JP3449210B2 - Optical recording method and optical recording system - Google Patents

Optical recording method and optical recording system

Info

Publication number
JP3449210B2
JP3449210B2 JP04606698A JP4606698A JP3449210B2 JP 3449210 B2 JP3449210 B2 JP 3449210B2 JP 04606698 A JP04606698 A JP 04606698A JP 4606698 A JP4606698 A JP 4606698A JP 3449210 B2 JP3449210 B2 JP 3449210B2
Authority
JP
Japan
Prior art keywords
light
information object
recording
information
photosensitive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04606698A
Other languages
Japanese (ja)
Other versions
JPH11248533A (en
Inventor
修 渡辺
正昭 土森
善正 川田
力 江上
興浩 杉原
尚道 岡本
收 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP04606698A priority Critical patent/JP3449210B2/en
Priority to US09/257,196 priority patent/US6413680B1/en
Publication of JPH11248533A publication Critical patent/JPH11248533A/en
Priority to US10/131,191 priority patent/US20020150825A1/en
Application granted granted Critical
Publication of JP3449210B2 publication Critical patent/JP3449210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光記録方法及び光記
録システムに関し、更に詳しくは、情報物体に対する光
照射によって生ずる近接場光の分布を利用した光記録方
法及び光記録システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical recording method and an optical recording system, and more particularly to an optical recording method and an optical recording system using a distribution of near-field light generated by irradiation of an information object with light.

【0002】[0002]

【従来の技術】従来、記録媒体に光学的に記録を行う方
法として、例えばレーザー光源からの記録光を集光して
記録媒体に照射し、記録媒体の光反射率等を変化させて
記録する方法等が知られている。
2. Description of the Related Art Conventionally, as a method of optically recording on a recording medium, for example, recording light from a laser light source is condensed and applied to the recording medium to change the light reflectance of the recording medium for recording. Methods etc. are known.

【0003】しかしながら、レーザー光に限らず、気体
等を伝搬して来る伝搬光を利用する光学系は、本質的に
光の回折限界以下の領域では利用できないために、その
限界以下のスケールの記録密度を実現できないし、又、
その限界以下のサイズの物体に関する光記録を行うこと
もできない。
However, an optical system utilizing not only laser light but also propagating light propagating gas or the like cannot be used essentially in a region below the diffraction limit of light, and thus recording on a scale below that limit. I can't achieve the density, and
It is also not possible to perform optical recording on objects of sizes below that limit.

【0004】そこで近年、いわゆる近接場光が注目され
ている。近接場光は、物質表面の光の波長よりも小さな
領域に局在するので、これを利用した高密度情報記録や
高分解能光学顕微鏡が提案されている。
Therefore, in recent years, so-called near-field light has attracted attention. Since near-field light is localized in a region smaller than the wavelength of light on the surface of a substance, high-density information recording and a high-resolution optical microscope using this have been proposed.

【0005】例えば「機械の研究 第49巻第5号(1
997)」に掲載された大津元一氏の論文「近接場光学
顕微鏡の開発の現状と将来」には、下記のようなCモ
ードと呼ばれる近接場光学顕微鏡と、下記のようなI
モードと呼ばれる近接場光学顕微鏡が紹介されている。
For example, "Research on Machinery Vol. 49, No. 5 (1
997) ”," The present state and future of development of near-field optical microscopes "by Motoichi Otsu in" The near-field optical microscope called C-mode as follows, and the following I
A near-field optical microscope called mode is introduced.

【0006】光照射によって試料表面に生じたエバネ
ッセント光(近接場光)を、微細なプローブを走査させ
てピックアップすることにより、所定のデータ処理を通
じて試料表面の三次元像を得る。
Evanescent light (near-field light) generated on the sample surface by light irradiation is picked up by scanning a fine probe to obtain a three-dimensional image of the sample surface through predetermined data processing.

【0007】微細なプローブ自体に光を入射して、そ
の先端の端子に近接場光をしみ出させ、このプローブを
試料表面に沿って走査させることにより、近接場光を散
乱光に変換して試料表面の情報を得る。
When light is incident on the fine probe itself, near-field light is exuded from a terminal at its tip, and the near-field light is converted into scattered light by scanning the probe along the sample surface. Obtain information on the sample surface.

【0008】[0008]

【発明が解決しようとする課題】しかし、上記の近接場
光を利用する技術はいずれも、プローブを走査させるの
に長時間を要する点、微小プローブの使用から検出でき
る光強度が小さい点、プローブにより試料近傍の電場を
大きく乱してしまう点、等の不具合があった。
However, in any of the above-mentioned techniques using near-field light, it takes a long time to scan the probe, the light intensity that can be detected by using the microprobe is small, and the probe Therefore, there was a problem that the electric field near the sample was greatly disturbed.

【0009】又、試料等が例えばnm〜μmオーダーの
微小物体であると、照射光の反射、屈折によりフォトン
の持つ運動量が変化して物体移動を生ずる場合が知られ
ているが、プローブの走査中にかかる現象を来すと正し
い試料像を得られない。試料が自発的に運動し得る微生
物であっても、同様の不具合が起こり得る。
Further, it is known that when the sample or the like is a minute object of the order of nm to μm, the momentum of the photon changes due to the reflection and refraction of the irradiation light to cause the object to move. If such a phenomenon occurs, a correct sample image cannot be obtained. Similar defects can occur even if the sample is a microorganism that can move spontaneously.

【0010】そこで本発明は、かかる不具合を解消する
ことを、解決すべき課題とする。本願発明者は、情報物
体(観察用試料又は情報入力用物体)を感光材料面に位
置させてそのエリアを光照射すると、感光材料面におけ
る情報物体が位置する部分での近接場光による光反応
が、他部分での照射光による光反応よりも強く起こる、
と言う新規な知見に基づいて本発明を完成した。
Therefore, the present invention has as an object to solve the problem. When the inventor of the present application positions an information object (observation sample or object for information input) on the surface of the photosensitive material and irradiates the area with light, a photoreaction due to near-field light at a portion on the surface of the photosensitive material where the information object is located. Occurs more strongly than the photoreaction caused by irradiation light in other parts,
The present invention has been completed based on the new finding called

【0011】[0011]

【課題を解決するための手段】(第1発明の構成)上記
課題を解決するための本願第1発明(請求項1に記載の
発明)の構成は、保存及び検出が可能な任意の光反応を
起こし得る感光材料を用いて記録領域面を構成し、この
記録領域面に情報物体を接触状態で位置させたもとで、
前記記録領域面の少なくとも情報物体が位置するエリア
に光を照射して、前記情報物体に生じた近接場光の分布
を、前記感光材料に感光材料の光反応量として記録す
る、光記録方法である。
(Structure of First Invention) The structure of the first invention of the present application (the invention according to claim 1) for solving the above-mentioned problems is an arbitrary photoreaction that can be stored and detected. The recording area surface is formed by using a photosensitive material capable of causing the, and an information object is positioned in contact with the recording area surface,
By irradiating light on at least an area where the information object is located on the recording area surface, the distribution of near-field light generated in the information object is recorded on the photosensitive material as a photoreactive amount of the photosensitive material. is there.

【0012】(第2発明の構成)上記課題を解決するた
めの本願第2発明(請求項2に記載の発明)の構成は、
保存及び検出が可能な任意の光反応を起こし得る感光材
料を用いて記録領域面を構成し、この記録領域面に可動
体である情報物体を接触状態で位置させたもとで、前記
記録領域面の少なくとも情報物体が位置するエリアに光
を照射して情報物体に生じた近接場光の分布を前記感光
材料に感光材料の光反応量として記録する操作を、前記
情報物体の移動に対応して2回以上繰り返す、光記録方
法である。
(Configuration of Second Invention) The configuration of the second invention of the present application (the invention according to claim 2) for solving the above-mentioned problems is as follows.
A recording area surface is formed by using a photosensitive material capable of causing an arbitrary photoreaction that can be stored and detected, and an information object that is a movable body is positioned in contact with the recording area surface, and The operation of irradiating at least the area where the information object is located and recording the distribution of the near-field light generated in the information object on the photosensitive material as the amount of photoreaction of the photosensitive material is performed according to the movement of the information object. This is an optical recording method that is repeated more than once.

【0013】(第3発明の構成)上記課題を解決するた
めの本願第3発明(請求項3に記載の発明)の構成は、
保存及び検出が可能な任意の光反応を起こし得る感光材
料を用いて構成された、情報物体を接触状態で位置させ
るための記録領域面と、この記録領域面の少なくとも情
報物体が位置するエリアに光を同時照射できる光源とを
備える、光記録システムである。
(Configuration of Third Invention) The configuration of a third invention of the present application (an invention according to claim 3) for solving the above-mentioned problems is as follows.
A recording area surface for locating an information object in a contact state, which is composed of a photosensitive material capable of causing any photoreaction that can be stored and detected, and at least an area of the recording area surface where the information object is located. An optical recording system comprising a light source capable of simultaneously irradiating light.

【0014】[0014]

【発明の作用・効果】(第1発明の作用・効果)第1発
明において、記録領域面における情報物体を含むエリア
を光照射すると、感光材料面における情報物体が位置す
る部分での近接場光による光反応が、他部分での照射光
による光反応よりも強く起こる。その結果、情報物体に
生じた近接場光の分布が感光材料の光反応量として、周
囲の部分とは異なるレベルで記録される。
(Operation and effect of the invention) (Operation and effect of the first invention) In the first invention, when the area including the information object on the recording area surface is irradiated with light, the near-field light at the portion of the photosensitive material surface where the information object is located. The photoreaction caused by the light occurs more strongly than the photoreaction caused by the irradiation light in other parts. As a result, the distribution of near-field light generated in the information object is recorded as a photoreaction amount of the photosensitive material at a level different from that of the surrounding portion.

【0015】このような現象が発現する理由について
は、例えば、照射光の伝搬媒体(空気等)に比較しての
情報物体の光屈折率の高さが関連するかも知れないし、
近接場光には特に強い光反応を起こす性質があるのかも
知れず、多様な推定が可能であって、現在の処、確定的
に把握してはいない。
The reason why such a phenomenon appears may be related to, for example, the high refractive index of the information object as compared with the propagation medium of the irradiation light (air or the like).
Near-field light may have a property of causing a particularly strong photoreaction, and various estimations are possible, and at present, it is not definitively understood.

【0016】第1発明によれば、前記従来技術のCモー
ドのように情報物体の近接場光のみをピックアップする
プローブも、前記従来技術のIモードのように情報物体
のみに近接場光を作用させるためのプローブも、不要で
ある。従って、プローブを走査させる時間が不要で、光
の1回照射のみで記録を完了する。又、プローブの使用
に基づく前記のその他の不具合もない。
According to the first aspect of the invention, the probe for picking up only the near-field light of the information object as in the C mode of the prior art acts on the information field only as in the I mode of the prior art. No probe is required to do this. Therefore, the time for scanning the probe is not required, and the recording is completed by only irradiating the light once. Also, there are no other problems mentioned above due to the use of the probe.

【0017】光記録は光の1回照射で完了するため、情
報物体が微小物体あるいは生物(特に微生物)である場
合の、物体移動や屈折率分布の時間変動による記録不良
も生じない。更に、所定エリアの全体に光照射するた
め、当該エリアにランダムに配置された多種の情報物体
を同時に記録したり、所定の情報的意味を以て相互配置
された多数の情報物体を同時に記録したり、大型の情報
物体の全情報を一時に記録することができる。
Since the optical recording is completed by a single irradiation of light, when the information object is a minute object or a living thing (especially a microorganism), there is no recording failure due to the movement of the object or the time variation of the refractive index distribution. Furthermore, in order to irradiate the entire predetermined area with light, various information objects randomly arranged in the area can be simultaneously recorded, or a large number of information objects mutually arranged with a predetermined information meaning can be simultaneously recorded, All information of a large information object can be recorded at one time.

【0018】第1発明によって得られた光記録は、直ち
にあるいは保存後任意の時点で、光反応の種類に対応し
た任意かつ有利な観察/検出手段を利用して、観察/検
出に供することができる。
The optical recording obtained according to the first invention can be subjected to observation / detection immediately or at any time after storage, using any and advantageous observation / detection means corresponding to the type of photoreaction. it can.

【0019】第1発明は近接場光を利用する光記録であ
るため、光の回折限界以下の領域での高密度光情報記録
/高分解能光学解析/微細光加工が可能である。
Since the first invention is optical recording utilizing near-field light, it is possible to perform high-density optical information recording / high-resolution optical analysis / fine optical processing in a region below the diffraction limit of light.

【0020】(第2発明の作用・効果)第2発明におい
ては、前記第1発明の効果を得られる他、情報物体が光
の放射圧により移動し得る微小粒子や自律的に運動する
微生物等の可動体であることを、むしろメリットとして
利用することができる。即ち、情報物体の移動に対応し
て光照射を繰り返すことにより、情報物体の形状等だけ
でなく、その移動や、形状もしくは性質等の変化をも情
報化して記録できる。
(Operations and effects of the second invention) In the second invention, in addition to the effects of the first invention, fine particles that can move an information object by radiation pressure of light, microorganisms that move autonomously, etc. The fact that it is a movable body can be used as an advantage. That is, by repeating the light irradiation in response to the movement of the information object, not only the shape of the information object but also the movement thereof and the change of the shape or the property can be recorded as information.

【0021】例えば、微小な情報物体が光の放射圧を受
けて近接場光の電場分布に沿って配列する現象を光記録
したり、この現象を利用して情報物体の移動を制御しな
がら移動の軌跡を光記録するか又は移動部位において光
加工を施したりできる。又、情報物体が性質や形態の変
化を伴う場合に、その経時的変化像を得たりすることが
できる。更に、微生物の運動状態や細胞分裂あるいは細
胞の接合をトレースできる。
For example, a phenomenon in which minute information objects are arranged along the electric field distribution of near-field light by receiving the radiation pressure of light is optically recorded, or by utilizing this phenomenon, the information objects move while controlling the movement. Can be optically recorded or optical processing can be performed at the moving part. Further, when the information object is accompanied by a change in property or form, it is possible to obtain an image of change over time. Furthermore, it is possible to trace the motility state of the microorganism, cell division or cell joining.

【0022】又、これらの際に短パルス光を照射するこ
とにより、高速現象を連続的に記録して、後にゆっくり
観察することもできる。
Further, by irradiating short pulse light in these cases, it is possible to continuously record a high-speed phenomenon and observe it slowly later.

【0023】(第3発明の作用・効果)第3発明の光記
録システムによって、第1発明及び/又は第2発明の光
記録方法を有効に実施することができる。本システムで
はプローブ及びこれに関わる駆動/制御/光学系が不要
であるため、光記録システムが著しく簡素化され、かつ
コストダウンする。
(Operation and Effect of Third Invention) The optical recording system of the third invention can effectively implement the optical recording method of the first invention and / or the second invention. In this system, the probe and the drive / control / optical system related thereto are not required, so that the optical recording system is remarkably simplified and the cost is reduced.

【0024】[0024]

【発明の実施の形態】次に、第1発明〜第3発明の実施
の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the first to third inventions will be described.

【0025】〔光記録〕第1発明〜第3発明において、
「光記録」とは、常識的な意味合いの「情報記録」より
も広義の意味を持つ。即ち、既知の情報を化体した情報
物体からその情報を保存するために記録する場合だけで
なく、近接場光顕微鏡におけるように情報物体そのもの
が解析対象であってその解析データとしての情報を記録
する場合も含まれ、更に、半導体リソグラフィーにおけ
るように情報物体を微細加工の加工情報及び加工手段と
して用い、感光材料に光加工を施す場合も含まれる。
[Optical recording] In the first to third inventions,
"Optical recording" has a broader meaning than "information recording", which has a common sense. That is, not only in the case of recording in order to save the information from the information object that embodies the known information, but as in the near-field optical microscope, the information object itself is the analysis target and the information as the analysis data is recorded. This also includes the case of using an information object as processing information and processing means for fine processing, as in semiconductor lithography, and performing optical processing on a photosensitive material.

【0026】〔感光材料〕感光材料は、保存及び検出が
可能な任意の光反応を起こし得るものであれば、限定な
く使用することができる。
[Photosensitive Material] The photosensitive material can be used without limitation as long as it can cause any photoreaction that can be stored and detected.

【0027】例えば、光強度に応じて光異性化等を起こ
すことにより、結果的にその反応量に応じた凹凸を感光
材料面に生ずるもの、特に高分子材料を、好ましく使用
できる。光異性化反応は高速の光応答性を示す点でも望
ましい。
For example, it is possible to preferably use a material, particularly a polymer material, which causes photoisomerization or the like depending on the light intensity, resulting in unevenness depending on the reaction amount on the surface of the photosensitive material. The photoisomerization reaction is also desirable in that it exhibits a high-speed photoresponsiveness.

【0028】感光材料面に凹凸を生じさせる場合には、
情報物体の情報が物理的な固定形状として光記録される
ので、例えば原子力間顕微鏡(AFM)、走査型トンネ
ル顕微鏡(STM)、走査型電子顕微鏡(SEM)等の
光学顕微鏡よりも圧倒的に高い空間分解能を有する手段
で記録情報を観察できる利点がある。
When unevenness is caused on the surface of the photosensitive material,
Since information of the information object is optically recorded as a physically fixed shape, it is overwhelmingly higher than that of an optical microscope such as an atomic force microscope (AFM), a scanning tunneling microscope (STM), or a scanning electron microscope (SEM). There is an advantage that recorded information can be observed by means having a spatial resolution.

【0029】又、例えば、光強度に応じて光屈折率の変
化や光吸収率の変化を起こす感光材料を使用することも
できる。この場合も、屈折率あるいは吸収率変化の分布
として記録された情報を、公知の適当な手段で観察/検
出できる。
It is also possible to use, for example, a light-sensitive material which causes a change in the light refractive index and a change in the light absorptance according to the light intensity. Also in this case, the information recorded as the distribution of the change in the refractive index or the change in the absorptance can be observed / detected by a known appropriate means.

【0030】感光材料としては一般的には高分子材料が
好適であるが、他種の材料も使用可能である。高分子材
料のうちでも、光異性化反応等の光反応性部位を多く導
入できるポリエステル,ポリアミド,ポリウレタン,ポ
リウレア等の縮合系高分子材料が特に好適である。
Generally, a polymeric material is suitable as the light-sensitive material, but other kinds of materials can be used. Among the polymeric materials, condensation-based polymeric materials such as polyester, polyamide, polyurethane, and polyurea that can introduce many photoreactive sites such as photoisomerization reaction are particularly suitable.

【0031】〔記録領域面〕記録領域面としては、感光
材料が膜状に形成されてなる平坦面が、光記録時及び記
録情報の観察/検出時の便宜に適い易いが、情報物体を
接触状態で位置させ得る限りにおいてその面形状は限定
されない。光加工として行う光記録においては、対象物
の任意形状の加工面が記録領域面を構成する。記録領域
面は必要に応じて任意の面積に設定される。
[Recording Area Surface] As a recording area surface, a flat surface formed of a photosensitive material in a film shape is suitable for convenience of optical recording and observation / detection of recorded information, but an information object is brought into contact therewith. The surface shape is not limited as long as it can be positioned in a state. In optical recording performed as optical processing, a processed surface having an arbitrary shape of an object constitutes a recording area surface. The recording area surface is set to an arbitrary area as needed.

【0032】記録材料面は光記録時、通常は大気環境下
に置かれるが、必要により加圧もしくは減圧下に置いた
り、微生物生体を観察する場合等において記録材料面を
水滴で覆ったり、場合によりシステムの要部又は全体を
水等の液体中に設定することも可能である。
The surface of the recording material is usually placed in an atmospheric environment during optical recording. However, if necessary, the surface of the recording material may be placed under pressure or reduced pressure, or the surface of the recording material may be covered with water droplets when observing microbial organisms. It is also possible to set the main part or the whole of the system in a liquid such as water.

【0033】〔情報物体〕情報物体は、光記録すべき既
知の情報を化体した物体である場合、それ自体が解析対
象物体である場合、微細光加工を施すための加工手段で
ある場合、等の多様な態様がある。
[Information Object] The information object is an object in which known information to be optically recorded is embodied, itself is an object to be analyzed, or a processing means for performing fine optical processing. There are various modes such as.

【0034】情報物体は照射光により近接場光を生ずる
ものであって、その形状やサイズあるいは材質には本質
的な限定がない。但し、光情報記録や光加工に用いる場
合は精度の観点からその形状や透明性あるいは屈折率が
制御されていることが好ましい。又、照射光が情報物体
の一方向の面(例えば記録領域面と反対側の面)のみに
照射される場合には、情報物体がある程度以上の光透過
性を持つか、あるいはかかる光照射によっても記録領域
面と接する面にも近接場光を生ずる程度の微小なサイズ
であることが好ましい。
The information object produces near-field light by irradiation light, and its shape, size, or material is not essentially limited. However, when used for optical information recording or optical processing, it is preferable that its shape, transparency or refractive index is controlled from the viewpoint of accuracy. Also, when the irradiation light is applied only to the surface of the information object in one direction (for example, the surface opposite to the recording area surface), the information object has a certain degree of light transmissivity or is Also, it is preferable that the size is so small that near-field light is also generated on the surface in contact with the recording area surface.

【0035】情報物体のサイズは照射光の回折限界以下
であっても以上であっても良いが、特に光情報記録の場
合には、記録の高密度化の観点から、回折限界以下の領
域に一の記録ビットを形成することが望ましい。
The size of the information object may be less than or equal to the diffraction limit of the irradiation light, but particularly in the case of optical information recording, from the viewpoint of recording high density, the size of the information object is below the diffraction limit. It is desirable to form one recording bit.

【0036】〔照射光〕照射光の波長は限定されず、記
録領域面を構成する感光材料に対応して適宜波長のもの
を選択使用すれば良い。照射光によって情報物体に発生
した近接場光が感光材料に吸収され、その吸収により所
定の光反応をおこすので、吸収効率の高い波長の選択が
好ましく、通常は紫外域から近赤外域の波長が選択され
る。
[Irradiation Light] The wavelength of the irradiation light is not limited, and one having an appropriate wavelength may be selected and used according to the photosensitive material forming the recording area surface. Near-field light generated in the information object by the irradiation light is absorbed by the photosensitive material, and a predetermined photoreaction occurs due to the absorption, so it is preferable to select a wavelength with high absorption efficiency, and usually a wavelength from the ultraviolet region to the near infrared region is selected. To be selected.

【0037】照射光の光源も限定がなく、記録しようと
する近接場光に応じて適宜に選択できるが、記録形態と
して凹凸を形成する場合の再現性や、後の解析の容易性
等の点で、レーザー光がより好ましい。
The light source of the irradiation light is not limited, and can be appropriately selected according to the near-field light to be recorded, but the reproducibility in the case of forming unevenness as a recording form and the ease of subsequent analysis are points. Therefore, laser light is more preferable.

【0038】照射光の強度や照射時間も限定がなく、感
光材料の光反応性等に応じて適宜選択される。短時間露
光を繰り返して情報物体の高速の動きを記録する場合に
は、尖頭出力の高いパルス光を使用することもできる。
The intensity of the irradiation light and the irradiation time are not limited, and may be appropriately selected depending on the photoreactivity of the photosensitive material. When recording the high-speed movement of the information object by repeating short-time exposure, pulsed light with a high peak output can also be used.

【0039】照射光を照射する範囲に関し、「情報物体
が位置するエリア」とは、情報物体を含む記録領域面上
の面積範囲を言い、光記録の目的に応じて、必要又は有
益な範囲に任意に設定されるものである。
Regarding the range of irradiation with the irradiation light, the "area in which the information object is located" means the area range on the surface of the recording area including the information object, and it is a necessary or useful range depending on the purpose of optical recording. It is set arbitrarily.

【0040】〔近接場光の分布〕照射光によって情報物
体に生じた近接場光の分布は、第1発明においては主と
して情報物体の形状及び位置の情報を意味し、第2発明
においては更に情報物体の移動軌跡や形状もしくは性質
等の経時的変化の情報を意味する。
[Distribution of Near-Field Light] The distribution of near-field light generated in an information object by irradiation light mainly means information on the shape and position of the information object in the first invention, and further information in the second invention. It means information on changes over time such as the movement trajectory, shape, or property of an object.

【0041】[0041]

【実施例】次に、本発明の一実施例を説明する。Next, an embodiment of the present invention will be described.

【0042】〔実施例1〕記録領域面の準備 下記の「化1」に示す光反応性成分を含む、下記の「化
2」に示すポリウレタン系高分子化合物を用いて、厚さ
約1μmの薄膜を作製し、その膜面を記録領域面とする
膜状の記録媒体を準備した。
Example 1 Preparation of Recording Area Surface Using a polyurethane polymer compound shown in the following "Chemical formula 2" containing a photoreactive component shown in the following "Chemical formula 1", a thickness of about 1 μm was used. A thin film was prepared, and a film-shaped recording medium having the film surface as a recording area surface was prepared.

【0043】[0043]

【化1】 [Chemical 1]

【0044】[0044]

【化2】 これらの合成プロセスの説明は省略するが、上記「化
1」の光反応性成分の融点は169°C、上記「化2」
の高分子化合物のガラス転移温度は141°Cで、N−
メチル−2−ピロリドン中の30°Cでの固有粘度は
0.69dL/g、吸収極大波長は475nmであっ
た。
[Chemical 2] Although the description of these synthesis processes is omitted, the melting point of the photoreactive component of the above “Chemical formula 1” is 169 ° C. and the above “Chemical formula 2”.
The glass transition temperature of the polymer compound is 141 ° C, and N-
The intrinsic viscosity at 30 ° C. in methyl-2-pyrrolidone was 0.69 dL / g, and the absorption maximum wavelength was 475 nm.

【0045】上記の薄膜は、ピリジンに「化2」の高分
子化合物を溶解して6.5wt%の溶液を調製し、これ
を0.2μmのフィルターでろ過した後、回転数100
0rpmの条件でスライドガラス上にスピンコートし
て、80°Cで20時間真空乾燥させて作製したもので
ある。
The above thin film was prepared by dissolving the polymer compound of "Chemical Formula 2" in pyridine to prepare a 6.5 wt% solution, filtering this with a 0.2 μm filter, and rotating at 100 rpm.
It was produced by spin coating on a slide glass under the condition of 0 rpm and vacuum drying at 80 ° C. for 20 hours.

【0046】情報物体近傍の近接場光の分布の観察 直径5mmの孔の空いた円板を、超音波洗浄で清浄にし
た後に上記記録媒体上に乗せ、前記の孔の中に直径50
0nmのポリスチレン製微小球を多数分散させた水を数
滴垂らした。そして自然乾燥により水が蒸発するまで放
置した後、空冷式アルゴンレーザー(出力20mW)を
用いて、波長488nm、ビーム径約3mmのレーザー
光をそのまま、記録領域面即ち記録媒体上のポリスチレ
ン製微小球が配置されたエリアに照射した。
Observation of near-field light distribution in the vicinity of an information object A disk having a hole of 5 mm in diameter was cleaned by ultrasonic cleaning and then placed on the recording medium, and a diameter of 50 mm was put in the hole.
A few drops of water in which a large number of 0 nm polystyrene microspheres were dispersed were dropped. Then, after leaving it until the water evaporates by natural drying, using an air-cooled argon laser (output 20 mW), a laser beam having a wavelength of 488 nm and a beam diameter of about 3 mm is used as it is, a polystyrene microsphere on the recording area surface, that is, the recording medium. Was irradiated on the area where was placed.

【0047】照射後の記録媒体を水で洗浄して前記微小
球の一部を取除いた後、原子力間顕微鏡(セイコー電子
製SPI−3700)を用いて記録媒体の記録領域面を
観察した。その観察像を図1及び図2に示す。図1と図
2は同一像の異なるアングルからの観察像であって、い
ずれの図からも、記録媒体1上に残存する情報物体たる
微小球2と、取除かれた微小球の形状に対応した凹み3
とを観察できる。
After the irradiated recording medium was washed with water to remove some of the microspheres, the recording area surface of the recording medium was observed using an atomic force microscope (SPI-3700 manufactured by Seiko Denshi). The observed images are shown in FIGS. 1 and 2. FIG. 1 and FIG. 2 are observation images of the same image from different angles, and in both figures, the shapes of the microspheres 2 which are the information objects remaining on the recording medium 1 and the shapes of the removed microspheres are shown. Dent 3
And can be observed.

【0048】〔実施例2〕ポリスチレン製微小球として
直径100nmのものを用いた点以外は全て実施例1と
同様に行った。本実施例は、照射光の波長の約1/5の
大きさである微小球を情報物体とすることにより、凹み
の形成が情報物体に生じた近接場光によるものであるこ
とを確認するために行った。その観察像を図3及び図4
に示す。図3と図4は同一像の異なるアングルからの観
察像であって、いずれの図からも、記録媒体4上におけ
る取除かれた微小球の形状に対応した凹み5を観察する
ことができる。
Example 2 The same procedure as in Example 1 was carried out except that polystyrene microspheres having a diameter of 100 nm were used. In the present embodiment, in order to confirm that the formation of the dent is due to the near-field light generated in the information object by using the microsphere having a size of about 1/5 of the wavelength of the irradiation light as the information object. Went to. The observed images are shown in FIG. 3 and FIG.
Shown in. FIG. 3 and FIG. 4 are observation images of the same image from different angles, and the depressions 5 corresponding to the shape of the removed microspheres on the recording medium 4 can be observed from any of the views.

【0049】なお、比較例として、記録媒体上に微小球
を配置せずに、実施例1と同様にして原子力間顕微鏡に
よる観察を行ったが、当然ながら記録媒体面に別段の凹
凸は観察されなかった。
As a comparative example, the observation by an atomic force microscope was carried out in the same manner as in Example 1 without disposing the microspheres on the recording medium. Obviously, however, extraordinary unevenness was observed on the recording medium surface. There wasn't.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例における原子力間顕微鏡の観察像を示す
図である。
FIG. 1 is a diagram showing an observation image of an atomic force microscope in an example.

【図2】実施例における原子力間顕微鏡の観察像を示す
図である。
FIG. 2 is a diagram showing an observation image of an atomic force microscope in Examples.

【図3】実施例における原子力間顕微鏡の観察像を示す
図である。
FIG. 3 is a diagram showing an observation image of an atomic force microscope in an example.

【図4】実施例における原子力間顕微鏡の観察像を示す
図である。
FIG. 4 is a diagram showing an observation image of an atomic force microscope in an example.

【符号の説明】[Explanation of symbols]

1,4 記録媒体 2 微小球 3,5 凹み 1,4 recording medium 2 microspheres 3,5 dent

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江上 力 静岡県浜松市和合町154−100 (72)発明者 杉原 興浩 静岡県浜松市上島5丁目15番地 (72)発明者 岡本 尚道 静岡県浜松市増楽町2578番地 (72)発明者 中村 收 大阪府高槻市日吉台四番町17−11 (56)参考文献 特開 平11−312335(JP,A) 特開 平11−250495(JP,A) 特開 平11−248621(JP,A) 特開 平9−7935(JP,A) 特開 平8−179493(JP,A) 特開 平1−160564(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01J 1/48 - 1/52 G01N 21/88 B30M 5/26 G03C 1/00 G03F 7/004 521 G11B 7/24 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Riki Egami 154-1 Wago, Hamamatsu City, Shizuoka Prefecture (72) Inventor Hirohiro Sugihara 5-15 Kamijima, Hamamatsu City, Shizuoka Prefecture (72) Inventor Naomichi Okamoto Hamamatsu, Shizuoka Prefecture No. 2578, Masuraku-cho, Yamaguchi, Japan (72) Inventor, Osamu Nakamura 17-11, Hiyoshidai-banbancho, Takatsuki, Osaka (56) References JP-A-11-312335 (JP, A) JP-A-11-250495 (JP, A ) JP-A-11-248621 (JP, A) JP-A-9-7935 (JP, A) JP-A-8-179493 (JP, A) JP-A-1-160564 (JP, A) (58) Field (Int.Cl. 7 , DB name) G01J 1/48-1/52 G01N 21/88 B30M 5/26 G03C 1/00 G03F 7/004 521 G11B 7/24

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 保存及び検出が可能な任意の光反応を起
こし得る感光材料を用いて記録領域面を構成し、この記
録領域面に情報物体を接触状態で位置させたもとで、前
記記録領域面の少なくとも情報物体が位置するエリアに
光を照射して、記録領域面における情報物体が位置する
部分での近接場光による光反応が記録領域面における他
部分での照射光による光反応よりも強く起こる現象に基
づき、前記情報物体に生じた近接場光の分布を、前記感
光材料に感光材料の光反応量として記録することを特徴
とする光記録方法。
1. A recording area surface is formed using a photosensitive material capable of causing an arbitrary photoreaction that can be stored and detected, and an information object is positioned in contact with the recording area surface, and then the recording area surface is formed. Of at least the information object is irradiated with light so that the information object on the recording area surface is positioned.
The optical reaction due to the near-field light at the
Based on the phenomenon that occurs stronger than the photoreaction caused by the irradiation light
Then, the optical recording method is characterized in that the distribution of the near-field light generated in the information object is recorded on the photosensitive material as the amount of photoreaction of the photosensitive material.
【請求項2】 保存及び検出が可能な任意の光反応を起
こし得る感光材料を用いて記録領域面を構成し、この記
録領域面に可動体である情報物体を接触状態で位置させ
たもとで、前記記録領域面の少なくとも情報物体が位置
するエリアに光を照射して、記録領域面における情報物
体が位置する部分での近接場光による光反応が記録領域
面における他部分での照射光による光反応よりも強く起
こる現象に基づき、情報物体に生じた近接場光の分布を
前記感光材料に感光材料の光反応量として記録する操作
を、前記情報物体の移動に対応して2回以上繰り返すこ
とを特徴とする光記録方法。
2. A recording area surface is formed by using a photosensitive material capable of causing an arbitrary photoreaction that can be stored and detected, and an information object which is a movable body is positioned in contact with the recording area surface, The information object on the recording area surface is irradiated with light to illuminate at least the area on the recording area surface where the information object is located .
The optical reaction due to the near-field light at the part where the body is located is the recording area
It is stronger than the photoreaction caused by the irradiation light in other parts of the surface.
Based on this phenomenon, the operation of recording the distribution of the near-field light generated in the information object on the photosensitive material as the photoreaction amount of the photosensitive material is repeated twice or more in response to the movement of the information object. Optical recording method.
JP04606698A 1998-02-26 1998-02-26 Optical recording method and optical recording system Expired - Lifetime JP3449210B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP04606698A JP3449210B2 (en) 1998-02-26 1998-02-26 Optical recording method and optical recording system
US09/257,196 US6413680B1 (en) 1998-02-26 1999-02-25 Optical recording method, optical recording medium, and optical recording system
US10/131,191 US20020150825A1 (en) 1998-02-26 2002-04-25 Optical recording method, optical recording medium, and optical recording system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04606698A JP3449210B2 (en) 1998-02-26 1998-02-26 Optical recording method and optical recording system

Publications (2)

Publication Number Publication Date
JPH11248533A JPH11248533A (en) 1999-09-17
JP3449210B2 true JP3449210B2 (en) 2003-09-22

Family

ID=12736641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04606698A Expired - Lifetime JP3449210B2 (en) 1998-02-26 1998-02-26 Optical recording method and optical recording system

Country Status (1)

Country Link
JP (1) JP3449210B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4400668B2 (en) 2007-11-01 2010-01-20 株式会社豊田中央研究所 Method for producing solid-phase body on which minute object is immobilized and use thereof

Also Published As

Publication number Publication date
JPH11248533A (en) 1999-09-17

Similar Documents

Publication Publication Date Title
JP3862845B2 (en) Near-field optical probe
EP0942431A2 (en) Method for three-dimensional optical data storage and retrieval
JP2709651B2 (en) Improved surface-enhanced Raman optical data storage.
JP3449210B2 (en) Optical recording method and optical recording system
EP1576591B1 (en) Bit-wise optical data storage utilizing aluminum oxide single crystal medium
JP3901867B2 (en) Near-field optical recording / reproducing device
JP3397121B2 (en) Sample observation method
Ho et al. Functional structures of AgOx thin film for near-field recording
Kawata et al. Nonoptically probing near-field microscopy for the observation of biological living specimens
US20050078591A1 (en) Bit-wise optical data storage utilizing aluminum oxide single crystal medium
JP4395942B2 (en) Optical recording method and sample observation method
JPH09128787A (en) Device and method for reproducing optical information recording medium and optical information recording medium
JP2001291258A (en) Near field optical head, method for manufacturing near field optical head and optical information recording and reproducing device
JP4992026B2 (en) Near-field light evaluation method
Pavel et al. 3D direct laser writing of Petabyte Optical Disk
Kitano et al. Non‐optically probing near‐field microscopy with illumination of total internal reflection
Nishimura et al. Observation of recording pits on phase-change film using a scanning probe microscope
CA2046065A1 (en) Time-stable labeling of individual atoms or groups of atoms in the surface of a solid, and the storage of information units in the atomic range
JP4201227B2 (en) Near-field optical head
EP2221810B1 (en) Method of erasing information stored on a luminescent data storage medium comprising aluminium oxide base material
JP3236423B2 (en) Optical memory device and its recording method and reproducing method
JP2001291277A (en) Recording medium and recording and reproducing device using the same
JP3356837B2 (en) Optical memory device
Howie Future trends in microscopy
JP2000251282A (en) Near-field optical recording/reproducing apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

EXPY Cancellation because of completion of term