by the chain double-dashed line in FIG. 4), openings 62b are formed in the partition walls 62a of the communication chambers 62, respectively.
A bypass flow path is formed between the communication chambers 62 through b.

【0056】このような構成によれば、配管21bを流
れる室内機23からの低沸点冷媒は先ず最上部の連通室
61を介して最上段の伝熱管2に流入し、その最上段の
伝熱管2に流入した低沸点冷媒は最上部の連通室62を
介して上から二段目の伝熱管2に流れる。二段目の伝熱
管2に流入した低沸点冷媒は上から二つ目の連通室61
を介し、上から三段目の伝熱管2に流れる。こうして、
低沸点冷媒は各伝熱管2を順次に流れながら凝縮し、配
管21aへと流出する。
According to such a configuration, the low boiling point refrigerant from the indoor unit 23 flowing through the pipe 21b first flows into the uppermost heat transfer tube 2 through the uppermost communication chamber 61, and the uppermost heat transfer tube 2 The low-boiling-point refrigerant flowing into 2 flows into the heat transfer tube 2 in the second stage from the top via the uppermost communication chamber 62. The low-boiling-point refrigerant that has flowed into the second-stage heat transfer tube 2 is the second communication chamber 61 from the top.
Flow through the heat transfer tube 2 in the third stage from above. Thus
The low boiling point refrigerant is condensed while sequentially flowing through the heat transfer tubes 2, and flows out to the pipe 21a.

【0057】各伝熱管2で凝縮した液状の低沸点冷媒
は、図示点々で示すように各伝熱管2の端部開口から流
れ落ちて各連通室62の隔壁62a上に溜まる。この溜
まった液状の低沸点冷媒は、各開口62b(バイパス流
路)を通って最下部の連通室62へ垂れ落ち、そこから
最下段の伝熱管2と最下部の連通室61を通って配管2
1aへ流れる。
The liquid low boiling point refrigerant condensed in each heat transfer tube 2 flows down from the end opening of each heat transfer tube 2 and accumulates on the partition wall 62a of each communication chamber 62 as shown by dots in the figure. The accumulated liquid low-boiling-point refrigerant drips into the lowermost communication chamber 62 through each opening 62b (bypass flow path), and from there, passes through the lowermost heat transfer tube 2 and the lowermost communication chamber 61 to be piped. Two
Flow to 1a.

【0058】このように、液状の低沸点冷媒を各開口6
2bを通してバイパスすることにより、各伝熱管2には
主としてガス状の低沸点冷媒が優先して流れることにな
り、その低沸点冷媒ガスの凝縮熱伝達に寄与する有効伝
熱面積の割合は低沸点冷媒の凝縮量に関わらず高く確保
される。
In this way, the liquid low boiling point refrigerant is supplied to each opening 6
By bypassing through the 2b, the gaseous low boiling point refrigerant mainly flows preferentially in each heat transfer tube 2, and the ratio of the effective heat transfer area contributing to the condensation heat transfer of the low boiling point refrigerant gas is low boiling point. Highly secured regardless of the amount of condensed refrigerant.

【0059】こうして、凝縮熱伝達に寄与する有効伝熱
面積の割合が高く確保されることにより、蒸発器1の形
状を大きく設計する必要がなく、逆にコンパクトに設計
することが可能であり、吸収式冷凍機の小形化に大きく
貢献できる。
By thus ensuring a high ratio of the effective heat transfer area contributing to the condensation heat transfer, it is not necessary to design the shape of the evaporator 1 to be large, and conversely, it is possible to design compactly. It can greatly contribute to the downsizing of absorption refrigerators.

【0060】また、凝縮熱伝達に寄与する有効伝熱面積
の割合が高く確保されることにより、蒸発器1における
冷媒の蒸発温度の低下を防ぐことができ、よって吸収式
冷凍機としての運転効率の低下を回避できる。
Further, by ensuring a high ratio of the effective heat transfer area contributing to the condensation heat transfer, it is possible to prevent a decrease in the evaporation temperature of the refrigerant in the evaporator 1, and thus the operation efficiency as an absorption refrigerator. Can be prevented from decreasing.

【0061】しかも、液状の低沸点冷媒は各開口62b
(バイパス流路)を通って最下部の連通室62へ垂れ落
ち、そこにまとめて収容される。この収容により、最下
段の伝熱管2には、液状の低沸点冷媒のみが流れる。つ
まり、最下部の連通室62が上記した低沸点冷媒受液器
53と同じ機能を果たすことになる。
In addition, the liquid low boiling point refrigerant has openings 62b.
It hangs down to the lowest communication chamber 62 through the (bypass flow path), and is housed together there. By this accommodation, only the liquid low boiling point refrigerant flows through the heat transfer tube 2 in the lowermost stage. That is, the lowermost communication chamber 62 has the same function as the low boiling point refrigerant receiver 53 described above.

【0062】最下段の伝熱管2にもスプレヘッド1aか
らのスプレー液冷媒が十分に降りかかっており、よって
最下段の伝熱管2を流れる液状の低沸点冷媒は過冷却さ
れる。最下段の伝熱管2が低沸点冷媒過冷却熱交換器と
して機能することになる。
The spray liquid refrigerant from the spray head 1a is sufficiently falling on the lowermost heat transfer tube 2 as well, so that the liquid low boiling point refrigerant flowing through the lowermost heat transfer tube 2 is subcooled. The lowermost heat transfer tube 2 functions as a low boiling point refrigerant subcooling heat exchanger.

【0063】最下段の伝熱管2で十分に過冷却された低
沸点冷媒は、最下部の連通室62および配管21aを介
して室内機23へと流れる。室内機23へ流れる低沸点
冷媒は、冷熱輸送過程で再蒸発することのない安定した
過冷却低沸点冷媒であるから、外部の室内機23への冷
熱供給効率が向上し、ひいては室内機23での冷房運転
効率が高まる。
The low boiling point refrigerant that has been sufficiently supercooled in the lowermost heat transfer tube 2 flows into the indoor unit 23 through the lowermost communication chamber 62 and the pipe 21a. The low-boiling-point refrigerant flowing to the indoor unit 23 is a stable supercooled low-boiling-point refrigerant that does not re-evaporate in the cold heat transporting process, so that the efficiency of supplying cold heat to the external indoor unit 23 is improved, and thus the indoor unit 23 is improved. The cooling operation efficiency of is improved.

【0064】(4)なお、上記各実施例では、単効用吸
収式冷凍機への適用について説明したが、高温側排熱を
用いる二重効用吸収式冷凍機や、高温熱と低温熱の両方
を用いる一重二重効用併用型吸収式冷凍機への適用も同
様に可能である。
(4) In each of the above embodiments, the application to the single-effect absorption refrigerating machine was explained, but a double-effect absorption refrigerating machine using high temperature side exhaust heat, both high temperature heat and low temperature heat. The same can be applied to a single-double-effect combined-use absorption refrigerating machine using.

【0065】その他、この発明は上記実施例に限定され
るものではなく、要旨を変えない範囲で種々変形実施可
能である。
Besides, the present invention is not limited to the above-mentioned embodiments, but various modifications can be made without departing from the scope of the invention.

【0066】[0066]

【発明の効果】以上述べたように、第1の発明の吸収式
冷凍機は、蒸発器の伝熱管内で凝縮した低沸点冷媒をそ
の伝熱管の中途部から出口部へバイパスする構成とした
ので、蒸発器の伝熱管内における低沸点冷媒の凝縮熱伝
達に寄与する有効伝熱面積の割合を低沸点冷媒の凝縮量
に関わらず高く確保することができ、これにより蒸発器
の形状をコンパクトに設計することを可能にするととも
に、蒸発温度の低下を防いで運転効率の低下を回避でき
る。
As described above, the absorption refrigerating machine of the first invention is configured to bypass the low boiling point refrigerant condensed in the heat transfer tube of the evaporator from the middle part of the heat transfer tube to the outlet part. Therefore, it is possible to secure a high ratio of the effective heat transfer area that contributes to the condensation heat transfer of the low boiling point refrigerant in the heat transfer tube of the evaporator regardless of the amount of condensation of the low boiling point refrigerant, which makes the shape of the evaporator compact. It is possible to prevent the decrease of the evaporation temperature and avoid the decrease of the operation efficiency.

【0067】第2の発明の吸収式冷凍機は、蒸発器の伝
熱管の中途部の上流側から下流側にかけてバイパス流路
を設けるとともに、伝熱管内で凝縮した低沸点冷媒の過
冷却を伝熱管の最終段で行う構成としたので、蒸発器の
伝熱管内における低沸点冷媒の凝縮熱伝達に寄与する有
効伝熱面積の割合を低沸点冷媒の凝縮量に関わらず高く
確保することができ、これにより蒸発器の形状をコンパ
クトに設計することを可能にするとともに、蒸発温度の
低下を防いで運転効率の低下を回避でき、さらには外部
への冷熱供給効率の向上が図れる。
The absorption refrigerating machine of the second invention is provided with a bypass flow passage from the upstream side to the downstream side of the middle part of the heat transfer tube of the evaporator and transfers the supercooling of the low boiling point refrigerant condensed in the heat transfer tube. Since it is configured at the final stage of the heat pipe, it is possible to secure a high ratio of the effective heat transfer area that contributes to the condensation heat transfer of the low boiling point refrigerant in the heat transfer tube of the evaporator regardless of the condensation amount of the low boiling point refrigerant. As a result, the shape of the evaporator can be designed compactly, the evaporation temperature can be prevented from decreasing, the operation efficiency can be prevented from decreasing, and the efficiency of supplying cold heat to the outside can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例における蒸発器の具体的な構成を断
面して示す図。
FIG. 1 is a cross-sectional view showing a specific configuration of an evaporator according to a first embodiment.

【図2】各実施例の全体的な構成を示す図。FIG. 2 is a diagram showing an overall configuration of each embodiment.

【図3】第2実施例における蒸発器の具体的な構成を断
面して示す図。
FIG. 3 is a sectional view showing a specific configuration of an evaporator according to a second embodiment.

【図4】第2実施例における蒸発器の変形例の構成を断
面して示す図。
FIG. 4 is a sectional view showing the configuration of a modified example of the evaporator in the second embodiment.

【図5】図4の要部を拡大して示す図。FIG. 5 is an enlarged view showing a main part of FIG.

【符号の説明】[Explanation of symbols]

1…蒸発器 2…伝熱管 5…吸収器 11…再生器 14…凝縮器 51…バイパス流路 52…バイパス流路 53…低沸点冷媒受液器 61…連通室 62…連通室 62a…隔壁 62b…開口 1 ... Evaporator 2 ... Heat transfer tube 5 ... Absorber 11 ... Regenerator 14 ... condenser 51 ... Bypass channel 52 ... Bypass channel 53 ... Low boiling point refrigerant receiver 61 ... Communication room 62 ... Communication room 62a ... Partition wall 62b ... opening

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 000004226 日本電信電話株式会社 東京都千代田区大手町二丁目3番1号 (74)上記1名の代理人 100058479 弁理士 鈴江 武彦 (外2名) (72)発明者 藁谷 至誠 東京都港区芝浦三丁目4番1号 株式会 社エヌ・ティ・ティファシリティーズ内 (72)発明者 植草 常雄 東京都港区芝浦三丁目4番1号 株式会 社エヌ・ティ・ティファシリティーズ内 (72)発明者 千葉 和夫 東京都港区芝浦三丁目4番1号 株式会 社エヌ・ティ・ティファシリティーズ内 (72)発明者 町沢 健司 茨城県土浦市神立町603番地 株式会社 日立製作所土浦工場内 (72)発明者 山本 公治 茨城県土浦市神立町603番地 株式会社 日立製作所土浦工場内 (72)発明者 河野 恭二 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所空調システム事業 部内 (56)参考文献 特開 平9−26223(JP,A) 特開 平8−327181(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 F25B 39/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (73) Patent holder 000004226 Nippon Telegraph and Telephone Corporation 2-3-1, Otemachi, Chiyoda-ku, Tokyo (74) Attorney for the above 1 person 100058479 Patent attorney Takehiko Suzue (2 outside) (72) Inventor Tosei Makoto Warabaya, 3-4-1, Shibaura, Minato-ku, Tokyo NTT Corporation (72) Inventor, Tsuneo Uekusa 3-4-1, Shibaura, Minato-ku, Tokyo N・ In the T-facilities (72) Inventor Kazuo Chiba 3-4-1, Shibaura, Minato-ku, Tokyo NTT Corporation (72) Inventor Kenji Machizawa 603 Kandamachi, Tsuchiura-shi, Ibaraki Hitachi Co., Ltd. Tsuchiura Plant (72) Inventor Koji Yamamoto 603 Kandachimachi, Tsuchiura City, Ibaraki Prefecture Hitachi Co., Ltd. Tsuchiura Plant (72) Inventor Kyoji Kono 4-6 Kanda Sugawadai, Chiyoda-ku, Tokyo Within Hitachi Air Conditioning Systems Division (56) References JP-A-9-26223 (JP, A) JP-A-8-327181 (JP, JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) F25B 15/00 F25B 39/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蒸発器、吸収器、再生器、および凝縮器
を備え、再生器に温熱を与え、吸収器および凝縮器に冷
却水を導くことにより運転を行う吸収式冷凍機におい
て、 前記蒸発器の伝熱管に低沸点冷媒を導き、伝熱管内で凝
縮した低沸点冷媒をその伝熱管の中途部から出口部へバ
イパスすることを特徴とする吸収式冷凍機。
1. An absorption refrigerating machine comprising an evaporator, an absorber, a regenerator, and a condenser, which heats the regenerator and introduces cooling water into the absorber and the condenser to operate. An absorption chiller, which introduces a low boiling point refrigerant into a heat transfer tube of a heat exchanger and bypasses the low boiling point refrigerant condensed in the heat transfer tube from an intermediate part of the heat transfer tube to an outlet part.
【請求項2】 蒸発器、吸収器、再生器、および凝縮器
を備え、再生器に温熱を与え、吸収器および凝縮器に冷
却水を導くことにより運転を行う吸収式冷凍機におい
て、 前記蒸発器の伝熱管に低沸点冷媒を循環させ、その伝熱
管の中途部の上流側から下流側にかけてバイパス流路を
設けるとともに、伝熱管内で凝縮した低沸点冷媒の過冷
却を伝熱管の最終段で行う構成としたことを特徴とする
吸収式冷凍機。
2. An absorption refrigerating machine comprising an evaporator, an absorber, a regenerator, and a condenser, wherein heat is applied to the regenerator and cooling water is introduced into the absorber and the condenser to operate. A low boiling point refrigerant is circulated in the heat transfer tube of the heat exchanger, and a bypass flow path is provided from the upstream side to the downstream side of the middle part of the heat transfer tube. An absorption chiller characterized by being configured in 1.
JP08534397A 1997-04-03 1997-04-03 Absorption refrigerator Expired - Lifetime JP3453584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08534397A JP3453584B2 (en) 1997-04-03 1997-04-03 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08534397A JP3453584B2 (en) 1997-04-03 1997-04-03 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH10281580A JPH10281580A (en) 1998-10-23
JP3453584B2 true JP3453584B2 (en) 2003-10-06

Family

ID=13856020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08534397A Expired - Lifetime JP3453584B2 (en) 1997-04-03 1997-04-03 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3453584B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110953740B (en) * 2019-12-23 2020-11-10 珠海格力电器股份有限公司 Refrigeration system for uniform-temperature cold plate and control method

Also Published As

Publication number Publication date
JPH10281580A (en) 1998-10-23

Similar Documents

Publication Publication Date Title
KR100746241B1 (en) Low temperature water two-stage absorbtion type refrigerator
EP2484992B1 (en) Air/water or water/water absorption water cooler using ammonia and lithium nitrate
US4546620A (en) Absorption machine with desorber-resorber
JPH06294554A (en) Absorption refrigerating machine
JP3453584B2 (en) Absorption refrigerator
JP2004190885A (en) Absorption compression refrigerating machine and refrigerating system
JP5402186B2 (en) Refrigeration equipment
JPH0953864A (en) Engine type cooling device
KR100981672B1 (en) Two-stage driven hot water absorption chiller
KR200155867Y1 (en) Condenser with integrated receiver drier
JP2004239558A (en) Absorption type cooling and heating machine
US5899092A (en) Chiller
KR101127521B1 (en) Single-effect, double stage generator, hot water driven absorption chiller
JP2009236440A (en) Gas heat pump type air conditioning device or refrigerating device
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP2004190886A (en) Absorption refrigerating machine and absorption refrigerating system
KR20200120190A (en) Absorption type chiller
KR100554061B1 (en) Absorption type refrigerator
JPH1183234A (en) Combined heat transfer equipment
CN214746567U (en) Refrigerating machine
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
KR102070875B1 (en) Absorption refrigeration system
JP2009068816A (en) Absorption refrigerating machine
JP5402187B2 (en) Refrigeration equipment
JP5260895B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term