JP2001291258A - Near field optical head, method for manufacturing near field optical head and optical information recording and reproducing device - Google Patents

Near field optical head, method for manufacturing near field optical head and optical information recording and reproducing device

Info

Publication number
JP2001291258A
JP2001291258A JP2000159193A JP2000159193A JP2001291258A JP 2001291258 A JP2001291258 A JP 2001291258A JP 2000159193 A JP2000159193 A JP 2000159193A JP 2000159193 A JP2000159193 A JP 2000159193A JP 2001291258 A JP2001291258 A JP 2001291258A
Authority
JP
Japan
Prior art keywords
optical head
head
field optical
dielectric
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000159193A
Other languages
Japanese (ja)
Inventor
Katsuyuki Naito
勝之 内藤
Yasuyuki Hieda
泰之 稗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000159193A priority Critical patent/JP2001291258A/en
Publication of JP2001291258A publication Critical patent/JP2001291258A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a near field optical head which can form a light spot as small as 20 to 50 nm in size and has excellent transmittance for light, to provide a method for manufacturing a near field optical head and to provide a recording and reproducing device which uses that head. SOLUTION: In the near field optical head having a minute aperture 23 on a flat face 22, a noble metal fine particle structure 24 is formed in the minute aperture opening 23 and the top of the noble metal fine particle 24 does not protrude to outside from the flat face 22 of the head.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光により高密度の
記録が可能な近接場光ヘッド、近接場光ヘッドの作製方
法ならびに情報記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a near-field optical head capable of performing high-density recording by light, a method of manufacturing a near-field optical head, and an information recording / reproducing apparatus.

【0002】[0002]

【従来の技術】近年の情報化社会において、増大の一途
を辿る情報量に対応した、従来より飛躍的に記録密度の
高い記録・再生方法や、それに基づく記録・再生装置の
出現が待望されている。
2. Description of the Related Art In the information-oriented society in recent years, a recording / reproducing method and a recording / reproducing apparatus based on the recording / reproducing method having a remarkably high recording density corresponding to an ever-increasing amount of information are expected. I have.

【0003】光記録を実現する技術としては、光を熱と
して利用するヒートモードと、熱に変換しないで記録す
るフォトンモード記録がある。ヒートモード記録は光磁
気記録や相転移記録などで現在実用化されている。
Techniques for realizing optical recording include a heat mode in which light is used as heat and a photon mode recording in which recording is performed without converting the heat. Heat mode recording is currently in practical use for magneto-optical recording and phase transition recording.

【0004】ヒートモード記録で記録密度の向上を図る
ために、微小開口部から光の波長よりも小さいスポット
が形成できる近接場光走査型顕微鏡Near−fiel
dScanning Optical Microsc
ope(NSOM)を用いた技術が提案されている。た
とえば、Betzigらは、Arイオンレーザの出力を
ファイバーを延伸して作製したNSOM探針によりCo
/Pt多層膜に照射し、光磁気的に情報の記録・再生を
試み、直径60nmの記録パタ−ンを形成している(A
ppl.Phys.Lett.61,142(199
2))。また、Hosakaらは、半導体レーザの出力
をNSOM探針により、膜厚30nmのGeSb
薄膜に照射して相変化させ、直径50nmの記録パ
ターンを実現している(Thin Solid Fil
ms 273,122(1996),J.Appl.P
bys.79,8082(1996))。
[0004] In order to improve the recording density in heat mode recording, a near-field optical scanning near-field microscope capable of forming a spot smaller than the wavelength of light from a minute opening.
dScanning Optical Microsc
A technology using ope (NSOM) has been proposed. For example, Betzig et al. Reported that the output of an Ar ion laser was obtained by using an NSOM probe made by stretching a fiber.
Irradiate the / Pt multilayer film and try to record / reproduce information magneto-optically to form a recording pattern with a diameter of 60 nm (A
ppl. Phys. Lett. 61, 142 (199
2)). Hosaka et al. Used a NSOM probe to measure the output of a semiconductor laser using a 30 nm-thick Ge 2 Sb 2 T
by irradiating e 5 films were a phase change, thereby realizing a recording pattern having a diameter of 50 nm (Thin Solid Fil
ms 273, 122 (1996); Appl. P
bys. 79, 8082 (1996)).

【0005】しかし、上記のファイバーNSOM探針を
用いた方法では、微小開口から照射される近接場光の強
度は著しく小さく、高速書き込みや読み出しは不可能で
ある。これに対して、Matsumotoらは、図1で
示すように貴金属微粒子をファイバープローブの先端に
付けることにより、光透過利率が向上すること報告して
いるが、高速回転する記録媒体用の光ヘッドとしては使
用できない(T. Matsumoto, T. Ic
himura, T. Yatsui, M.Kour
ogi, T.Saiki and M. Ohts
u, , inTech. Digest of 5t
h Int. Conf. on Near Fiel
d Optics and Related tech
niques (NFO−5),paper PC7
(1998))。また距離dのためにプラズモン共鳴効
果が小さくなる。さらに、作製が困難であるため、1イ
ンチ平方当たり1テラビットの記録容量を持つ超高密度
メモリに必要な20〜50nm径の開口に対応すること
は非常に難しい。
However, in the method using the fiber NSOM probe described above, the intensity of the near-field light emitted from the minute aperture is extremely small, and high-speed writing and reading cannot be performed. On the other hand, Matsumoto et al. Reported that the light transmission rate was improved by attaching noble metal fine particles to the tip of the fiber probe as shown in FIG. 1, but as an optical head for a recording medium that rotates at a high speed. Cannot be used (T. Matsumoto, T. Ic
Himura, T .; Yatsui, M .; Kour
Ogi, T .; Saiki and M.S. Ohts
u,, inTech. Digest of 5t
h Int. Conf. on Near Field
d Optics and Related Tech
niques (NFO-5), paper PC7
(1998)). Further, the plasmon resonance effect is reduced due to the distance d. Furthermore, because of difficulty in manufacturing, it is very difficult to cope with an opening having a diameter of 20 to 50 nm required for an ultra-high density memory having a recording capacity of 1 terabit per square inch.

【0006】光ヘッドとして、平坦部に微小開口を有す
るものを一色らは報告している(一色史雄、伊藤顕知、
江藤公俊、保坂純男、1999年春季第46回応用物理
学関係連合講演会、30P−ZB−15)。この場合、
ファイバーを用いずに、レーザー光を集光して微小開口
部に入れることができるが、開口部は空気であり、その
ため開口からの光透過率は低い。
[0006] Isshiki et al. Have reported an optical head having a fine opening in a flat part (Fumio Isshiki, Akito Ito,
Kimitoshi Eto and Sumio Hosaka, The 46th Joint Lecture on Applied Physics, Spring 1999, 30P-ZB-15). in this case,
The laser beam can be condensed into the minute opening without using the fiber, but the opening is air, so that the light transmittance from the opening is low.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、20
〜50nmの微小な光スポットを形成でき、かつ光透過
率の優れた近接場光ヘッド、近接場光ヘッドの作製方法
ならびにこれを用いた記録再生装置を提供することにあ
る。
SUMMARY OF THE INVENTION The object of the present invention is to
An object of the present invention is to provide a near-field optical head capable of forming a minute light spot of about 50 nm and having excellent light transmittance, a method of manufacturing the near-field optical head, and a recording / reproducing apparatus using the same.

【0008】[0008]

【課題を解決するための手段】本発明に係る第1の発明
の近接場光ヘッドは、平坦面に微小開口を持つ近接場光
ヘッドにおいて、微小開口部に貴金属微粒子構造が形成
され、かつ該貴金属微粒子の先端がヘッド平坦面より外
部に出ていないことを特徴とする。
According to a first aspect of the present invention, there is provided a near-field optical head having a fine opening in a flat surface, wherein a noble metal fine particle structure is formed in the fine opening. The tip of the noble metal fine particles does not protrude outside the flat surface of the head.

【0009】そのため図2で示すように、貴金属微粒子
は開口部に入射された光と効率よくプラズモン共鳴する
ことが可能となり、光透過率が向上する。また平坦性が
確保できるために媒体が高速で回転するフライングヘッ
ド等に用いることができる。さらに、貴金属微粒子自体
は開口よりも小さく、近接場光はそこに集中するため、
開口径よりも小さい光スポットを得ることが可能とな
る。
Therefore, as shown in FIG. 2, the noble metal fine particles can efficiently perform plasmon resonance with the light incident on the opening, and the light transmittance is improved. Further, since the flatness can be ensured, it can be used for a flying head or the like in which the medium rotates at high speed. Furthermore, the noble metal particles themselves are smaller than the aperture, and the near-field light concentrates there,
It is possible to obtain a light spot smaller than the aperture diameter.

【0010】貴金属微粒子としては、金、銀、白金、こ
れらの合金等があるが、金、銀が好ましい。貴金属微粒
子は微小開口に化学的に結合していることが好ましい。
近接場光ヘッドの微小開口の作製方法としては、光ファ
イバーを引き延ばしたり、エッチングして円錐状のプロ
ーブを作成し、その開口部にアルミなどの光遮光膜を形
成した後、電子線や高速イオンビームを照射してアルミ
を除去することにより作成できる。また、ソリッドイマ
ージョンレンズなどのレンズ平坦部にアルミなどの光遮
光膜を形成した後、電子線や高速イオンビームを照射し
てアルミを除去することにより作成できる。さらに特開
平11−110793で示されているように、半導体プ
ロセスを利用してSi基板を異方性エッチングをした
後、微小開口を電子線や高速イオンビームを照射して直
接作成したり、レジストを用いて電子線リソグラフィや
X線リソグラフィを利用して作成することができる。半
導体プロセスを利用すると、一つの近接場光ヘッドに複
数の微小開口を持つ、マルチ開口近接場光ヘッドを容易
に作成することができる。
The noble metal fine particles include gold, silver, platinum and alloys thereof, but gold and silver are preferred. Preferably, the noble metal fine particles are chemically bonded to the minute openings.
As a method of manufacturing a micro aperture of a near-field optical head, an optical fiber is stretched or etched to create a conical probe, a light shielding film such as aluminum is formed in the opening, and then an electron beam or a high-speed ion beam is formed. Irradiation to remove aluminum. Further, it can be formed by forming a light shielding film such as aluminum on a flat portion of a lens such as a solid immersion lens and then irradiating an electron beam or a high-speed ion beam to remove the aluminum. Further, as shown in Japanese Patent Application Laid-Open No. H11-110793, after a Si substrate is anisotropically etched using a semiconductor process, a minute opening is directly formed by irradiating an electron beam or a high-speed ion beam, or a resist is formed. And can be formed using electron beam lithography or X-ray lithography. When a semiconductor process is used, a multi-aperture near-field optical head having a plurality of minute openings in one near-field optical head can be easily manufactured.

【0011】本発明に係る第2の発明の近接場光ヘッド
は、平坦面に微小開口を持つ近接場光ヘッドにおいて、
微小開口部に第1の透明誘電体が充填され、該透明誘電
体の屈折率が該透明誘電体が接している光を導波する第
2の誘電体の屈折率と略同じか、もしくは大きく、かつ
第1の誘電体がヘッド平坦面よりも外部に出ていないこ
とを特徴とする。
A near-field optical head according to a second aspect of the present invention is a near-field optical head having a minute aperture on a flat surface.
The first transparent dielectric is filled in the minute opening, and the refractive index of the transparent dielectric is substantially the same as or larger than the refractive index of the second dielectric that guides light in contact with the transparent dielectric. And the first dielectric does not protrude outside the flat surface of the head.

【0012】微小開口部に高屈折率の透明誘電体が充填
されていると、電場による誘電分極が効率よく開口部の
先端まで伝達されるため、近接場光の発生効率を高くす
ることができる。また、誘電体がヘッド平坦面よりも外
部に出ていない構造とすることからヘッドの平坦性がと
れ、媒体を高速に回転することが可能となる。
When the fine aperture is filled with a transparent dielectric material having a high refractive index, the dielectric polarization by the electric field is efficiently transmitted to the tip of the aperture, so that the efficiency of generating near-field light can be increased. . Further, since the structure is such that the dielectric does not protrude outside the flat surface of the head, the flatness of the head can be obtained, and the medium can be rotated at high speed.

【0013】本発明に係る第2の発明の近接場光ヘッド
はさらに、貴金属微粒子が第1の透明誘電体の内部に含
有されていることを特徴とする。このような構造にする
ことにより、プラズモン共鳴を利用して光透過率をさら
に上げることが可能となる。
A near-field optical head according to a second aspect of the present invention is further characterized in that noble metal fine particles are contained inside the first transparent dielectric. With such a structure, it is possible to further increase the light transmittance using plasmon resonance.

【0014】本発明に係る第3の発明の近接場光ヘッド
の作製方法は、微小開口部に貴金属微粒子と親和性の持
つ化学種を設置することを特徴とする。
A method for manufacturing a near-field optical head according to a third aspect of the present invention is characterized in that a chemical species having an affinity for noble metal fine particles is provided in a minute opening.

【0015】このようにすれば、貴金属微粒子を開口部
に吸着させることができる。貴金属微粒子と化学種は化
学結合を形成することが好ましい。また貴金属微粒子同
士は反発力があった方が開口に吸着する微粒子の間隔や
数を制御することができてより好ましい。親和性がある
組み合わせとしては、金とチオール基、銀とカルボキシ
ル基などがある。また貴金属微粒子は水中で電荷を有し
ており、反対電荷を有する化学種を開口部に、同一電荷
を有する化学種を開口周囲に設置することが好ましい。
[0015] In this case, the noble metal fine particles can be adsorbed to the opening. The noble metal fine particles and the chemical species preferably form a chemical bond. It is more preferable that the noble metal fine particles have a repulsive force because the interval and the number of the fine particles adsorbed to the opening can be controlled. Examples of combinations having affinity include gold and a thiol group, and silver and a carboxyl group. Further, the noble metal fine particles have a charge in water, and it is preferable that a chemical species having an opposite charge is placed in the opening and a chemical species having the same charge is placed around the opening.

【0016】また透明微粒子を開口部に吸着させた後、
貴金属を蒸着することにより上記の構造を作製すること
ができる。
After the transparent fine particles are adsorbed on the opening,
The above structure can be produced by depositing a noble metal.

【0017】本発明に係る第4の発明の光情報記録再生
装置は、微小開口部に貴金属微粒子構造が形成され、か
つ該貴金属微粒子の先端がヘッド平坦面より外部に出て
いないか、もしくは微小開口部に第1の透明誘電体が充
填され、該透明誘電体の屈折率が該透明誘電体が接して
いる光を導波する第2の誘電体の屈折率と同じかもしく
は大きく、かつ第1の誘電体がヘッド平坦面よりも外部
に出ていない近接場光ヘッドと、光、磁場もしくは電場
をセンシングする手段を有することを特徴とする。
According to a fourth aspect of the present invention, there is provided the optical information recording / reproducing apparatus according to the present invention, wherein the noble metal fine particle structure is formed in the minute opening, and the tip of the noble metal fine particle does not protrude outside the flat surface of the head, or The opening is filled with a first transparent dielectric, and the refractive index of the transparent dielectric is the same as or larger than the refractive index of a second dielectric that guides light in contact with the transparent dielectric, and The present invention is characterized in that it has a near-field optical head in which the dielectric does not project outside the flat surface of the head and a means for sensing light, a magnetic field or an electric field.

【0018】近接場光ヘッドは磁気ディスク装置のよう
な浮上もしくは接触スライダ上に作成されていてもよい
し、プローブ顕微鏡に用いられるプローブのように縦方
向の距離を精密に制御する手段を有するヘッドとして設
置されていてもよい。光情報記録媒体としては、磁気記
録媒体、光磁気記録媒体、相変化記録媒体、電荷記録媒
体、フォトクロミック記録媒体などのリライタブル記録
媒体、色素媒体などのライトワンス記録媒体、穴開け型
や金属ドット反射型、蛍光媒体などの読み出し専用記録
媒体などを用いることができる。これらの記録媒体はデ
ィスク状にして回転させて用いたり、カード状にして二
次元的に駆動する近接場光ヘッドと組み合わせて用いる
ことができる。1枚の記録媒体について近接場光ヘッド
は単数でも複数でもかまわない。
The near-field optical head may be formed on a flying or contact slider such as a magnetic disk drive, or has a means for precisely controlling the vertical distance, such as a probe used in a probe microscope. It may be installed as. Optical information recording media include magnetic recording media, magneto-optical recording media, phase-change recording media, charge recording media, rewritable recording media such as photochromic recording media, write-once recording media such as dye media, perforated and metal dot reflection media. A read-only recording medium such as a mold and a fluorescent medium can be used. These recording media can be used in the form of a disk and rotated, or in combination with a near-field optical head that is two-dimensionally driven in the form of a card. One or more near-field optical heads may be used for one recording medium.

【0019】光をセンシングする手段としては、フォト
ダイオードやレーザー発振の変化を利用する方法が好ま
しい。磁気をセンシングする手段としては磁気抵抗効果
を利用するヘッドが好ましい。電場をセンシングする手
段としては電界効果トランジスタ、シングルエレクトロ
ントランジスタが好ましい。
As a means for sensing light, a method utilizing a change in a photodiode or laser oscillation is preferable. As a means for sensing magnetism, a head utilizing the magnetoresistance effect is preferable. As a means for sensing an electric field, a field effect transistor and a single electron transistor are preferable.

【0020】また、これらと、磁場や電場を印可する書
き込みヘッドと組み合わせてもよい。近接場光ヘッド
と、書き込み手段もしくはセンシングする手段は別々に
設置されていてもよいし、一つのヘッドに一体化されて
設置されていてもよい。
Further, these may be combined with a write head for applying a magnetic field or an electric field. The near-field optical head and the writing means or the sensing means may be provided separately, or may be provided integrally with one head.

【0021】[0021]

【発明の実施の形態】以下、実施形態により本発明をさ
らに詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to embodiments.

【0022】第1の実施形態 重フリントガラスからなるソリッドイマジョーンレンズ
31の平坦部に光遮蔽膜32としてアルミニムを30n
mの膜厚で蒸着した。次に電子線レジストをアルミニウ
ム膜上に塗布した後、高分解能の電子顕微鏡で微小開口
部にあたる部分に電子線を照射した。RIEエッチング
により開口を作成したのちレジストを除去して1辺30
nm角の正方形状の微小開口33を持つソリッドイーマ
ジョンレンズを得た。次にソリッドイマージョンレンズ
の開口部に化学式
First Embodiment 30 n of aluminum is used as a light shielding film 32 on a flat part of a solid imagin lens 31 made of heavy flint glass.
m was deposited. Next, after applying an electron beam resist on the aluminum film, a portion corresponding to the minute opening was irradiated with an electron beam using a high-resolution electron microscope. After forming an opening by RIE etching, the resist is removed and one side 30
A solid immersion lens having a square minute aperture 33 of nm square was obtained. Next, the chemical formula is applied to the opening of the solid immersion lens.

【化1】 で示す物質のエタノール溶液を滴下し10分間浸した
後、エタノールで洗浄し、80度で1時間加熱すること
により、開口部に化学式(1)で示す物質を化学吸着さ
せた。表面には金微粒子と親和性のあるチオール基が形
成された。次に化学式
Embedded image An ethanol solution of the substance represented by is dropped and immersed for 10 minutes, washed with ethanol, and heated at 80 ° C. for 1 hour, whereby the substance represented by the chemical formula (1) was chemically adsorbed to the opening. A thiol group having an affinity for the fine gold particles was formed on the surface. Then the chemical formula

【化2】 で示す物質のエタノール溶液を開口部に滴下にし10分
間浸した後、エタノールで洗浄し、50度で30分間加
熱することにより、アルミニウム上に化学式(2)で示
す物質を化学吸着させた。次に、市販の直径20nm径
の金微粒子の水分散液に30分間浸した後、水で洗浄し
た。金微粒子は水中で負に帯電しており、化学式(2)
の物質とは反発する。一方、チオール基とは反応するた
め、開口部に金微粒子34が一つ選択的に吸着している
ことがAFM測定から確認された。
Embedded image An ethanol solution of the substance represented by is dropped into the opening and immersed for 10 minutes, washed with ethanol, and heated at 50 ° C. for 30 minutes to chemically adsorb the substance represented by the chemical formula (2) on aluminum. Next, it was immersed in a commercially available aqueous dispersion of fine gold particles having a diameter of 20 nm for 30 minutes, and then washed with water. Gold particles are negatively charged in water, and have the chemical formula (2)
Repel with the substance. On the other hand, it was confirmed from the AFM measurement that one of the fine gold particles 34 was selectively adsorbed to the opening due to the reaction with the thiol group.

【0023】次に書き込み用の磁気ヘッド35および読
み出し用のGMRヘッド36を取り付けたスライダヘッ
ド37に該ソリッドイーマジョンレンズを取り付け、図
3で示す近接場光ヘッド38を得た。該貴金属微粒子の
先端はヘッド平坦面より外部に出ていなかった。
Next, the solid immersion lens was attached to a slider head 37 to which a magnetic head 35 for writing and a GMR head 36 for reading were attached, and a near-field optical head 38 shown in FIG. 3 was obtained. The tips of the noble metal particles did not protrude outside the flat surface of the head.

【0024】次に図4で示す光情報記録再生装置41を
作成した。記録媒体として直径2.5インチの垂直磁気
記録媒体ディスク42、光を近接場光ヘッド38に入射
するための波長620nmの出力6mWの半導体レーザ
ー43およぶ対物レンズ44を設置した。45はディス
クを回転するためのモーターである。
Next, an optical information recording / reproducing apparatus 41 shown in FIG. 4 was prepared. As a recording medium, a perpendicular magnetic recording medium disk 42 having a diameter of 2.5 inches, a semiconductor laser 43 having a wavelength of 620 nm and an output of 6 mW and an objective lens 44 for inputting light to the near-field optical head 38 were provided. 45 is a motor for rotating the disk.

【0025】ディスクを4000rpmで回転させ、近
接場光を連続的に照射しながら、磁気ヘッド35で信号
を書き込んだ。再生はGMRヘッド36で磁気信号を読
み込んだ。1インチ平方当たり500ギガビットの信号
が25dBのCN比で読み出すことができた。
The signal was written by the magnetic head 35 while rotating the disk at 4000 rpm and continuously irradiating near-field light. For reproduction, a magnetic signal was read by the GMR head 36. A signal of 500 gigabits per square inch could be read at a CN ratio of 25 dB.

【0026】比較例1 図3で示す微小開口を持つ近接場光ヘッドを用いる代わ
りに、構造は同じで、金微粒子を有しない近接場光ヘッ
ドを用いることを除いては実施例1と同様にして近接場
光ヘッドおよび、光情報記録再生装置を作成した。
COMPARATIVE EXAMPLE 1 Instead of using the near-field optical head having a fine aperture shown in FIG. 3, the structure is the same as that of the first embodiment except that a near-field optical head having no fine gold particles is used. In this way, a near-field optical head and an optical information recording / reproducing device were produced.

【0027】ディスクを4000rpmで回転させ、近
接場光を連続的に照射しながら、磁気ヘッドで信号を書
き込んだ。再生はGMRヘッドで磁気信号を読み込ん
だ。1インチ平方当たり500ギガビットの信号が10
dBのCN比でしか読み出すことができなかった。
The disk was rotated at 4000 rpm, and signals were written with a magnetic head while continuously irradiating near-field light. For reproduction, a magnetic signal was read by a GMR head. 500 gigabits per square inch is 10
The data could only be read at a dB CN ratio.

【0028】第2の実施形態 屈折率1.80のガラスからなるソリッドイマージョン
レンズ51の平坦部に光遮蔽膜52としてクロムを40
nmの膜厚で蒸着した。次に高速イオンビームを照射し
て、微小開口を持つソリッドイマージョンレンズを得
た。次に屈折率1.85のフリントガラスを該微小開口
に溶融した後、ケミカルメカニカル研磨によって表面を
削って、直径20nmの微小開口部53がフリントガラ
スで充填されたソリッドイマージョンレンズを得た。こ
のソリッドイマージョンレンズ51と書き込み用の電極
ヘッド54および電荷読み出し用のFETセンサー55
を取り付けたスライダヘッド56に該ソリッドイマージ
ョンレンズを取り付け、図5で示す近接場光ヘッド57
を得た。
Second Embodiment On a flat portion of a solid immersion lens 51 made of glass having a refractive index of 1.80, chromium 40 is used as a light shielding film 52.
It was deposited with a thickness of nm. Next, a high-speed ion beam was irradiated to obtain a solid immersion lens having a minute aperture. Next, after flint glass having a refractive index of 1.85 was melted in the minute openings, the surface was shaved by chemical mechanical polishing to obtain a solid immersion lens in which minute openings 53 having a diameter of 20 nm were filled with flint glass. The solid immersion lens 51, a writing electrode head 54, and a charge reading FET sensor 55
The solid immersion lens is attached to the slider head 56 to which the near-field optical head 57 shown in FIG.
I got

【0029】次に図6で示す光情報記録再生装置61を
作成した。記録媒体として図7で示す直径2.5インチ
の電荷記録媒体ディスク62、光を近接場光ヘッド57
に入射するための波長620nmの出力6mWの半導体
レーザー63およぶ対物レンズ64を設置した。65は
ディスクを回転するためのモーターである。電荷記録媒
体ディスク62は基板上70に形成された電極71、光
導電層72、電荷を蓄積する金属ドット73が絶縁体に
埋め込まれた記録層74、保護膜75からなる。
Next, an optical information recording / reproducing apparatus 61 shown in FIG. 6 was prepared. As a recording medium, a charge recording medium disk 62 having a diameter of 2.5 inches shown in FIG.
A semiconductor laser 63 having a wavelength of 620 nm and an output of 6 mW and an objective lens 64 for setting the wavelength at 620 nm were installed. 65 is a motor for rotating the disk. The charge recording medium disk 62 includes an electrode 71 formed on a substrate 70, a photoconductive layer 72, a recording layer 74 in which metal dots 73 for storing electric charges are embedded in an insulator, and a protective film 75.

【0030】ディスクを4000rpmで回転させ、近
接場光を連続的に照射しながら、電極ヘッド54に電圧
を印可して信号を書き込んだ。再生はFETセンサーヘ
ッド55で電荷信号を読み込んだ。1インチ平方当たり
600テラビットの信号が20dBのCN比で読み出す
ことができた。
A signal was written by applying a voltage to the electrode head 54 while continuously irradiating near-field light while rotating the disk at 4000 rpm. In the reproduction, the charge signal was read by the FET sensor head 55. A signal of 600 terabits per square inch could be read at a CN ratio of 20 dB.

【0031】比較例2 図5で示す近接場光ヘッドを用いる代わりに、微小開口
がフリントガラスで充填されていないことを除いては実
施例2と同様にして近接場光ヘッドおよび、光情報記録
再生装置を作成した。
Comparative Example 2 Instead of using the near-field optical head shown in FIG. 5, the near-field optical head and the optical information recording were performed in the same manner as in Example 2 except that the fine aperture was not filled with flint glass. A playback device was created.

【0032】ディスクを4000rpmで回転させ、近
接場光を連続的に照射しながら、電極ヘッドに電圧を印
可して信号を書き込んだ。再生はFETセンサーヘッド
で電荷信号を読み込んだが、1インチ平方当たり600
テラビットの信号が10dBのCN比で読み出すことが
できず、十分に記録が行われていないことが分かった。
The disk was rotated at 4000 rpm, and a signal was written by applying a voltage to the electrode head while continuously irradiating near-field light. In the reproduction, the charge signal was read by the FET sensor head, but 600 per inch square.
It was found that a terabit signal could not be read at a CN ratio of 10 dB, and that sufficient recording was not performed.

【0033】第3の実施形態 半導体プロセスを利用してSi基板81を異方性エッチ
ングをした後、表面酸化して酸化シリコン膜82を作製
した。平坦部に光遮蔽膜83としてアルミニムを30n
mの膜厚で蒸着した。次に電子線レジストをアルミニウ
ム膜上に塗布した後、高分解能の電子顕微鏡で微小開口
部にあたる部分に電子線を照射した。RIEエッチング
により微小開口を作成したのちレジストを除去して1辺
30nm角の正方形状の微小開口84を10x10個持
つSi基板を得た。次に開口部に化学式(1)で示す物
質のエタノール溶液を滴下し10分間浸した後、エタノ
ールで洗浄し、80度で1時間加熱することにより、開
口部に化学式(1)で示す物質を化学吸着させた。表面
には金微粒子と親和性のあるチオール基が形成された。
次に化学式(2)で示す物質のエタノール溶液を開口部
に滴下にし10分間浸した後、エタノールで洗浄し、5
0度で30分間加熱することにより、アルミニウム上に
化学式(2)で示す物質を化学吸着させた。次に、市販
の直径20nm径の金微粒子の水分散液に30分間浸し
た後、水で洗浄、各開口部に金微粒子85が一つ選択的
に吸着していることがAFM測定から確認された。次に
球状の集光レンズ86を開口部に設置した後、スライダ
ヘッド87に搭載して、図8に示されるマルチ近接場光
ヘッド88を作製した。
Third Embodiment A silicon oxide film 82 was prepared by anisotropically etching a Si substrate 81 using a semiconductor process and then oxidizing the surface. 30n of aluminum as a light shielding film 83 on a flat part
m was deposited. Next, after applying an electron beam resist on the aluminum film, a portion corresponding to the minute opening was irradiated with an electron beam using a high-resolution electron microscope. After minute openings were formed by RIE etching, the resist was removed to obtain a Si substrate having 10 × 10 square minute openings 84 of 30 nm square on each side. Next, an ethanol solution of the substance represented by the chemical formula (1) is dropped into the opening and immersed for 10 minutes, washed with ethanol, and heated at 80 ° C. for 1 hour, whereby the substance represented by the chemical formula (1) is placed in the opening. Chemisorbed. A thiol group having an affinity for the fine gold particles was formed on the surface.
Next, an ethanol solution of the substance represented by the chemical formula (2) is dropped into the opening and immersed for 10 minutes.
By heating at 0 degrees for 30 minutes, the substance represented by the chemical formula (2) was chemically adsorbed on the aluminum. Next, after immersing in a commercially available aqueous dispersion of gold fine particles having a diameter of 20 nm for 30 minutes, washing with water, it was confirmed from AFM measurement that one gold fine particle 85 was selectively adsorbed to each opening. Was. Next, after a spherical condenser lens 86 was set in the opening, it was mounted on a slider head 87 to produce a multi-near-field light head 88 shown in FIG.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
20〜50nmの微小な光スポットを形成でき、かつ光
透過率の優れた近接場光ヘッド、近接場光ヘッドの作製
方法ならびにこれを用いた光情報記録再生装置を提供す
ることができる。
As described above, according to the present invention,
It is possible to provide a near-field optical head capable of forming a minute light spot of 20 to 50 nm and having excellent light transmittance, a method of manufacturing the near-field optical head, and an optical information recording / reproducing apparatus using the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】貴金属微粒子を持つファイバープローブの例を
示す図。
FIG. 1 is a diagram showing an example of a fiber probe having noble metal fine particles.

【図2】本発明の近接場光ヘッドの構造を説明する図。FIG. 2 is a diagram illustrating the structure of a near-field optical head according to the present invention.

【図3】第1の実施形態で作製した近接場光ヘッドを示
す図。
FIG. 3 is a diagram showing a near-field optical head manufactured in the first embodiment.

【図4】第1の実施形態で作製した光情報記録再生装置
を示す図。
FIG. 4 is a diagram showing an optical information recording / reproducing device manufactured in the first embodiment.

【図5】第2の実施形態で作製した近接場光ヘッドを示
す図。
FIG. 5 is a diagram showing a near-field optical head manufactured in a second embodiment.

【図6】第2の実施形態で作製した光情報記録再生装置
を示す図。
FIG. 6 is a diagram showing an optical information recording / reproducing device manufactured in a second embodiment.

【図7】第2の実施形態で用いた記録媒体の構造を示す
図。
FIG. 7 is a diagram showing a structure of a recording medium used in a second embodiment.

【図8】第3の実施形態で作製した近接場光ヘッドを示
す図。
FIG. 8 is a diagram showing a near-field optical head manufactured in a third embodiment.

【符号の説明】[Explanation of symbols]

11…光ファイバー 12…光遮蔽膜 13…貴金属微粒子 21…近接場光ヘッド 22…平坦部 23…微小開口 24…貴金属微粒子 25…透明誘電体 26…集光レンズ 31…ソリッドイマージョンレンズ 32…光遮蔽膜 33…微小開口 34…金微粒子 35…磁気ヘッド 36…GMRヘッド 37…スライダヘッド 38…近接場光ヘッド 41…光情報記録再生装置、 42…垂直磁気記録媒体ディスク 43…半導体レーザー、 44…対物レンズ 45…モーター、 51…ソリッドイマージョンレンズ、 52…光遮蔽膜 53…微小開口 54…電極ヘッド 55…FETセンサー 56…スライダヘッド 57…近接場光ヘッド 61…光情報記録再生装置 62…電荷記録媒体ディスク 63…半導体レーザー 64…対物レンズ 65…モーター 70…基板 71…電極 72…光導電層 73…金属ドット 74…記録層 75…保護膜、 81…Si基板 82…酸化シリコン膜 83…光遮蔽膜 84…微小開口 85…金微粒子 86…集光レンズ 87…スライダヘッド 88…近接場光ヘッド DESCRIPTION OF SYMBOLS 11 ... Optical fiber 12 ... Light shielding film 13 ... Precious metal fine particles 21 ... Near field optical head 22 ... Flat part 23 ... Small aperture 24 ... Precious metal fine particles 25 ... Transparent dielectric 26 ... Condensing lens 31 ... Solid immersion lens 32 ... Light shielding film Reference Signs List 33 minute aperture 34 gold particles 35 magnetic head 36 GMR head 37 slider head 38 near-field optical head 41 optical information recording / reproducing device 42 perpendicular magnetic recording medium disk 43 semiconductor laser 44 objective lens 45 motor, 51 solid immersion lens 52 light shielding film 53 minute aperture 54 electrode head 55 FET sensor 56 slider head 57 near-field optical head 61 optical information recording / reproducing device 62 electric charge recording medium disk 63: semiconductor laser 64: objective lens 65: motor 7 0 ... Substrate 71 ... Electrode 72 ... Photoconductive layer 73 ... Metal dot 74 ... Recording layer 75 ... Protective film, 81 ... Si substrate 82 ... Silicon oxide film 83 ... Light shielding film 84 ... Micro aperture 85 ... Gold fine particles 86 ... Condensation Lens 87: slider head 88: near-field optical head

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G11B 11/105 566 G11B 11/105 566C 566Z G12B 21/06 G12B 1/00 601C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G11B 11/105 566 G11B 11/105 566C 566Z G12B 21/06 G12B 1/00 601C

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平坦面に微小開口を持つ近接場光ヘッド
であって、前記微小開口部に貴金属微粒子構造が形成さ
れ、かつ該貴金属微粒子の先端がヘッド平坦面より外部
に出ていないことを特徴とする近接場光ヘッド。
1. A near-field optical head having a minute opening in a flat surface, wherein a noble metal fine particle structure is formed in the minute opening, and a tip of the noble metal fine particle does not protrude outside the flat surface of the head. Characteristic near-field optical head.
【請求項2】 平坦面に微小開口を持つ近接場光ヘッド
であって、前記微小開口部に透明な第1の誘電体が充填
され、該第1の誘電体の屈折率が該誘電体が接している
光を導波する第2の誘電体の屈折率と同じかもしくは大
きく、かつ前記第1の誘電体がヘッド平坦面よりも外部
に出ていないことを特徴とする近接場光ヘッド。
2. A near-field optical head having a minute opening in a flat surface, wherein the minute opening is filled with a transparent first dielectric, and the refractive index of the first dielectric is reduced. A near-field optical head, wherein the refractive index of a second dielectric that guides the contacting light is equal to or greater than a refractive index of the second dielectric, and the first dielectric does not project outside the flat surface of the head.
【請求項3】 前記貴金属微粒子が前記第1の誘電体の
内部に含有されていることを特徴とする請求項2記載の
近接場光ヘッド。
3. The near-field optical head according to claim 2, wherein the noble metal fine particles are contained inside the first dielectric.
【請求項4】 微小開口部に貴金属微粒子と親和性を持
つ化学種を設置することを特徴とする近接場光ヘッドの
作製方法。
4. A method for producing a near-field optical head, comprising placing a chemical species having an affinity for noble metal fine particles in a minute opening.
【請求項5】 微小開口部に貴金属微粒子構造が形成さ
れ、かつ該貴金属微粒子の先端がヘッド平坦面より外部
に出ていないか、もしくは微小開口部に透明な第1の誘
電体が充填され、該第1の誘電体の屈折率が該誘電体が
接している光を導波する第2の誘電体の屈折率と同じか
もしくは大きく、かつ前記第1の誘電体がヘッド平坦面
よりも外部に出ていない近接場光ヘッドと、光、磁場も
しくは電場をセンシングする手段を有することを特徴と
する光情報記録再生装置。
5. A noble metal fine particle structure is formed in the minute opening, and the tip of the noble metal particle does not protrude outside the flat surface of the head, or the minute opening is filled with a transparent first dielectric, The refractive index of the first dielectric is equal to or greater than the refractive index of a second dielectric that guides light in contact with the dielectric, and the first dielectric is located outside the flat surface of the head. An optical information recording / reproducing apparatus, comprising: a near-field optical head which is not shown in FIG. 1; and means for sensing light, magnetic field or electric field.
JP2000159193A 2000-03-31 2000-03-31 Near field optical head, method for manufacturing near field optical head and optical information recording and reproducing device Pending JP2001291258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000159193A JP2001291258A (en) 2000-03-31 2000-03-31 Near field optical head, method for manufacturing near field optical head and optical information recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000159193A JP2001291258A (en) 2000-03-31 2000-03-31 Near field optical head, method for manufacturing near field optical head and optical information recording and reproducing device

Publications (1)

Publication Number Publication Date
JP2001291258A true JP2001291258A (en) 2001-10-19

Family

ID=18663553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000159193A Pending JP2001291258A (en) 2000-03-31 2000-03-31 Near field optical head, method for manufacturing near field optical head and optical information recording and reproducing device

Country Status (1)

Country Link
JP (1) JP2001291258A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319365A (en) * 2000-05-10 2001-11-16 Fuji Xerox Co Ltd Floating recoding head, disk device and method for producing the head
US7297933B2 (en) * 2002-06-14 2007-11-20 Canon Kabushiki Kaisha Probe, near-field light generation apparatus including probe, exposure apparatus, and exposing method using probe
JP2009070554A (en) * 2008-11-04 2009-04-02 Hitachi Ltd Magnetic head slider for thermal assist recording, and thermal assist recording device using the same
JP2010197208A (en) * 2009-02-25 2010-09-09 Hitachi Ltd Scanning probe microscope and sample observation method using same
WO2014006999A1 (en) * 2012-07-04 2014-01-09 株式会社日立製作所 Scanning probe microscope

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319365A (en) * 2000-05-10 2001-11-16 Fuji Xerox Co Ltd Floating recoding head, disk device and method for producing the head
US7297933B2 (en) * 2002-06-14 2007-11-20 Canon Kabushiki Kaisha Probe, near-field light generation apparatus including probe, exposure apparatus, and exposing method using probe
JP2009070554A (en) * 2008-11-04 2009-04-02 Hitachi Ltd Magnetic head slider for thermal assist recording, and thermal assist recording device using the same
JP4520524B2 (en) * 2008-11-04 2010-08-04 株式会社日立製作所 Magnetic head slider for thermal assist recording and thermal assist recording apparatus using the same
JP2010197208A (en) * 2009-02-25 2010-09-09 Hitachi Ltd Scanning probe microscope and sample observation method using same
WO2014006999A1 (en) * 2012-07-04 2014-01-09 株式会社日立製作所 Scanning probe microscope
JP2014013160A (en) * 2012-07-04 2014-01-23 Hitachi Ltd Scanning probe microscope

Similar Documents

Publication Publication Date Title
US5796706A (en) Information recording apparatus
JP2602608B2 (en) Optical data storage
JP3688530B2 (en) Recording medium, recording apparatus, and recording method
Milster Near-field optics: a new tool for data storage
JPH0696714A (en) Surface working device and recording device
JP4060150B2 (en) Micro-integrated near-field optical recording head and optical recording apparatus using the same
CA2046063A1 (en) Storage of information units in the nanometer range
US6001519A (en) High molecular weight information recording medium and related data writing method
JP2002197652A (en) High-density information recording and reproducing device
JP2003006913A (en) Near-field optical head
JP2001291258A (en) Near field optical head, method for manufacturing near field optical head and optical information recording and reproducing device
JPH0765428A (en) Thermomagnetic recording, reproducing and erasing method and device
US5513168A (en) Optical information read/write apparatus
JP3388221B2 (en) Recording medium and recording / reproducing apparatus using the same
JP3574521B2 (en) Optical information recording medium reproducing apparatus and reproducing method
JPH11250460A (en) Information recording and/or reproducing method and information recording and/or reproducing device
JP3023728B2 (en) Probe structure, recording device, information detecting device, reproducing device, and recording / reproducing device
JP2001189030A (en) Proximity field light irradiation head, and information recording/reproduding device
JP4628454B2 (en) Recording medium and optical information recording / reproducing apparatus
JP3737347B2 (en) Optical probe element and recording / reproducing apparatus using the optical probe element
JP4201232B2 (en) Recording medium and optical information recording / reproducing apparatus
JP2002109779A (en) Near-field optical head, production method for near-field optical head, optical information recording apparatus and optical information reproducing apparatus
JP4162317B2 (en) Near-field optical memory head
JP4290279B2 (en) Optical sample body and writing and reading method thereof
JPH1139738A (en) Magneto-optical disk and memory device using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040706