JP3453158B2 - Gel electrolyte - Google Patents

Gel electrolyte

Info

Publication number
JP3453158B2
JP3453158B2 JP32256092A JP32256092A JP3453158B2 JP 3453158 B2 JP3453158 B2 JP 3453158B2 JP 32256092 A JP32256092 A JP 32256092A JP 32256092 A JP32256092 A JP 32256092A JP 3453158 B2 JP3453158 B2 JP 3453158B2
Authority
JP
Japan
Prior art keywords
weight
electrolyte
organogel
parts
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32256092A
Other languages
Japanese (ja)
Other versions
JPH06150941A (en
Inventor
博 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP32256092A priority Critical patent/JP3453158B2/en
Publication of JPH06150941A publication Critical patent/JPH06150941A/en
Application granted granted Critical
Publication of JP3453158B2 publication Critical patent/JP3453158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、イオン伝導度に優れて
薄型電池等の形成に好適なゲル状電解質に関する。 【0002】 【従来の技術】従来、ポリビニルアルコール又はポリエ
チレンオキシドからなるフィルムに電解質を含有させて
なる固体電解質が知られていた。しかしながら、脆くて
破損しやすく実用性に乏しい問題、電極との密着性に乏
しい問題、金属イオンの移動性又は溶解性に乏しい問題
などのため総じてイオン伝導度に劣る問題点があった。 【0003】 【発明が解決しようとする課題】本発明は、実用的強度
やイオン伝導度に優れるポリマーベースの電解質の開発
を課題とする。 【0004】 【課題を解決するための手段】本発明は、電解質を含有
するオルガノゲルからなり、オルガノゲルを形成するポ
リマーがポリビニルアルコールとポリエチレンオキシド
の混合ポリマー又は/及びビニルアルコール・エチレン
オキシド共重合体からなることを特徴とするゲル状電解
質を提供するものである。 【0005】 【作用】ビニルアルコールとエチレンオキシドを成分と
する上記のポリマーからなるオルガノゲルは、ゴム状の
性質を示して実用上充分な引張り、曲げ、捩じれ等の機
械的強度を有し薄膜形成も容易で柔軟で変形性に優れる
フィルムないしシートを容易に得ることができる(脆さ
の克服)。その結果、かかるオルガノゲルに電解質を含
有させてゲル状の電解質を形成することができる。 【0006】得られたゲル状電解質は、ビニルアルコー
ル成分による優れた金属イオンの溶解性とエチレンオキ
シド成分による活発なセグメント運動を介した優れた金
属イオンの伝導性を有すること、前記両成分の併用によ
る結晶性の低下でアモルファス性が向上すること、有機
溶媒を含有すること、柔軟性により電極と良好に密着さ
せうることなどから優れたイオン伝導度を示す。 【0007】 【実施例】本発明のゲル状電解質は、ポリビニルアルコ
ールとポリエチレンオキシドの混合ポリマー又は/及び
ビニルアルコール・エチレンオキシド共重合体からなる
ポリマーのオルガノゲルが電解質を含有してなる。 【0008】ポリビニルアルコールとしては、重合度が
500〜5000(重量平均分子量2.2万〜22
万)、就中1000〜3000で、ケン化度が80%以
上、就中85%以上のものが好ましく用いられる。重合
度が低すぎると結晶性が高くてゲル化しにくく、高すぎ
ると溶液粘度の増大で均質なオルガノゲルが形成されに
くい。またケン化度が80%未満では酢酸残基による立
体障害で凝集性に乏しくてゲル化しにくい。 【0009】ポリエチレンオキシドとしては、特に限定
はなく一般には重量平均分子量が約200万以下、就中
1万〜100万のものが用いられる。ポリエチレンオキ
シドの使用割合は、適宜に決定してよく一般にはポリビ
ニルアルコール100重量部あたり、1〜3000重量
部、就中10〜1000重量部、特に30〜300重量
部である。本発明においては、全体としての重量平均分
子量が約50万となる混合ポリマーとしても実用上充分
なオルガノゲルを得ることができる。 【0010】ビニルアルコール・エチレンオキシド共重
合体としては、ゲル化の点より重量平均分子量が2万〜
50万で、共重合体における酢酸ビニル単位の含有率が
20%以下、就中15%以下のものが好ましい。ビニル
アルコール単位(酢酸ビニル単位を含む)の含有割合
は、エチレンオキシド単位100あたり1〜3000、
就中10〜1000、特に30〜300が一般的であ
る。本発明においては、前記の混合ポリマーの場合と同
様、重量平均分子量が約50万の場合にも実用上充分な
オルガノゲルを得ることができる。ビニルアルコール・
エチレンオキシド共重合体の形態は任意で、ランダム共
重合体であってもよいし、ブロック共重合体であっても
よい。 【0011】ポリビニルアルコール、ポリエチレンオキ
シド及びビニルアルコール・エチレンオキシド共重合体
を併用する場合、ビニルアルコール単位(酢酸ビニル単
位を含む)及びエチレンオキシド単位に基づき上記した
混合ポリマーに準じた組成割合とすることが好ましい。
なおビニルアルコール・エチレンオキシド共重合体は、
均質なオルガノゲルを得やすく、高分子量による長い分
子鎖を介した分子間の絡まりで強靱なオルガノゲルを得
やすい点より特に好ましく用いうる。 【0012】オルガノゲルの形成は、例えばポリマー
(ポリビニルアルコールとポリエチレンオキシドの混合
ポリマー又は/及びビニルアルコール・エチレンオキシ
ド共重合体、以下同じ)の水溶液に凍結・融解、凍結・
乾燥、急冷等の処理を施して含水ゲルを得、それを乾燥
して有機溶媒に浸漬し水と有機溶媒を置換することによ
り行うことができる。含水ゲルのオルガノゲルへの置換
は、水素イオンよりも還元されにくい金属イオンの伝導
体の作製に際し、含水ゲルでは水の電気分解が優先され
るために電解質として機能しないことによる。 【0013】またジメチルスルホキシド、ジメチルホル
ムアミド、ジメチルアセトアミド、N−メチルピロリド
ンの如き極性の強い有機溶媒にポリマーを溶解させて放
置する方法によってもオルガノゲルを形成することがで
きる。この場合にはオルガノゲルを直接形成できる利点
がある。ただしイオン伝導度の向上等を目的としてプロ
ピレンカーボネートなど他の有機溶媒と置換することも
できる。前記方法によるオルガノゲルは、架橋剤を用い
た光照射や加熱によるものに比べ未反応の架橋剤を含有
しないので耐久性ないし耐電気的劣化性等に優れる利点
を有している。 【0014】上記の方法においては、30重量%以下、
就中10〜20重量%のポリマー濃度とすることが好ま
しい。一方、ポリマーの水溶液又は有機溶媒溶液にアル
カリ金属塩、遷移金属塩又は/及びかかる有機溶媒に対
し難溶性の金属水酸化物を添加することでゲル化を促進
でき含水ゲルやオルガノゲルの製造効率をあげることが
できる。また当該溶液に難溶性の金属水酸化物を生成す
る他種の金属塩を添加して水酸化ナトリウムや水酸化カ
リウム等のアルカリ溶液中に浸漬する方式によってもゲ
ル化を促進することができる。後者の場合には、金属塩
添加液を開口容器に入れてアルカリ溶液中に浸漬するこ
とで所望形態のゲル化体を形成することができる。 【0015】ちなみに前記のゲル化促進剤の具体例とし
ては、ナトリウム、カリウム、リチウムの如きアルカリ
金属のハロゲン化物や水酸化物、鉄、銅、ニッケル、ク
ロム、チタン、モリブデン、タングステンの如き遷移金
属のハロゲン化物や水酸化物、水酸化鉄、水酸化銅、水
酸化クロム、水酸化カルシウム、水酸化マグネシウムの
如き有機溶媒に対し難溶性の金属水酸化物、鉄、銅、ク
ロム、カルシウム、マグネシウムの如き難溶性の金属水
酸化物を生成する金属の塩化物等のハロゲン化物などが
あげられる。 【0016】ゲル化促進剤の使用量は、ポリマー100
重量部あたり200重量部以下、就中5〜150重量
部、特に20〜100重量部が一般的である。なおゲル
化促進剤として遷移金属からなる塩を用いた場合には、
得られるオルガノゲルの強靱性も向上させうる利点があ
る。 【0017】オルガノゲルに含有させる電解質について
は特に限定はなく、一般には例えばLiイオン、Naイオ
ン、Kイオンなどの陽イオンと、Iイオン、CF3SO3
イオン、BF4イオン、ClO4イオン、AlCl4イオン、
PF6イオン、AsF6イオン等の陰イオンとの組合せか
らなるアルカリ金属塩などが用いられる。 【0018】本発明のゲル状電解質の形成は、ポリマー
の含水ゲル又はオルガノゲルに電解質を含有させる方法
や、当該含水ゲル又はオルガノゲルを形成する際に電解
質を含有させる方法によっても行うことができる。 【0019】前者の方法としては例えば、含水ゲルをオ
ルガノゲルに置換する際にその有機溶媒に電解質を含有
させる方式、あるいはオルガノゲルにおける有機溶媒を
電解質含有の有機溶媒で置換する方式などがあげられ
る。 【0020】後者の方法としては、上記した方法でポリ
マーの含水ゲル又はオルガノゲルを形成する際に、その
ポリマー溶液に電解質を配合する方式などがあげられ
る。従ってこの場合には、ポリマーの含水ゲル又はオル
ガノゲルの形成と共にゲル状電解質が得られる。なお含
水ゲルの場合には溶媒の置換操作で電解質を保持させた
ままオルガノゲルとすることができる。 【0021】前記の方法において加える電解質が例えば
リチウム塩の如くゲル化促進剤としても機能する場合そ
の分はイオン伝導に寄与しないので、得られるポリマー
の含水ゲル又はオルガノゲル中に電解質の金属イオンが
イオン伝導に寄与しうる状態で残存するように調節する
必要がある。 【0022】従って電解質の使用量は、他のゲル化促進
剤の併用の有無により適宜に決定されることとなり、上
記したゲル化促進剤として機能する分に加えて、ポリマ
ーの含水ゲル又はオルガノゲル中に電解質として残存し
てイオン伝導に寄与する分が加えられる。ちなみにリチ
ウム塩をゲル化促進剤を兼ねる電解質として使用した場
合には、ポリマーが有するヒドロキシル基に対して1/
20倍以上(原子比)のリチウム塩の使用でイオン伝導
体としての特性が発揮される。 【0023】本発明においてゲル状電解質に含有させる
電解質量(イオン伝導寄与分)は、目的とするイオン伝
導度等に応じて適宜に決定され、一般にはポリマーに基
づきその100重量部あたり100重量部以下、就中5
〜50重量部とされる。 【0024】本発明のゲル状電解質は、任意な形態に形
成することができ、一般にはフィルムなどの形態とされ
る。ちなみにフィルム状の形態とされる場合その厚さ
は、適宜に決定することができるが、500μm以下、
特に1〜50μmの薄さとすることもできる。得られた
ゲル状電解質は、電池の形成等の適宜な目的に用いるこ
とができる。なお実用に際しては必要に応じて、例えば
数時間の減圧乾燥方式などにより過分な有機溶媒を除去
して滲出しの生じないものとすることもできる。 【0025】実施例1 重合度1400、ケン化度95%のポリビニルアルコー
ル10重量部と重量平均分子量6万のポリエチレンオキ
シド1重量部をジメチルスルホキシド50重量部に溶解
させ、その溶液にLiClO412重量部を加えて加熱下
に撹拌し、LiClO4の溶解で粘度が急激に上昇したの
ちガラスシャーレ内に展開して放置し、約10時間後に
シリコーンゴム状の挙動を示すオルガノゲルからなる電
解質シートを得た。前記の電解質シートを真空ポンプに
よる減圧下、60℃で2時間乾燥させて厚さ150μm
の滲出しを生じない状態とし、そのシートのイオン伝導
度を調べたところ(インピーダンス測定、以下同じ)、
4.0/102S/cmという優れた値を示した。 【0026】実施例2 重合度1500、ケン化度85%のポリビニルアルコー
ル10重量部と重量平均分子量6万のポリエチレンオキ
シド10重量部をジメチルスルホキシド90重量部に溶
解させ、その溶液にLiClO410重量部を加えて加熱
下に撹拌し、LiClO4の溶解で粘度が急激に上昇した
のちガラスシャーレ内に展開して放置し、約3時間後に
シリコーンゴム状の挙動を示すオルガノゲルからなる電
解質シートを得た。このシートのイオン伝導度は、1.
3/103S/cmと優れていた。 【0027】実施例3 重合度1300、ケン化度95%のポリビニルアルコー
ルブロックと、重合度130のポリエチレンオキシドブ
ロックからなる重量平均分子量20万の共重合体20重
量部をジメチルアセトアミド80重量部に溶解させ、そ
の溶液にLiClO430重量部を加えて加熱下に撹拌
し、LiClO4の溶解で粘度が急激に上昇したのちガラ
スシャーレ内に展開して放置し、約3時間後にシリコー
ンゴム状の挙動を示すオルガノゲルからなる電解質シー
トを得た。このシートのイオン伝導度は、4.5/10
2S/cmと優れていた。 【0028】実施例4 重合度1000、ケン化度約87%のポリビニルアルコ
ールブロック・重合度2000のポリエチレンオキシド
ブロック・重合度1000、ケン化度約87%のポリビ
ニルアルコールブロックからなる重量平均分子量50万
の共重合体20重量部をジメチルホルムアミド90重量
部に溶解させ、その溶液にLiClO410重量部を加え
て加熱下に溶解させたのち氷/エタノール浴で凍結、室
温での融解を2回繰り返してシリコーンゴム状の挙動を
示すオルガノゲルからなる電解質を得た。この電解質の
イオン伝導度は、2.0/103S/cmと優れていた。 【0029】実施例5 LiClO412重量部に代えて塩化第二鉄9重量部とLi
ClO43重量部を加えたほかは実施例1に準じ、放置後
約5時間でシリコーンゴム状の挙動を示す強靱なオルガ
ノゲルからなる厚さ100μmの電解質シートを得た。
このシートのイオン伝導度は、4.5/102S/cmと
優れていた。 【0030】実施例6 塩化第二鉄に代えて水酸化第二鉄を加えたほかは実施例
5に準じ、シリコーンゴム状の挙動を示す強靱なオルガ
ノゲルからなる厚さ100μm、イオン伝導度は4.0
/102S/cmの電解質シートを得た。 【0031】実施例7 重合度2000、ケン化度99%のポリビニルアルコー
ル15重量部と重量平均分子量15万のポリエチレンオ
キシド5重量部をジメチルスルホキシド80重量部に溶
解させ、その溶液に塩化第二銅30重量部を加えて加熱
下に撹拌しそれをシャーレに入れて1規定NaOHメタ
ノール溶液中に静置し、15時間後にシリコーンゴム状
の挙動を示す強靱な厚さ100μmのオルガノゲルシー
トを得た後、それをLiClO4の20重量%ジメチルス
ルホキシド溶液に浸漬して電解質シートを得た。このシ
ートのイオン伝導度は、2.0/103S/cmと優れて
いた。 【0032】実施例8 重合度2000、ケン化度90%のポリビニルアルコー
ルブロックと、重合度1000のポリエチレンオキシド
ブロックからなる重量平均分子量30万の共重合体20
重量部をジメチルアセトアミド80重量部に溶解させ、
その溶液に塩化第二銅20重量部とLiClO410重量
部を加えて加熱下に撹拌し、それを直径10mm(10ml
容)の試験管に入れドライアイス/エタノール冷媒中で
凍結させたのち室温で融解させる操作を繰り返して、塩
化第二銅添加後2時間で、前記融解状態において自立で
きる強度を有する強靱な含水ゲルを得たのち脱水処理
し、それをジメチルスルホキシド中で再膨潤させてオル
ガノゲルからなる電解質を得た。そのイオン伝導度は
1.5/103S/cmであった。 【0033】比較例1 蒸留水20mlに重合度1400、ケン化度95%のポリ
マー2重量部とLiClO43重量部を加え加熱下に撹拌
して水溶液とし、それをガラスシャーレ内に展開し乾燥
させて厚さ100μmのフィルムを得た。そのイオン伝
導度は7.5/105S/cmであった。 【0034】比較例2 重合度1400、ケン化度95%のポリビニルアルコー
ル11重量部とLiClO412重量部をジメチルスルホ
キシド50重量部に加熱撹拌下に溶解させ、LiClO4
の溶解で粘度が急激に上昇したのちガラスシャーレ内に
展開して放置し、約10時間後にシリコーンゴム状の挙
動を示すオルガノゲルからなる電解質シートを得、60
℃で2時間減圧乾燥させて厚さ150μmの滲出しを生
じない状態とし、そのシートのイオン伝導度を調べたと
ころ、4.5/103S/cmであった。 【0035】 【発明の効果】本発明のゲル状電解質は、ビニルアルコ
ールとエチレンオキシドを成分とするポリマーのオルガ
ノゲルからなるのでアモルファス性、金属イオンの溶解
性と伝導性に優れている。また柔軟性、取扱性に優れて
脆さによるクラック等が発生しにくく電極表面と良好に
密着させることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gel electrolyte having excellent ionic conductivity and suitable for forming a thin battery or the like. 2. Description of the Related Art Heretofore, a solid electrolyte in which an electrolyte is contained in a film made of polyvinyl alcohol or polyethylene oxide has been known. However, there is a problem that the ionic conductivity is generally low due to a problem that the material is brittle and easily broken and has poor practicality, a problem of poor adhesion to an electrode, a problem of poor mobility or solubility of metal ions, and the like. [0003] It is an object of the present invention to develop a polymer-based electrolyte having excellent practical strength and ionic conductivity. [0004] The present invention comprises an organogel containing an electrolyte, and the polymer forming the organogel is a mixed polymer of polyvinyl alcohol and polyethylene oxide or / and a vinyl alcohol / ethylene oxide copolymer. It is intended to provide a gel electrolyte characterized by the above. The organogel comprising the above-mentioned polymer containing vinyl alcohol and ethylene oxide has rubber-like properties and has practically sufficient mechanical strength such as tension, bending and torsion, and can easily form a thin film. And a film or sheet having excellent flexibility and deformability can be easily obtained (overcoming brittleness). As a result, a gel-like electrolyte can be formed by incorporating an electrolyte into such an organogel. The obtained gel electrolyte has excellent solubility of metal ions by a vinyl alcohol component and excellent conductivity of metal ions through vigorous segment movement by an ethylene oxide component. It exhibits excellent ionic conductivity because the amorphous property is improved by lowering the crystallinity, the organic solvent is contained, and the electrode can be brought into good contact with the electrode due to flexibility. DETAILED DESCRIPTION OF THE INVENTION The gel electrolyte of the present invention comprises an organogel of a mixed polymer of polyvinyl alcohol and polyethylene oxide and / or a polymer comprising a vinyl alcohol / ethylene oxide copolymer containing the electrolyte. The polyvinyl alcohol has a degree of polymerization of 500 to 5000 (weight average molecular weight of 22,000 to 22).
10,000), preferably 1000 to 3000, with a saponification degree of 80% or more, and especially 85% or more. If the degree of polymerization is too low, crystallinity is high and gelation is difficult. If it is too high, a homogeneous organogel is hardly formed due to an increase in solution viscosity. If the saponification degree is less than 80%, steric hindrance due to the acetic acid residue causes poor cohesion and makes it difficult to gel. The polyethylene oxide is not particularly limited and generally has a weight-average molecular weight of about 2,000,000 or less, especially 10,000 to 1,000,000. The proportion of polyethylene oxide to be used may be appropriately determined and is generally from 1 to 3000 parts by weight, preferably from 10 to 1000 parts by weight, especially from 30 to 300 parts by weight, per 100 parts by weight of polyvinyl alcohol. In the present invention, a practically sufficient organogel can be obtained even as a mixed polymer having a total weight average molecular weight of about 500,000. The vinyl alcohol / ethylene oxide copolymer has a weight average molecular weight of 20,000 or more from the viewpoint of gelation.
It is preferably 500,000, and the content of vinyl acetate units in the copolymer is 20% or less, particularly preferably 15% or less. The content ratio of vinyl alcohol units (including vinyl acetate units) is 1 to 3000 per 100 ethylene oxide units,
In particular, 10 to 1000, especially 30 to 300 is common. In the present invention, a practically sufficient organogel can be obtained even when the weight average molecular weight is about 500,000, as in the case of the above-mentioned mixed polymer. Vinyl alcohol
The form of the ethylene oxide copolymer is arbitrary, and may be a random copolymer or a block copolymer. When polyvinyl alcohol, polyethylene oxide and vinyl alcohol / ethylene oxide copolymer are used in combination, the composition ratio is preferably based on the above-mentioned mixed polymer based on vinyl alcohol units (including vinyl acetate units) and ethylene oxide units. .
The vinyl alcohol / ethylene oxide copolymer is
It is particularly preferably used because it is easy to obtain a homogeneous organogel, and it is easy to obtain a tough organogel due to entanglement of molecules through a long molecular chain due to a high molecular weight. The formation of the organogel can be carried out, for example, by freezing / thawing an aqueous solution of a polymer (a mixed polymer of polyvinyl alcohol and polyethylene oxide and / or a vinyl alcohol / ethylene oxide copolymer; the same applies hereinafter);
Drying, quenching, or the like may be performed to obtain a hydrogel, which may be dried, immersed in an organic solvent, and replaced with water and the organic solvent. The substitution of the hydrogel with the organogel is based on the fact that the hydrogel does not function as an electrolyte because the electrolysis of water takes precedence when producing a metal ion conductor that is less likely to be reduced than hydrogen ions. The organogel can also be formed by dissolving the polymer in a highly polar organic solvent such as dimethylsulfoxide, dimethylformamide, dimethylacetamide, or N-methylpyrrolidone and allowing it to stand. In this case, there is an advantage that the organogel can be directly formed. However, it can be replaced with another organic solvent such as propylene carbonate for the purpose of improving ionic conductivity and the like. The organogel obtained by the above method has an advantage that it is excellent in durability or electrical deterioration resistance, because it does not contain an unreacted cross-linking agent as compared with those obtained by light irradiation or heating using a cross-linking agent. In the above method, 30% by weight or less,
Preferably, the polymer concentration is from 10 to 20% by weight. On the other hand, by adding an alkali metal salt, a transition metal salt or / and a metal hydroxide that is hardly soluble in such an organic solvent to an aqueous solution or an organic solvent solution of a polymer, gelation can be promoted and the production efficiency of a hydrogel or an organogel can be improved. I can give it. Gelation can also be promoted by adding another type of metal salt that forms a hardly soluble metal hydroxide to the solution and immersing the solution in an alkaline solution such as sodium hydroxide or potassium hydroxide. In the latter case, a gelled product in a desired form can be formed by placing the metal salt additive solution in an open container and immersing it in an alkaline solution. Incidentally, specific examples of the above-mentioned gelling accelerator include halides and hydroxides of alkali metals such as sodium, potassium and lithium, and transition metals such as iron, copper, nickel, chromium, titanium, molybdenum and tungsten. Metal hydroxides that are hardly soluble in organic solvents such as halides and hydroxides, iron hydroxide, copper hydroxide, chromium hydroxide, calcium hydroxide and magnesium hydroxide, iron, copper, chromium, calcium and magnesium And halides such as chlorides of metals that form poorly soluble metal hydroxides. The amount of the gelling accelerator used is the amount of the polymer 100
It is generally 200 parts by weight or less, especially 5 to 150 parts by weight, especially 20 to 100 parts by weight per part by weight. In the case where a salt composed of a transition metal is used as the gelation accelerator,
There is an advantage that the toughness of the obtained organogel can be improved. The electrolyte to be contained in the organogel is not particularly limited. Generally, for example, cations such as Li ions, Na ions, and K ions, I ions, CF 3 SO 3
Ion, BF 4 ion, ClO 4 ion, AlCl 4 ion,
An alkali metal salt or the like which is composed of a combination with an anion such as PF 6 ion or AsF 6 ion is used. The gel electrolyte of the present invention can also be formed by a method of including an electrolyte in a hydrogel or organogel of a polymer or a method of including an electrolyte when forming the hydrogel or organogel. Examples of the former method include a method in which an electrolyte is contained in an organic solvent when a hydrogel is replaced with an organogel, and a method in which an organic solvent in an organogel is replaced with an organic solvent containing an electrolyte. The latter method includes, for example, a method of blending an electrolyte with the polymer solution when forming a hydrogel or organogel of a polymer by the above-mentioned method. Accordingly, in this case, a gel electrolyte is obtained together with the formation of a hydrogel or organogel of the polymer. In the case of a hydrogel, an organogel can be formed while retaining the electrolyte by a solvent replacement operation. When the electrolyte added in the above-mentioned method also functions as a gelling accelerator such as a lithium salt, the portion does not contribute to ion conduction, so that the metal ions of the electrolyte are contained in the hydrogel or organogel of the obtained polymer. It is necessary to adjust so as to remain in a state that can contribute to conduction. Therefore, the amount of the electrolyte used is appropriately determined depending on whether or not another gelling accelerator is used in combination. In addition to the above-mentioned function as the gelling accelerator, the amount of the electrolyte in the hydrogel or the organogel of the polymer is also considered. Is added as an electrolyte and contributes to ion conduction. By the way, when a lithium salt is used as an electrolyte also serving as a gelling accelerator, 1 / to the hydroxyl group of the polymer is used.
By using a lithium salt having a ratio of 20 times or more (atomic ratio), characteristics as an ion conductor are exhibited. In the present invention, the mass of the electrolyte (contribution to ionic conduction) to be contained in the gel electrolyte is appropriately determined according to the desired ionic conductivity and the like, and is generally 100 parts by weight per 100 parts by weight of the polymer. The following 5
To 50 parts by weight. The gel electrolyte of the present invention can be formed in any form, and is generally in the form of a film or the like. By the way, when it is in the form of a film, its thickness can be appropriately determined, but 500 μm or less,
In particular, it can be as thin as 1 to 50 μm. The obtained gel electrolyte can be used for an appropriate purpose such as formation of a battery. In practical use, if necessary, excess organic solvent may be removed by, for example, a vacuum drying method for several hours to prevent bleeding. Example 1 10 parts by weight of polyvinyl alcohol having a degree of polymerization of 1400 and a saponification degree of 95% and 1 part by weight of polyethylene oxide having a weight average molecular weight of 60,000 were dissolved in 50 parts by weight of dimethyl sulfoxide, and 12 parts of LiClO 4 was added to the solution. The mixture was stirred under heating, the viscosity increased sharply due to the dissolution of LiClO 4 , and then developed and left in a glass petri dish. After about 10 hours, an electrolyte sheet composed of an organogel having silicon rubber-like behavior was obtained. Was. The electrolyte sheet was dried at 60 ° C. for 2 hours under reduced pressure by a vacuum pump to a thickness of 150 μm.
When the sheet was checked for ionic conductivity (impedance measurement, the same applies hereinafter).
It exhibited an excellent value of 4.0 / 10 2 S / cm. Example 2 10 parts by weight of polyvinyl alcohol having a polymerization degree of 1500 and a saponification degree of 85% and 10 parts by weight of polyethylene oxide having a weight average molecular weight of 60,000 were dissolved in 90 parts by weight of dimethyl sulfoxide, and 10 parts by weight of LiClO 4 was added to the solution. The mixture was stirred under heating, and the viscosity increased sharply due to the dissolution of LiClO 4. After that, the mixture was developed in a glass Petri dish and allowed to stand. After about 3 hours, an electrolyte sheet composed of an organogel having a silicone rubber-like behavior was obtained. Was. The ionic conductivity of this sheet is:
It was excellent at 3/10 3 S / cm. Example 3 20 parts by weight of a copolymer having a weight average molecular weight of 200,000 consisting of a polyvinyl alcohol block having a degree of polymerization of 1300 and a saponification degree of 95% and a polyethylene oxide block having a degree of polymerization of 130 was dissolved in 80 parts by weight of dimethylacetamide. Then, 30 parts by weight of LiClO 4 was added to the solution, and the mixture was stirred under heating. After the viscosity increased sharply due to the dissolution of LiClO 4 , the solution was developed and left in a glass petri dish. Was obtained. The ionic conductivity of this sheet is 4.5 / 10
It was excellent at 2 S / cm. Example 4 A polyvinyl alcohol block having a degree of polymerization of 1000 and a saponification degree of about 87%, a polyethylene oxide block having a degree of polymerization of 2,000, and a weight average molecular weight of 500,000 comprising a polyvinyl alcohol block having a degree of polymerization of 1000 and a saponification degree of about 87% Was dissolved in 90 parts by weight of dimethylformamide, and 10 parts by weight of LiClO 4 was added to the solution, dissolved under heating, frozen in an ice / ethanol bath, and thawed at room temperature twice. Thus, an electrolyte composed of an organogel having a silicone rubber-like behavior was obtained. The ionic conductivity of this electrolyte was as excellent as 2.0 / 10 3 S / cm. Example 5 Instead of 12 parts by weight of LiCl 4, 9 parts by weight of ferric chloride and Li
In the same manner as in Example 1 except that 3 parts by weight of ClO 4 was added, an electrolyte sheet made of a tough organogel having a silicone rubber-like behavior and having a thickness of 100 μm was obtained in about 5 hours after standing.
The ionic conductivity of this sheet was as excellent as 4.5 / 10 2 S / cm. Example 6 The procedure of Example 5 was repeated, except that ferric hydroxide was used instead of ferric chloride. A tough organogel exhibiting a silicone rubber-like behavior was formed with a thickness of 100 μm and an ionic conductivity of 4 μm. .0
An electrolyte sheet of / 10 2 S / cm was obtained. Example 7 15 parts by weight of polyvinyl alcohol having a degree of polymerization of 2,000 and a saponification degree of 99% and 5 parts by weight of polyethylene oxide having a weight average molecular weight of 150,000 were dissolved in 80 parts by weight of dimethyl sulfoxide. After adding 30 parts by weight and stirring under heating, the mixture was placed in a petri dish and allowed to stand in a 1N NaOH methanol solution, and after 15 hours, a tough 100 μm thick organogel sheet showing a silicone rubber-like behavior was obtained. It was immersed in a 20% by weight solution of LiClO 4 in dimethyl sulfoxide to obtain an electrolyte sheet. The ionic conductivity of this sheet was excellent at 2.0 / 10 3 S / cm. Example 8 A copolymer 20 having a weight average molecular weight of 300,000 comprising a polyvinyl alcohol block having a degree of polymerization of 2,000 and a degree of saponification of 90% and a polyethylene oxide block having a degree of polymerization of 1,000.
Parts by weight dissolved in 80 parts by weight of dimethylacetamide,
To the solution, 20 parts by weight of cupric chloride and 10 parts by weight of LiClO 4 were added and stirred while heating.
(2) The procedure of placing in a test tube, freezing in dry ice / ethanol refrigerant and then thawing at room temperature is repeated, and 2 hours after the addition of cupric chloride, a tough hydrogel having a strength capable of being self-sustaining in the above-mentioned melting state. After dehydration treatment, it was re-swelled in dimethyl sulfoxide to obtain an organogel electrolyte. Its ionic conductivity was 1.5 / 10 3 S / cm. Comparative Example 1 2 parts by weight of a polymer having a degree of polymerization of 1400 and a saponification degree of 95% and 3 parts by weight of LiCl 4 were added to 20 ml of distilled water, stirred under heating to form an aqueous solution, which was developed in a glass dish and dried. Thus, a film having a thickness of 100 μm was obtained. Its ionic conductivity was 7.5 / 10 5 S / cm. [0034] Comparative Example 2 Polymerization degree 1400, dissolved under heating and stirring of polyvinyl alcohol 11 parts by weight of LiClO 4 12 parts by weight of 95% degree of saponification in dimethyl sulfoxide 50 parts by weight, LiClO 4
After the viscosity increased sharply due to the dissolution of the compound, the mixture was developed in a glass Petri dish and allowed to stand. After about 10 hours, an electrolyte sheet made of an organogel having silicon rubber-like behavior was obtained.
The sheet was dried under reduced pressure at a temperature of 2 ° C. for 2 hours to prevent bleeding of 150 μm in thickness, and the ionic conductivity of the sheet was determined to be 4.5 / 10 3 S / cm. The gel electrolyte of the present invention is made of an organogel of a polymer containing vinyl alcohol and ethylene oxide, and is therefore excellent in amorphous properties, solubility of metal ions and conductivity. Further, it is excellent in flexibility and handleability, hardly causes cracks and the like due to brittleness, and can be brought into good contact with the electrode surface.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01B 1/06 H01M 6/18 H01M 6/22 H01M 10/40 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01B 1/06 H01M 6/18 H01M 6/22 H01M 10/40 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 電解質を含有するオルガノゲルからな
り、オルガノゲルを形成するポリマーがポリビニルアル
コールとポリエチレンオキシドの混合ポリマー又は/及
びビニルアルコール・エチレンオキシド共重合体からな
ることを特徴とするゲル状電解質。
(57) [Claim 1] An organic gel containing an electrolyte, wherein the polymer forming the organogel is a mixed polymer of polyvinyl alcohol and polyethylene oxide or / and a vinyl alcohol / ethylene oxide copolymer. Characterized gel electrolyte.
JP32256092A 1992-11-05 1992-11-05 Gel electrolyte Expired - Lifetime JP3453158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32256092A JP3453158B2 (en) 1992-11-05 1992-11-05 Gel electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32256092A JP3453158B2 (en) 1992-11-05 1992-11-05 Gel electrolyte

Publications (2)

Publication Number Publication Date
JPH06150941A JPH06150941A (en) 1994-05-31
JP3453158B2 true JP3453158B2 (en) 2003-10-06

Family

ID=18145045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32256092A Expired - Lifetime JP3453158B2 (en) 1992-11-05 1992-11-05 Gel electrolyte

Country Status (1)

Country Link
JP (1) JP3453158B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3602274A1 (en) * 1986-01-25 1987-07-30 Hoechst Ag HALBACETALS OF GLYOXYL ACID ESTERS AND METHOD FOR ISOLATING GLYOXYL ACID ESTERS
JPH1135765A (en) * 1997-07-24 1999-02-09 Sharp Corp Solid polyelectrolyte and its production
CA2332839A1 (en) * 1999-03-23 2000-09-28 Nisshinbo Industries, Inc. Polymeric compound, binder resin, ion conductive polymer electrolyte composition and secondary cell
CN1249156C (en) 1999-03-23 2006-04-05 日清纺织株式会社 Electrolyte composition for electric double layer capacitor, solid polymer electrolyte composition for polarizable electrode, polarizable electrode, and electric double layer capacitor
WO2000057440A1 (en) * 1999-03-23 2000-09-28 Nisshinbo Industries, Inc. Electrolyte composition for electric double layer capacitor, solid polymer electrolyte, composition for polarizable electrode, polarizable electrode, and electric double layer capacitor
JP2005317902A (en) * 2004-03-29 2005-11-10 Kuraray Co Ltd Electrolyte composition for electric double-layer capacitor, and electric double-layer capacitor using the same

Also Published As

Publication number Publication date
JPH06150941A (en) 1994-05-31

Similar Documents

Publication Publication Date Title
JP2987474B2 (en) Solid electrolyte
JPH10237143A (en) Block-graft copolymer and polymer solid electrolyte produced from the same
JP2002525803A (en) Polymer-based hydroxide conductive membrane
JP3453158B2 (en) Gel electrolyte
CN113416273B (en) Degradable and low-temperature-resistant hydrogel electrolyte and preparation method and application thereof
KR20180056589A (en) Binder for power storage device electrode
CN111995770A (en) Preparation method of physical combined network hydrogel
JPH0789496B2 (en) Ion conductive polymer substance
CN111019159A (en) Low-temperature hydrogel electrolyte and preparation method thereof
JP4701404B2 (en) High ion conductive polymer solid electrolyte
WO2011154766A1 (en) Pan-peo gels with improved conductance and solvent retention
CN114085325A (en) Ion-conducting semi-interpenetrating network polymer and preparation method and application thereof
CN111704728B (en) Transparent ion-conductive cellulose hydrogel and preparation method and application thereof
JPH0687949A (en) Electrically conductive composite product
JP2003257236A (en) Polymer solid electrolyte
JP3453157B2 (en) Gel electrolyte
Noor et al. Preparation and characterization of a solid polymer electrolyte PEO‐ENR50 (80/20)‐LiCF3SO3
WO1983003322A1 (en) Electrolytes formed of solid solutions of closoboranes in a plastic macromolecular material and electrochemical generators containing such electrolytes
CN115028767B (en) Preparation method and application of graphene oxide/polymer composite anti-freezing hydrogel
Cha et al. Sticky poly (vinyl alcohol) hydrogels
JP3843505B2 (en) Polymer electrolyte and battery
CN109206564B (en) Crosslinked polymer and polymer electrolyte, preparation method thereof and high specific energy power battery
JPH06145364A (en) Production of organogel of polyvinyl alcohol
JP3601200B2 (en) Polymer electrolyte and method for producing the same
CN114075338A (en) Ultralow-temperature self-healing ionic conductive hydrogel and preparation method thereof

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080718

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130718

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130718