JP3452943B2 - Intercalate material / soluble conductive polymer material composite and electrode for secondary battery using the same - Google Patents

Intercalate material / soluble conductive polymer material composite and electrode for secondary battery using the same

Info

Publication number
JP3452943B2
JP3452943B2 JP11303692A JP11303692A JP3452943B2 JP 3452943 B2 JP3452943 B2 JP 3452943B2 JP 11303692 A JP11303692 A JP 11303692A JP 11303692 A JP11303692 A JP 11303692A JP 3452943 B2 JP3452943 B2 JP 3452943B2
Authority
JP
Japan
Prior art keywords
conductive polymer
soluble conductive
intercalating
secondary battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11303692A
Other languages
Japanese (ja)
Other versions
JPH05290618A (en
Inventor
利幸 加幡
利幸 大澤
俊茂 藤井
興利 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP11303692A priority Critical patent/JP3452943B2/en
Publication of JPH05290618A publication Critical patent/JPH05290618A/en
Application granted granted Critical
Publication of JP3452943B2 publication Critical patent/JP3452943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Non-Insulated Conductors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、インターカレート材料/可溶性
導電性高分子材料複合体、該複合体の製造方法、さらに
は該複合体を正極活物質として用いたことを特徴とする
二次電池に関する。
TECHNICAL FIELD The present invention relates to an intercalating material / soluble conductive polymer material composite, a method for producing the composite, and a secondary battery characterized by using the composite as a positive electrode active material. .

【0002】[0002]

【従来技術】近年、リチウムを負極活物質とするリチウ
ム二次電池が、高エネルギー密度を有する二次電池とし
て注目されている。しかし、リチウム電池の2次電池化
は負極材料によるサイクル特性の改善とともに正極材料
のサイクル特性、成型性、高エネルギー密度化が重要な
課題となるが、すべての要件を十分に満足するものは見
い出されていない。このリチウム二次電池に用いられる
正極活物質としてはこれまでチタン(Ti)、モリブデ
ン(Mo)、ニオブ(Nb)、クロム(Cr)、マンガ
ン(Mn)、バナジウム(V)、コバルト(Co)、及
びニッケル(Ni)などの金属の酸化物、カルコゲン化
合物又はポリアニリン、ポリピロールなどの導電性高分
子物質等が検討されている。しかし、上記無機カルコゲ
ン化合物や無機酸化物のような無機活物質を正極に用い
た場合、充、放電に伴なう電極反応でのカチオンの電極
中の拡散速度が遅く、また、無機活物質の電気伝導度が
低いため、それを用いた電極は内部インピーダンスが高
く、急速充、放電が難しく、かつ過放電に対し、可逆性
が悪いという問題点がある。また、電極活物質の可能性
としてアニオンを可逆的に挿入−放出させることで電極
反応を行なわすことができる導電性高分子がある。導電
性高分子は、成形、加工性の点で、プラスチックスであ
るために従来にない特徴を生かすことができ、また、1
00%の放電深度に対しても高いサイクル特性を示す。
しかし、この種の二次電池の問題点としては、活物質の
密度が低いため体積エネルギー密度が低いこと、また、
導電性高分子にアニオンを出し入れさせる場合、負極の
反応はカチオンの出し入れの反応であるため、電解液中
に電極反応に充分足りるだけの電解質が必要であり、か
つ、充、放電反応に伴い電解液濃度の変化が大きいた
め、液抵抗などの変化が大きく、スムーズな充、放電反
応を行うには、過剰な電解液が必要となる。このこと
は、やはり体積エネルギー密度を向上させる点で不利と
なる。これらの問題点を解決するため正極をカチオンイ
ンターカレート型物質と導電性高分子を混練し、互いの
長所を合わせ持つ電極を成型するという技術があるが複
合体化させるまでに至っておらず、高い電流で放電を行
うとサイクル特性は必ずしも良い電極ではなかった。ま
た、導電性高分子は充放電の繰り返しを行うことにより
膨潤、収縮を繰り返し、ついにはひび割れるなどの問題
点があった。従って、高エネルギー密度で信頼性の高い
リチウム二次電池は、いまだ充分なものが実現していな
い。
2. Description of the Related Art In recent years, lithium secondary batteries using lithium as a negative electrode active material have attracted attention as secondary batteries having high energy density. However, in order to make a lithium battery into a secondary battery, the cycle characteristics, formability, and high energy density of the positive electrode material are important issues as well as the improvement of the cycle characteristics by the negative electrode material, but it has been found that all requirements are sufficiently satisfied. It is not. The positive electrode active material used in this lithium secondary battery has hitherto been titanium (Ti), molybdenum (Mo), niobium (Nb), chromium (Cr), manganese (Mn), vanadium (V), cobalt (Co), Also, metal oxides such as nickel (Ni), chalcogen compounds or conductive polymer substances such as polyaniline and polypyrrole have been studied. However, when an inorganic active material such as the above inorganic chalcogen compound or an inorganic oxide is used for the positive electrode, the diffusion rate of cations in the electrode in the electrode reaction accompanying charging and discharging is slow, and the inorganic active material Since the electric conductivity is low, the electrode using it has a high internal impedance, which makes rapid charging and discharging difficult, and has the problem of poor reversibility with respect to overdischarge. In addition, as a possible electrode active material, there is a conductive polymer that can perform an electrode reaction by reversibly inserting and releasing anions. Since the conductive polymer is a plastic in terms of molding and processability, it can take advantage of the characteristics that have not existed in the past.
High cycle characteristics are exhibited even at a discharge depth of 00%.
However, the problem with this type of secondary battery is that the volume energy density is low due to the low density of the active material, and
When anion is taken in and out of the conductive polymer, the reaction of the negative electrode is a reaction of cation in and out, so an electrolyte sufficient in the electrolytic solution for the electrode reaction is necessary, and electrolysis with charge and discharge reaction Since the change in the liquid concentration is large, the change in the liquid resistance and the like is large, and an excessive amount of electrolytic solution is required for smooth charge and discharge reaction. This is also disadvantageous in improving the volumetric energy density. In order to solve these problems, there is a technique of kneading a positive electrode with a cationic intercalating type substance and a conductive polymer, and molding an electrode having advantages of each other, but it has not been made into a composite, When discharging at a high current, the cycle characteristics were not always good. Further, the conductive polymer has a problem that it repeats swelling and contraction by repeating charging and discharging, and finally cracks. Therefore, sufficient lithium secondary batteries with high energy density and high reliability have not yet been realized.

【0003】[0003]

【目的】本発明は、こうした実情の下に、内部インピー
ダンスが低く、集電効果、サイクル特性に優れ、かつ深
い放電深度の放電にも耐久性を有する高エネルギー密度
をもつ正極活物質とそれを用いた二次電池を提供するこ
とを目的とする。
[Object] To solve the above problems, the present invention provides a positive electrode active material having a low internal impedance, an excellent current collecting effect, a good cycle characteristic, and a high energy density that is durable even at a deep discharge depth. It is intended to provide a used secondary battery.

【0004】[0004]

【構成】本発明者らは上記問題点を解決すべく鋭意検討
を重ねた結果、電解質カチオンをインターカレートする
材料と導電性高分子材料を混合し、複合化した活物質が
優れた加工性、電極特性を示すことを見出し、さらに検
討を重ねた結果、特に電解質カチオンをインターカレー
トする材料の粒子を可溶性高分子で被覆したインターカ
レート材料/可溶性導電性高分子複合体粒子が電気伝導
度が高く、内部インピーダンスが低く、加工性に優れ、
かつ高エネルギー密度電極としての性能を有することを
見出した。即ち、本発明は、電解質カチオンをインター
カレートする材料粒子を、可溶性導電性高分子で被覆し
たことを特徴とするインターカレート材料/可溶性導電
性高分子複合体粒子、及び該複合体粒子を用いて成型し
た正極、さらには該正極を用いたことを特徴とする二次
電池である。
[Structure] The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result, mixed a material for intercalating an electrolyte cation and a conductive polymer material and formed a composite active material with excellent workability. As a result of further studies, it was found that intercalating material / soluble conductive polymer composite particles in which particles of a material that intercalates electrolyte cations are coated with a soluble polymer are electrically conductive. High degree, low internal impedance, excellent workability,
Moreover, they have found that they have a performance as a high energy density electrode. That is, the present invention provides an intercalating material / soluble conductive polymer composite particle characterized by coating a material particle for intercalating an electrolyte cation with a soluble conductive polymer, and the composite particle. It is a secondary battery characterized by using the positive electrode formed by using the positive electrode, and further using the positive electrode.

【0005】本発明によるところの導電性高分子材料
は、活物質としての能力を有する、電解液に溶解し
ない、導電性高分子間の結着性を有している。このと
き、インターカレート材料は導電性高分子材料に全体を
完全に被覆され、その結果インターカレート材料の周り
全てが導電性を帯びることとなる。本発明における可溶
性導電性高分子としては、溶媒に可溶な高分子材料であ
り、例えば次式(I)
The conductive polymer material according to the present invention has a capability as an active material, does not dissolve in an electrolytic solution, and has a binding property between conductive polymers. At this time, the intercalating material is completely covered with the conductive polymer material, so that the entire circumference of the intercalating material becomes conductive. The soluble conductive polymer in the present invention is a solvent-soluble polymer material, for example, the following formula (I)

【化1】 (式中R1、R2の少なくとも一方はアルキル基あるい
はアルコキシル基)
[Chemical 1] (In the formula, at least one of R1 and R2 is an alkyl group or an alkoxyl group)

【化2】 [Chemical 2]

【化3】 〔上式(II)および(III)において、R3〜R6は水
素、アルキル基、アリール基を表わす。〕で表わされる
ポリチオフェン誘導体の重合体、ポリアニリン系重合体
等を例示できるが、複合体の電池用電極への使用を考え
た場合ポリアニリン系重合体、特にポリアニリンが好ま
しい。これら可溶性導電性高分子材料はいずれもドーピ
ングにより高い電気伝導性を有し、電極材料としては1
0−3S/cm以上の電気伝導度を有することが望まし
い。これらの可溶性導電性は電気伝導度の高く集電能を
有し、結着能も有しており、さらに活物質として機能す
る。
[Chemical 3] [In the above formulas (II) and (III), R3 to R6 represent hydrogen, an alkyl group or an aryl group. Examples of the polymer of the polythiophene derivative represented by the above formula, polyaniline-based polymer, and the like can be given, but when considering the use of the composite as a battery electrode, a polyaniline-based polymer, particularly polyaniline, is preferable. All of these soluble conductive polymer materials have high electrical conductivity due to doping,
It is desirable to have an electrical conductivity of 0-3 S / cm or more. These soluble conductive materials have high electric conductivity, current collecting ability, binding ability, and further function as an active material.

【0006】本発明における電解質カチオンをインター
カレートする材料としては、クロム(Cr)、マンガン
(Mn)、バナジウム(V)、及びコバルト(Co)な
どの遷移金属の酸化物、カルコゲナイトあるいは遷移金
属とアルカリ金属あるいはアルカリ土類金属との複合酸
化物、フタロシアニンが用いられる。これらの物質の電
解質カチオン挿入、放出に伴なう電極電位が、可溶性導
電性高分子のアニオン挿入、放出に伴なう電極電位に比
較的近いものを用いることが好ましい。本発明に用いる
インターカレート材料としては粉末あるいはゲルの形態
で用いることが好ましい。粉末の場合、粉末の粒径とし
ては500μm以下、好ましくは1〜200μmであ
る。500μm以上では電極の成型性、エネルギー密度
が低下する。
Materials for intercalating the electrolyte cations in the present invention include transition metal oxides such as chromium (Cr), manganese (Mn), vanadium (V), and cobalt (Co), chalcogenite or transition metals. A phthalocyanine, which is a composite oxide with an alkali metal or an alkaline earth metal, is used. It is preferable to use those whose electrode potentials associated with the insertion and release of electrolyte cations of these substances are relatively close to the electrode potentials associated with the insertion and release of anions of the soluble conductive polymer. The intercalating material used in the present invention is preferably used in the form of powder or gel. In the case of powder, the particle size of the powder is 500 μm or less, preferably 1 to 200 μm. When it is 500 μm or more, the moldability and energy density of the electrode are lowered.

【0007】前記複合体粒子には、必要に応じて正極構
成成分として導電助剤を含有させることができる。導電
助剤としてはアセチレンブラック、アニリンブラック、
活性炭、グラファイト粉末などの導電性炭素粉末、ポリ
アクリロニトリル、ピッチ、セルロース、フェノールな
どを出発原料とした炭素体、炭素繊維、Ti、Sn、I
nなどの金属酸化物粉末、ステンレス、ニッケルなどの
金属粉末、繊維が挙げられる。これらの導電助剤に要求
される特性として高い電気伝導度に加え少ない添加量で
の効果が要求される。
The composite particles may contain a conductive additive as a constituent of the positive electrode, if necessary. Conductive aids include acetylene black, aniline black,
Activated carbon, conductive carbon powder such as graphite powder, carbon body starting from polyacrylonitrile, pitch, cellulose, phenol, etc., carbon fiber, Ti, Sn, I
Examples thereof include metal oxide powders such as n, metal powders such as stainless steel and nickel, and fibers. As the properties required for these conductive aids, in addition to high electrical conductivity, an effect with a small addition amount is required.

【0008】次に、本発明のインターカレート材料/可
溶性導電性高分子材料の複合体粒子の製造方法について
述べる。 (1)可溶性導電性高分子材料を適当な溶媒(A)へ溶
解した溶液にインターカレート材料粒子を分散し、この
分散液に可溶性導電性高分子の溶媒(A)に対して相溶
性のある溶媒(B)を添加し、可溶性導電性高分子をイ
ンターカレート材料粒子と共沈させることにより得る方
法、 (2)可溶性導電性高分子材料を適当な溶媒(A)へ溶
解した溶液にインターカレート材料粒子を分散し、溶媒
(A)を蒸発させることにより得る方法、が例示できる
が、可溶性導電性高分子溶液とインターカレート材料粒
子とのぬれ性の問題から、均一に可溶性導電性高分子材
料をインターカレート材料粒子に被覆するためには
(1)の方法が好ましい。
Next, a method for producing composite particles of the intercalating material / soluble conductive polymer material of the present invention will be described. (1) Disperse intercalating material particles in a solution in which a soluble conductive polymer material is dissolved in a suitable solvent (A), and the dispersion liquid is compatible with the solvent (A) of the soluble conductive polymer. A method in which a solvent (B) is added and the soluble conductive polymer is coprecipitated with particles of the intercalating material, (2) a solution of the soluble conductive polymer material dissolved in a suitable solvent (A) The method of obtaining by dispersing the intercalating material particles and evaporating the solvent (A) can be exemplified. However, due to the problem of the wettability between the soluble conductive polymer solution and the intercalating material particles, a uniform soluble conductive material can be obtained. The method (1) is preferable for coating the particles of the intercalating material with the hydrophilic polymer material.

【0009】可溶性導電性高分子材料を溶解するポリア
ルキルチオフェン誘導体の溶媒(A)としてはトルエ
ン、テトラヒドロフラン、ジメトキシエタン等が例示で
き、溶媒(B)としては水、プロピレンカーボネート、
γ−ブチルラクトン、メタノール、エタノールあるいは
これら混合物等を例示できる。ポリアニリン系化合物の
溶媒(A)としてはn−メチルピドリドン、ジメチルホ
ルムアミド、テトラヒドロフラン、ギ酸、ピリジン等が
例示でき、溶媒(B)としては水、メタノール、エタノ
ール、アセトニトリルあるいはこれらの混合物等を例示
することができる。この中で可溶性導電性高分子材料と
して、ポリアニリン系化合物、溶媒(A)としてギ酸、
溶媒(B)として水を用いる方法が本発明の効果が最も
高く、また経済的にも最も好ましい。
Examples of the solvent (A) for the polyalkylthiophene derivative capable of dissolving the soluble conductive polymer material include toluene, tetrahydrofuran and dimethoxyethane, and the solvent (B) includes water, propylene carbonate,
Examples include γ-butyl lactone, methanol, ethanol, and mixtures thereof. Examples of the solvent (A) for the polyaniline-based compound include n-methylpyridone, dimethylformamide, tetrahydrofuran, formic acid, pyridine, and the like, and examples of the solvent (B) include water, methanol, ethanol, acetonitrile, or a mixture thereof. it can. Among them, the soluble conductive polymer material is a polyaniline compound, the solvent (A) is formic acid,
The method of using water as the solvent (B) has the highest effect of the present invention and is most preferable from the economical viewpoint.

【0010】本発明の複合体粒子は、インターカレート
材料粒子を可溶性導電性高分子材料が被覆しているた
め、単に各材料を機械的に混合した場合よりも優れた電
気伝導性、加工性、エネルギー密度を有する。本発明の
複合体粒子に用いる可溶性導電性高分子材料の量として
は1〜99%、好ましくは2〜70%である。本発明の
インターカレート材料/可溶性導電性高分子材料複合体
粒子は電池、センサー、コンデンサー等の各種電気化学
素子への応用が可能であるが、特に電池の正電極への応
用が最も効果が高い。
Since the composite particles of the present invention cover the particles of the intercalating material with the soluble conductive polymer material, the electric conductivity and workability are superior to those obtained by simply mechanically mixing the materials. , With energy density. The amount of the soluble conductive polymer material used in the composite particles of the present invention is 1 to 99%, preferably 2 to 70%. The intercalating material / soluble conductive polymer material composite particles of the present invention can be applied to various electrochemical devices such as batteries, sensors, capacitors, etc., but is most effective when applied to the positive electrode of batteries. high.

【0011】本発明の電池の電解液溶媒はプロピレンカ
ーボネート、エチレンカーボネート、ブチレンカーボネ
ートなどのカーボネート類、テトラヒドロフラン、2−
メチルテトラヒドロフラン、1,2−ジメトキシエタ
ン、エトキシメトキシエタン、メチルジグライム、メチ
ルトリグライムなどのエーテル類、1,3−ジオキソラ
ン、4−メチルジオキソラン、ガンマブチルラクトン、
スルホラン、3−メチルスルホランなど単独あるいは混
合で用いることができ、カーボネート類を主体にエーテ
ル類、ラクトンの混合系は特に優れた高エネルギー容量
を示す。特に電解液の安定性という点ではラクトン系が
優れる。
The electrolyte solvent for the battery of the present invention includes carbonates such as propylene carbonate, ethylene carbonate and butylene carbonate, tetrahydrofuran and 2-
Ethers such as methyltetrahydrofuran, 1,2-dimethoxyethane, ethoxymethoxyethane, methyldiglyme, and methyltriglyme, 1,3-dioxolane, 4-methyldioxolane, gammabutyllactone,
Sulfolane, 3-methylsulfolane and the like can be used alone or in a mixture, and a mixed system of carbonates as a main component and ethers and lactones shows a particularly excellent high energy capacity. Particularly, the lactone type is excellent in terms of stability of the electrolytic solution.

【0012】また、本発明における電解質塩はハロゲン
を含有するアニオンとカチオンとからなり、以下のよう
なものが例示できる。 (1)陰イオン Cl-、Br-、I-などのハロゲンアニオン、PF6 -
SbF6 -、AsF6 -、SbCl6 -のようなVa族の元素
のハロゲン化物アニオン;BF4 -のようなIIIa族の元
素ハロゲン化物アニオン;ClO4 -のような過塩素酸ア
ニオンなど。 (2)陽イオン Li(+)、Na(+)、K(+)のようなアルカリ金
属イオン、(R4N)(+)[R:炭素数1〜20の炭
化水素基]など。 上記の電解質イオンを与える化合物の具体例としては、
LiPF6、LiSbF6、LiAsF6、LiClO4
NaClO4、KPF6、KSbF6、KAsF6、KCl
4、[(n−Bu)4N](+)BF4 -、[(n−B
u)4N](+)・ClO4 -、LiAlCl4、LiBF
4、LiCF3SO3などが例示される。
Further, the electrolyte salt in the present invention comprises an anion containing a halogen and a cation, and the following can be exemplified. (1) Halogen anions such as anions Cl , Br , I , PF 6 ,
A halide anion of a Va group element such as SbF 6 , AsF 6 , SbCl 6 ; a group IIIa element halide anion such as BF 4 ; a perchlorate anion such as ClO 4 . (2) Cations Li (+), Na (+), alkali metal ions such as K (+), (R 4 N) (+) [R: hydrocarbon group having 1 to 20 carbon atoms] and the like. Specific examples of the compound that gives the above-mentioned electrolyte ion include:
LiPF 6, LiSbF 6, LiAsF 6 , LiClO 4,
NaClO 4 , KPF 6 , KSbF 6 , KAsF 6 , KCl
O 4, [(n-Bu ) 4 N] (+) BF 4 -, [(n-B
u) 4 N] (+) · ClO 4 -, LiAlCl 4, LiBF
4 , LiCF 3 SO 3 and the like are exemplified.

【0013】負極活物質としては、Li、K、Na等の
アルカリ金属、LiとAl、Pb、Cd、Si、Ga、
In、Zn、Mgとの合金、ポリアセチレン、ポリチオ
フェン、ポリパラフェニレン、ポリピリジン、ポリパラ
フェニレンビニレン、ポリパラキシリレン及びブタジエ
ンのハロゲン置換体の還元重合物等の高分子材料、及び
グラファイト、炭素体等を挙げることができる。
As the negative electrode active material, alkali metals such as Li, K and Na, Li and Al, Pb, Cd, Si, Ga,
Polymer materials such as alloys with In, Zn and Mg, polyacetylene, polythiophene, polyparaphenylene, polypyridine, polyparaphenylene vinylene, polyparaxylylene and reduction polymers of halogen-substituted butadiene, graphite, carbonaceous materials, etc. Can be mentioned.

【0014】セパレータとしては、電解質溶液のイオン
移動に対して低抵抗であり、かつ、溶液保持性に優れた
ものが用いられる。例えば、ガラス繊維フィルタ;ポリ
エステル、テフロン、ポリフロン、ポリプロピレン等の
高分子ポアフィルタ、不織布;あるいはガラス繊維とこ
れらの高分子からなる不織布等を用いることができる。
また、これら電解液、セパレータに代わる構成要素とし
て固体電解質を用いることもできる。例えば、無機系で
は、AgCl、AgBr、AgI、LiIなどの金属ハ
ロゲン化物、RbAg45、RbAg44CNイオン伝
導性ガラスなどが挙げられる。また、有機系では、ポリ
エチレンオキサイド、ポリプロピレンオキサイド、ポリ
フッ化ビニリデン、ポリアクリロニトリル、ポリビニル
アルコールなどをポリマーマトリクスとして先に述べた
電解質塩をポリマーマトリクス中に溶解せしめた複合
体、あるいはこれらの架橋体、低分子量ポリエチレンオ
キサイド、ポリエチレンイミン、クラウンエーテルなど
のイオン解離基をポリマー主鎖にグラフト化した高分子
電解質及び高分子量重合体に前記電解液を含有させたゲ
ル状高分子固体電解質が挙げられる。以下に実施例、比
較例を示して、本発明をさらに詳細に説明する。
As the separator, one having a low resistance to the movement of ions of the electrolyte solution and having an excellent solution holding property is used. For example, a glass fiber filter; a polymer pore filter such as polyester, Teflon, polyflon, or polypropylene; a non-woven fabric; or a non-woven fabric composed of glass fiber and these polymers can be used.
Further, a solid electrolyte can be used as a component that replaces the electrolytic solution and the separator. For example, in the case of inorganic materials, metal halides such as AgCl, AgBr, AgI and LiI, and RbAg 4 I 5 and RbAg 4 I 4 CN ion conductive glass can be used. In organic systems, polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, polyacrylonitrile, polyvinyl alcohol, etc. as a polymer matrix, the above-mentioned electrolyte salt is dissolved in the polymer matrix to form a complex, or a cross-linked product thereof, Examples thereof include a polymer electrolyte in which an ionic dissociative group such as a molecular weight polyethylene oxide, polyethyleneimine, or a crown ether is grafted on a polymer main chain, and a gel polymer solid electrolyte in which the electrolyte solution is contained in a high molecular weight polymer. Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

【0015】[0015]

【実施例】実施例1 ギ酸100mlにポリアニリン10g、電解二酸化マン
ガンと炭酸リチウムを(7:3モル比)で混合し、40
0℃で焼成して得たMn−Li複合酸化物14gを混合
し、撹拌を行ないギ酸にポリアニリンを溶解させ、電解
二酸化マンガンに分散させた。この溶液を水5リットル
へ投入したところ緑色の沈殿物が得られた。この沈殿物
を濾過、水で十分に洗浄した後、乾燥したところMn−
Li複合酸化物粒子をポリアニリンで被覆したMn−L
i複合酸化物/ポリアニリン複合体粒子が得られた。本
複合体粒子150mgにグラファイト20mgを不活性
ガス雰囲気中で混合、直径16mmの円板に成形し、密
度1.3g/cmの二次電池用正極を作製した。負極
にLi、電解液として1.5M LiClO/PC−
DME(体積比1:1)を用い、定電流で2〜3.7V
の範囲で充放電を行なった。
Example 1 100 ml of formic acid was mixed with 10 g of polyaniline, electrolytic manganese dioxide and lithium carbonate at a ratio of 7: 3, and 40
14 g of the Mn-Li composite oxide obtained by firing at 0 ° C. was mixed and stirred to dissolve polyaniline in formic acid and disperse it in electrolytic manganese dioxide. When this solution was poured into 5 liters of water, a green precipitate was obtained. The precipitate was filtered, washed thoroughly with water, and then dried to give Mn-
Mn-L prepared by coating Li composite oxide particles with polyaniline
i composite oxide / polyaniline composite particles were obtained. 150 mg of the composite particles were mixed with 20 mg of graphite in an inert gas atmosphere and molded into a disk having a diameter of 16 mm to prepare a positive electrode for secondary battery having a density of 1.3 g / cm 3 . Li in the negative electrode and 1.5M LiClO 4 / PC- as the electrolytic solution.
Using DME (volume ratio 1: 1), constant current is 2 to 3.7V
Charge and discharge were performed in the range.

【0016】実施例2 実施例1においてポリアニリンを10g、Mn−Li複
合酸化物10gを用いる以外は実施例1と同様にしてM
n−Li複合酸化物/ポリアニリン複合体粒子を用いた
二次電池を作製し、電池特性を測定した。
Example 2 M was prepared in the same manner as in Example 1 except that 10 g of polyaniline and 10 g of Mn-Li composite oxide were used in Example 1.
A secondary battery using the n-Li composite oxide / polyaniline composite particles was prepared and the battery characteristics were measured.

【0017】比較例1 ポリアニリン60mg、Mn−Li複合酸化物90m
g、グラファイト20mgを混練し、実施例1と同様の
二次電池用正極を作り、これを用いて二次電池を作製し
電池特性を測定した。以上の実施結果を次表1に示す。
Comparative Example 1 Polyaniline 60 mg, Mn-Li composite oxide 90 m
g and 20 mg of graphite were kneaded to prepare a secondary battery positive electrode similar to that of Example 1, and a secondary battery was prepared using this to measure battery characteristics. The results of the above implementation are shown in Table 1 below.

【表1】 [Table 1]

【0018】[0018]

【効果】本発明の複合体は、インターカレート材料特に
粒子形状のものに、導電性高分子材料を溶液状態より被
覆しているため、単に各材料を機械的に混合した場合よ
りも優れた電気伝導性、結着能、エネルギー密度を有
し、すぐれた電極、さらには該電極を正極として用いた
二次電池用電極が提供される。
[Effect] Since the composite of the present invention coats the intercalating material, in particular the one in the form of particles, with the conductive polymer material from the solution state, it is superior to the case where the respective materials are simply mechanically mixed. There is provided an excellent electrode having electric conductivity, binding ability and energy density, and an electrode for a secondary battery using the electrode as a positive electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 興利 東京都大田区中馬込1丁目3番6号 株 式会社リコー内 (56)参考文献 特開 昭63−314760(JP,A) 特開 昭63−224147(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 5/00 H01B 1/12 H01M 4/02 H01M 4/04 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Kouri Kimura 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd. (56) Reference JP-A-63-314760 (JP, A) JP 63-224147 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01B 5/00 H01B 1/12 H01M 4/02 H01M 4/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電解質カチオンをインターカレートする
材料粒子が可溶性導電性高分子材料で被覆されているこ
とを特徴とするインターカレート材料/可溶性導電性高
分子材料複合体粒子。
1. Intercalating material / soluble conductive polymer material composite particles , wherein the material particles for intercalating electrolyte cations are coated with a soluble conductive polymer material .
【請求項2】 可溶性導電性高分子材料を溶解させた溶
液に電解質カチオンをインターカレートする材料粒子を
分散後、前記可溶性導電性高分子材料を溶解させた溶媒
に較べて前記可溶性導電性高分子の溶解度が低い溶媒を
添加し、前記可溶性導電性高分子と前記インターカレー
ト材料粒子を共沈させることを特徴とする請求項1記載
のインターカレート材料/可溶性導電性高分子材料複合
粒子の製造法。
2. A solvent in which material particles for intercalating an electrolyte cation are dispersed in a solution in which a soluble conductive polymer material is dissolved, and then the soluble conductive polymer material is dissolved.
Compared with the above, the solubility of the soluble conductive polymer is lower than that of the solvent.
The method for producing intercalating material / soluble conductive polymer material composite particles according to claim 1 , wherein the soluble conductive polymer and the intercalating material particles are coprecipitated.
【請求項3】 請求項1記載のインターカレート材料/
可溶性導電性高分子材料複合体粒子を正極活物質に用い
たことを特徴とする二次電池正極。
3. The intercalating material according to claim 1.
A secondary battery positive electrode, wherein soluble conductive polymer material composite particles are used as a positive electrode active material.
【請求項4】 請求項3記載の二次電池正極を用いたこ
とを特徴とする二次電池。
4. A secondary battery using the secondary battery positive electrode according to claim 3.
JP11303692A 1992-04-06 1992-04-06 Intercalate material / soluble conductive polymer material composite and electrode for secondary battery using the same Expired - Fee Related JP3452943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11303692A JP3452943B2 (en) 1992-04-06 1992-04-06 Intercalate material / soluble conductive polymer material composite and electrode for secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11303692A JP3452943B2 (en) 1992-04-06 1992-04-06 Intercalate material / soluble conductive polymer material composite and electrode for secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH05290618A JPH05290618A (en) 1993-11-05
JP3452943B2 true JP3452943B2 (en) 2003-10-06

Family

ID=14601858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11303692A Expired - Fee Related JP3452943B2 (en) 1992-04-06 1992-04-06 Intercalate material / soluble conductive polymer material composite and electrode for secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3452943B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079025B2 (en) * 2010-01-04 2012-11-21 日立マクセルエナジー株式会社 Non-aqueous secondary battery
JP6077345B2 (en) * 2013-03-13 2017-02-08 日立マクセル株式会社 Non-aqueous secondary battery positive electrode material, non-aqueous secondary battery positive electrode and non-aqueous secondary battery

Also Published As

Publication number Publication date
JPH05290618A (en) 1993-11-05

Similar Documents

Publication Publication Date Title
JP5808073B2 (en) Positive electrode active material and positive electrode and lithium battery employing the same
KR101534386B1 (en) Non-aqueous secondary battery having a blended cathode active material
KR101367217B1 (en) High performance litmus-polymer cell comprising silicon nano-particles substituted with polymer and self-assemble block copolymer
EP3182501B1 (en) Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same
JPH0520874B2 (en)
JPH0864203A (en) Electrode, manufacture thereof, and secondary battery using it
JPH04267055A (en) Solid electrode composition
JP2001048527A (en) Hexacyanoferrate complex and lithium secondary battery using the same as anodic active substance
JP3452943B2 (en) Intercalate material / soluble conductive polymer material composite and electrode for secondary battery using the same
JP2504428B2 (en) Secondary battery
JPH0636797A (en) Lithium secondary battery
JP4139960B2 (en) Electricity storage device
JP2002203742A (en) Redox type capacitor
JP2908822B2 (en) Electrode
JPH0896817A (en) Battery using ion conductive high polymer compound
JP3529802B2 (en) Negative electrode for secondary battery
US6309778B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
JP2011146346A (en) Active material for secondary battery, and secondary battery
JPH07130356A (en) Electrode for secondary battery and secondary battery having the electrode
JPH05266891A (en) Electrochemical active composite particulate and secondary battery electrode using same particulate
JPH076761A (en) Nonaqueous secondary battery
JP3297116B2 (en) Carbonaceous material and battery using it
JPH0821430B2 (en) Secondary battery
JPH05114399A (en) Positive electrode and secondary cell using it
US20230238535A1 (en) Positive electrode binder for lithium secondary battery, and lithium secondary battery positive electrode and lithium secondary battery comprising same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees