JP3446684B2 - Multicarrier receiving system, receiving apparatus and frequency offset detecting circuit for receiving apparatus - Google Patents

Multicarrier receiving system, receiving apparatus and frequency offset detecting circuit for receiving apparatus

Info

Publication number
JP3446684B2
JP3446684B2 JP29155599A JP29155599A JP3446684B2 JP 3446684 B2 JP3446684 B2 JP 3446684B2 JP 29155599 A JP29155599 A JP 29155599A JP 29155599 A JP29155599 A JP 29155599A JP 3446684 B2 JP3446684 B2 JP 3446684B2
Authority
JP
Japan
Prior art keywords
component
circuit
quadrature
phase component
delayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29155599A
Other languages
Japanese (ja)
Other versions
JP2001111520A (en
Inventor
伝幸 柴田
修朗 伊藤
美俊 藤元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP29155599A priority Critical patent/JP3446684B2/en
Publication of JP2001111520A publication Critical patent/JP2001111520A/en
Application granted granted Critical
Publication of JP3446684B2 publication Critical patent/JP3446684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はマルチキャリア受信
方式及び受信装置に関する。本発明は特に、有効シンボ
ルと有効シンボルの一部を複写したガードインターバル
とから成る信号を用いる直交周波数分割多重方式(OF
DM)の受信方式及び受信装置に特に有用である。
TECHNICAL FIELD The present invention relates to a multicarrier receiving system and a receiving apparatus. The present invention is particularly applicable to an orthogonal frequency division multiplexing (OF) method using a signal composed of an effective symbol and a guard interval obtained by copying a part of the effective symbol.
It is particularly useful for a DM) receiving system and a receiving device.

【0002】[0002]

【従来の技術】マルチキャリア通信方式の受信に際して
は、各キャリアの周波数を精度良く再現する必要がある
が、受信局が移動局であるなどの場合、各キャリアの周
波数にオフセットが生じる。そこで、特に移動局である
受信局などの場合において、復調時に各キャリアの周波
数オフセットを検出し、その影響を除去することが必要
である。
2. Description of the Related Art When a multi-carrier communication system is received, it is necessary to accurately reproduce the frequency of each carrier. However, when the receiving station is a mobile station, an offset occurs in the frequency of each carrier. Therefore, particularly in the case of a receiving station which is a mobile station, it is necessary to detect the frequency offset of each carrier at the time of demodulation and remove the influence thereof.

【0003】例えば特開平7−143097号公報記載
のOFDM同期復調回路においては、概ね図12のよう
な回路によりキャリアの周波数オフセットを検出してい
る。即ち、複素データたるマルチキャリア信号に対し、
有効シンボル長(時間)だけ遅延させた信号(遅延回路
91の出力)との複素乗算を行う。得られた結果(複素
乗算回路92の出力)を加算平均し(加算平均回路9
3)、実部と虚部との比の逆正接(tan-1)をとって位
相差を求め(位相差回路94)、ここから周波数オフセ
ットを求めるものである。
For example, in the OFDM synchronous demodulation circuit described in Japanese Patent Laid-Open No. 7-143097, the frequency offset of the carrier is detected by a circuit as shown in FIG. That is, for multi-carrier signals that are complex data,
Complex multiplication is performed with a signal (output of the delay circuit 91) delayed by the effective symbol length (time). The obtained results (the output of the complex multiplication circuit 92) are added and averaged (addition and averaging circuit 9
3) Then, the arc tangent (tan -1 ) of the ratio of the real part and the imaginary part is obtained to obtain the phase difference (phase difference circuit 94), and the frequency offset is obtained from this.

【0004】[0004]

【発明が解決しようとする課題】上記のような周波数オ
フセットの検出回路は、演算に複素演算を多用するため
回路規模が大きくなってしまう。即ち、キャリア数の多
いほど、高速なマルチキャリア伝送方式ほど高速演算可
能な論理素子が必要となり、回路設計も極めて複雑化す
るという問題があった。
The frequency offset detection circuit as described above uses a large number of complex operations for the operations, which results in a large circuit scale. In other words, the larger the number of carriers, the higher the speed of the multi-carrier transmission method, the more logical elements that can be operated at high speed are required, and the circuit design becomes extremely complicated.

【0005】本発明はこのような課題を解決するために
なされたものであり、その目的は、回路規模の小さい演
算回路でキャリアの周波数オフセットを精度良く検出す
ることである。また、そのような回路を用いた復調装
置、復調方式である。
The present invention has been made to solve such a problem, and an object thereof is to accurately detect a carrier frequency offset in an arithmetic circuit having a small circuit scale. A demodulation device and a demodulation method using such a circuit are also provided.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
め、請求項1に記載の手段によれば、有効シンボルと有
効シンボルの一部を複写したガードインターバルとから
成る信号を受信するマルチキャリア受信方式において、
受信信号から直交復調された同相成分Iと直交成分Qと
を各々有効シンボル分Tだけそれぞれ遅延させ遅延同相
成分I'と遅延直交成分Q'とにする同相成分遅延手段及
び直交成分遅延手段と、同相成分Iと遅延同相成分I'
とから同期タイミングtGを検出するためのタイミング
情報算出手段と、同相成分Iと直交成分Qと遅延同相成
分I'と遅延直交成分Q'とから積分∫(|Q−I'|−|
I−Q'|)dtをガードインターバル長Tgで算出する交
差成分量算出手段と、タイミング情報算出手段の情報か
ら同期タイミングtGにおける交差成分量算出手段の出
力を出力するゲート手段とを有し、ゲート手段の出力か
ら受信信号を直交復調するための周波数を補正すること
を特徴とする。
In order to solve the above-mentioned problems, according to the means described in claim 1, a multi-carrier for receiving a signal composed of an effective symbol and a guard interval obtained by copying a part of the effective symbol. In the receiving method,
An in-phase component delay means and a quadrature component delay means for delaying the in-phase component I and the quadrature component Q, which are quadrature-demodulated from the received signal, by the effective symbol amount T to form a delayed in-phase component I ′ and a delayed quadrature component Q ′, and In-phase component I and delayed in-phase component I '
And a timing information calculation means for detecting the synchronization timing t G , and an integral ∫ (| Q−I ′ | − | from the in-phase component I, the quadrature component Q, the delayed in-phase component I ′ and the delayed quadrature component Q ′.
There is a cross component amount calculating means for calculating IQ ′ |) dt with a guard interval length T g , and a gate means for outputting the output of the cross component amount calculating means at the synchronization timing t G from the information of the timing information calculating means. Then, the frequency for quadrature demodulating the received signal is corrected from the output of the gate means.

【0007】また、請求項2に記載の手段によれば、タ
イミング情報算出手段の出力がガードインターバル長T
gの積分∫|I−I'|dtであることを特徴とする。
Further, according to the means described in claim 2, the output of the timing information calculating means outputs the guard interval length T.
The integral of g is ∫ | II ′ | dt.

【0008】請求項3及び請求項4に記載の手段は、そ
れぞれ請求項1及び請求項2に記載のマルチキャリア受
信方式をマルチキャリア受信装置としたものである。ま
た、請求項5及び請求項6に記載の手段は、それぞれ請
求項3及び請求項4に記載のマルチキャリア受信装置の
要部をマルチキャリア受信装置用周波数オフセット検出
回路としたものである。
The means described in claim 3 and claim 4 is a multicarrier receiving apparatus using the multicarrier receiving system according to claim 1 and claim 2, respectively. The means described in claim 5 and claim 6 are the frequency offset detection circuits for a multicarrier receiver, which are the main parts of the multicarrier receiver described in claim 3 and claim 4, respectively.

【0009】[0009]

【作用及び発明の効果】同期タイミングtGにおける、
ガードインターバル長Tgで算出した積分∫(|Q−I'
|−|I−Q'|)dtは、周波数オフセットによる位相差
と比例する。ただし、周波数オフセットが−1/4Tか
ら1/4Tまでの間であるものとする。これは、周波数
オフセットが−1/4Tのとき、∫|I−Q'|dtが0
であり、周波数オフセットが0になるにしたがって増加
し、周波数オフセットが正では確率論的にある正の一定
値を取ると考えられるからである。また、周波数オフセ
ットが1/4Tのとき、∫|Q−I'|dtが0であり、
周波数オフセットが0になるにしたがって増加し、周波
数オフセットが負では確率論的にある正の一定値を取る
と考えられるからである。よってこれらの差を取れば、
周波数オフセットが−1/4Tから1/4Tまでの間
で、同期タイミングtGにおける、ガードインターバル
長Tgで算出した積分∫(|Q−I'|−|I−Q'|)dt
は、周波数オフセットによる位相差と比例する。
[Operation and Effect of the Invention] At the synchronization timing t G ,
Integral ∫ (| Q-I 'calculated with the guard interval length T g
|-| I-Q '|) dt is proportional to the phase difference due to the frequency offset. However, it is assumed that the frequency offset is between -1 / 4T and 1 / 4T. This means that when the frequency offset is -1 / 4T, ∫ | IQ '| dt is 0.
This is because it is considered that the frequency offset increases as the frequency offset becomes 0, and when the frequency offset is positive, it takes a certain positive constant value stochastically. When the frequency offset is 1 / 4T, ∫ | Q-I '| dt is 0,
This is because it is considered that the frequency offset increases as it becomes 0, and when the frequency offset is negative, it has a certain positive constant value stochastically. So if you take these differences,
The integral ∫ (| Q−I ′ | − | I−Q ′ |) dt calculated by the guard interval length T g at the synchronization timing t G between the frequency offset of −1 / 4T and 1 / 4T.
Is proportional to the phase difference due to the frequency offset.

【0010】[0010]

【発明の実施の形態】以下、本発明の具体的な実施例に
ついて図を用いて説明する。尚、本発明は以下の実施例
に限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to the examples below.

【0011】図1及び図2は、本発明の全体的な概念を
示すための周波数オフセット検出回路100の構成を示
したブロック図及びそれを組み込んだマルチキャリア受
信装置1000の構成を示したブロック図である。図1
の周波数オフセット検出回路100は、2つの遅延回路
11及び12、タイミング情報算出回路20、交差成分
算出回路30、ゲート回路40から成る。
1 and 2 are block diagrams showing the configuration of a frequency offset detection circuit 100 for showing the overall concept of the present invention and a block diagram showing the configuration of a multicarrier receiver 1000 incorporating the same. Is. Figure 1
The frequency offset detection circuit 100 is composed of two delay circuits 11 and 12, a timing information calculation circuit 20, a crossing component calculation circuit 30, and a gate circuit 40.

【0012】図2のように、マルチキャリア信号が、電
圧制御発振器(VCO)1の搬送波と乗算器2で復調さ
れ、同相成分Iが生成される。なお、乗算器2は低域漏
波をも行うものとする。電圧制御発振器(VCO)1の
搬送波は、90度位相器3により位相がずれた搬送波と
して乗算器4に出力され、マルチキャリア信号から直交
成分Qが生成される。なお、乗算器4は低域漏波をも行
うものとする。このようにしてマルチキャリア信号が同
相成分Iと直交成分Qとに直交復調される。
As shown in FIG. 2, the multi-carrier signal is demodulated by the carrier of the voltage controlled oscillator (VCO) 1 and the multiplier 2 to generate the in-phase component I. Note that the multiplier 2 also performs low frequency leaky waves. The carrier wave of the voltage controlled oscillator (VCO) 1 is output to the multiplier 4 as a carrier wave whose phase is shifted by the 90-degree phase shifter 3, and the quadrature component Q is generated from the multicarrier signal. Note that the multiplier 4 also performs low frequency leaky waves. In this way, the multicarrier signal is quadrature demodulated into the in-phase component I and the quadrature component Q.

【0013】同相成分Iと直交成分Qとは、マルチキャ
リア復調器5により復調される。また、同相成分Iと直
交成分Qとは本発明に係る周波数オフセット検出回路1
00にも出力される。周波数オフセット検出回路100
の内容を図1で説明する。同相成分Iと直交成分Qと
は、遅延回路11及び12に入力され、遅延同相成分
I'と遅延直交成分Q'とが生成される。タイミング情報
算出回路20では、同相成分Iと遅延同相成分I'とか
ら同期タイミングtGを示す出力がされる。交差成分量
算出回路30は、同相成分Iと直交成分Qと遅延同相成
分I'と遅延直交成分Q'とから、積分∫(|Q−I'|−
|I−Q'|)dtを算出する積分区間はガードインターバ
ル長Tgである。この出力をゲート回路40に出力す
る。ゲート回路40は、タイミング情報算出回路20の
出力から同期タイミングtGを判定し、そのときの交差
成分量算出回路30の出力である積分∫(|Q−I'|−
|I−Q'|)dtを出力する。同期タイミングtGでの交
差成分量算出回路30の出力である積分∫(|Q−I'|
−|I−Q'|)dtが周波数オフセットΔfに比例するの
で、図2のようにこれをループフィルタ6を通して、電
圧制御発振器(VCO)1の出力する搬送波の周波数を
補正する。以下、積分∫(|Q−I'|−|I−Q'|)dt
が周波数オフセットΔfに比例する理由を説明する。
The in-phase component I and the quadrature component Q are demodulated by the multicarrier demodulator 5. The in-phase component I and the quadrature component Q are the frequency offset detection circuit 1 according to the present invention.
It is also output to 00. Frequency offset detection circuit 100
Will be described with reference to FIG. The in-phase component I and the quadrature component Q are input to the delay circuits 11 and 12, and the delayed in-phase component I ′ and the delayed quadrature component Q ′ are generated. The timing information calculation circuit 20 outputs an output indicating the synchronization timing t G from the in-phase component I and the delayed in-phase component I ′. The cross component amount calculation circuit 30 calculates the integral ∫ (| Q−I ′ | − from the in-phase component I, the quadrature component Q, the delayed in-phase component I ′, and the delayed quadrature component Q ′.
The integral interval for calculating | I−Q ′ |) dt is the guard interval length T g . This output is output to the gate circuit 40. The gate circuit 40 determines the synchronization timing t G from the output of the timing information calculation circuit 20, and the integral ∫ (| Q−I ′ | − which is the output of the cross component amount calculation circuit 30 at that time.
| I-Q '|) dt is output. The integral ∫ (| Q−I ′ | which is the output of the cross component amount calculation circuit 30 at the synchronization timing t G.
Since − | I−Q ′ |) dt is proportional to the frequency offset Δf, it is passed through the loop filter 6 as shown in FIG. 2 to correct the frequency of the carrier wave output from the voltage controlled oscillator (VCO) 1. Below, the integral ∫ (| Q-I '|-| I-Q' |) dt
The reason why is proportional to the frequency offset Δf will be described.

【0014】図3に、周波数オフセットΔfが無い場合
のガードインターバル(GI)の同相成分Ig及び直交
成分Qgと、有効シンボルの複写元部分の同相成分I0
び直交成分Q0との関係を示す。図3においては、位相
の概念を示すため、ガードインターバル(GI)と有効
シンボルとを円筒で示した。図3の左から右へ時間が流
れるものとし、上方向が直交成分Qの正、斜め手前側が
同相成分Iの正とした。
FIG. 3 shows the relationship between the in-phase component I g and the quadrature component Q g of the guard interval (GI) when there is no frequency offset Δf, and the in-phase component I 0 and the quadrature component Q 0 of the copy source part of the effective symbol. Indicates. In FIG. 3, in order to show the concept of phase, the guard interval (GI) and the effective symbol are shown by a cylinder. It is assumed that time flows from left to right in FIG. 3, the quadrature component Q is positive in the upward direction, and the in-phase component I is positive in the oblique front side.

【0015】図4のように、周波数オフセットΔfが無
い場合、同相成分Iと遅延同相成分I'には位相差がな
く、同相成分Iの有効シンボルの複写元部分I0と、遅
延同相成分I'のガードインターバル(GI)部分Ig
は完全に同一である。よってこの区間(ガードインター
バル長Tg)で差を取れば0である。しかし他の区間で
は確率論的にある一定値を平均として正の値を取ると考
えて良い。よって積分区間長をガードインターバル長T
gとして逐次積分∫|I−I'|dtをとれば、同相成分I
の有効シンボル末尾(遅延同相成分I'のガードインタ
ーバル部分の末尾)tGで0となることがわかる。
As shown in FIG. 4, when there is no frequency offset Δf, there is no phase difference between the in-phase component I and the delayed in-phase component I ', and the copy source part I 0 of the effective symbol of the in-phase component I and the delayed in-phase component I are shown. It is exactly the same as the guard interval (GI) part I g of '. Therefore, the difference is 0 in this section (guard interval length T g ). However, in other sections, it can be considered that a certain value in terms of probability is taken as the average and takes a positive value. Therefore, the integration interval length is set to the guard interval length T
If the successive integration ∫ | II ′ | dt is taken as g , the in-phase component I
It can be seen that at the end of the effective symbol (the end of the guard interval portion of the delayed in-phase component I ′) t G , the value becomes 0.

【0016】今、周波数オフセットΔfが、有効シンボ
ル長Tの逆数1/Tの1/4であるとする。このとき、
直交復調された有効シンボルの複写元部分I0は、位相
がπ/2ずれて直交成分Qに復調されることとなる(図
5)。これはガードインターバル(GI)から複写元ま
でが時間でTだけずれていることによる。すると、積分
∫|Q−I'|dtを取れば、遅延同相成分I'のガードイ
ンターバル(GI)部分Igと、直交成分Qとして復調
される有効シンボルの複写元部分I0とが完全に同一と
なる。よって積分区間長をガードインターバル長Tg
して逐次積分∫|Q−I'|dtをとれば、同期タイミン
グtGで0となることがわかる。これを周波数オフセッ
トΔfが−1/2Tから1/2Tで考察すれば、同期タ
イミングtGでの積分区間長Tgの積分∫|Q−I'|dt
は、図6のように、Δfが負ではある一定値、正ではΔ
f=1/4Tで0を挟んで対称となることがわかる。
It is now assumed that the frequency offset Δf is 1/4 of the reciprocal 1 / T of the effective symbol length T. At this time,
The copy source part I 0 of the quadrature demodulated effective symbol is demodulated into the quadrature component Q with a phase shift of π / 2 (FIG. 5). This is because the time from the guard interval (GI) to the copy source is shifted by T. Then, if the integral ∫ | Q−I ′ | dt is taken, the guard interval (GI) part I g of the delayed in-phase component I ′ and the copy source part I 0 of the effective symbol demodulated as the quadrature component Q are completely obtained. Will be the same. Therefore, if the integral interval length is set to the guard interval length T g and the successive integration ∫ | Q−I ′ | dt is taken, it will be understood that it becomes 0 at the synchronization timing t G. Considering this when the frequency offset Δf is −1 / 2T to 1 / 2T, the integral ∫ | Q−I ′ | dt of the integration section length T g at the synchronization timing t G.
Is a constant value when Δf is negative and Δf when it is positive, as shown in FIG.
It can be seen that f = 1 / 4T is symmetrical with 0 in between.

【0017】全く同様に、周波数オフセットΔfが、−
1/4Tであるとすると、図7のように直交復調された
有効シンボルの複写元部分Q0は、位相が−π/2ずれ
て同相成分Iに復調されることとなる。よって図8のよ
うに同期タイミングtGでの積分区間長Tgの積分∫|I
−Q'|dtは、Δfが正ではある一定値、負ではΔf=
−1/4Tで0を挟んで対称となることがわかる。よっ
て、積分∫(|Q−I'|−|I−Q'|)dtが周波数オフ
セットΔfに比例する。シミュレーションを図9に示
す。周波数オフセットΔfが−1/4T以上1/4T以
下では積分∫(|Q−I'|−|I−Q'|)dtが単調減少
となっていることがわかる。よってこれを周波数オフセ
ットの検出手段とすることができる。
In exactly the same way, the frequency offset Δf is −
If it is 1 / 4T, the copy source portion Q 0 of the effective symbol that has been orthogonally demodulated as shown in FIG. 7 will be demodulated into the in-phase component I with a phase shift of −π / 2. Therefore, as shown in FIG. 8, the integral ∫ | I of the integration interval length T g at the synchronization timing t G
−Q ′ | dt is a constant value when Δf is positive, and Δf = when it is negative.
It can be seen that -1 / 4T is symmetrical with 0 sandwiched. Therefore, the integral ∫ (| Q−I ′ | − | I−Q ′ |) dt is proportional to the frequency offset Δf. The simulation is shown in FIG. It can be seen that the integral ∫ (| Q−I ′ | − | I−Q ′ |) dt monotonically decreases when the frequency offset Δf is −1 / 4T or more and ¼T or less. Therefore, this can be used as a frequency offset detecting means.

【0018】図10及び図11に本発明の具体的な実施
例に係る周波数オフセット検出回路101及び102の
回路をブロック図で示す。図10の周波数オフセット検
出回路101は、図1の周波数オフセット検出回路10
0のタイミング情報算出回路20を、積分区間長をガー
ドインターバル長Tgとして逐次積分∫|I−I'|dtを
とることにより同期タイミングtGの情報を得るタイミ
ング情報算出回路200とし、また、交差成分量算出回
路30を積分区間長をガードインターバル長T gとして
逐次積分∫|Q−I'|dtと∫|I−Q'|dtを求めたの
ちそれらの差∫(|Q−I'|−|I−Q'|)dtを求める
交差成分算出回路301としたものである。また、図1
1の周波数オフセット検出回路102は、図1の周波数
オフセット検出回路100のタイミング情報算出回路2
0を、積分区間長をガードインターバル長Tgとして逐
次積分∫|I−I'|dtをとることにより同期タイミン
グt Gの情報を得るタイミング情報算出回路200と
し、また、交差成分量算出回路30を|Q−I'|−|
I−Q'|を求めたのち積分区間長をガードインターバ
ル長Tgとして逐次積分∫(|Q−I'|−|I−Q'|)d
tを求める交差成分算出回路302としたものである。
A concrete implementation of the present invention is shown in FIGS.
Of the frequency offset detection circuits 101 and 102 according to the example
The circuit is shown in a block diagram. Frequency offset detection of FIG.
The output circuit 101 is the frequency offset detection circuit 10 of FIG.
The timing information calculation circuit 20 of 0
Do interval length TgThe successive integration ∫ | II ′ | dt
Synchronization timing tGGet information on Taimi
And a crossing component amount calculation circuit.
The path 30 is the integration interval length and the guard interval length T gAs
Sequential integrals ∫ | Q-I '| dt and ∫ | I-Q' | dt were calculated
Then find the difference ∫ (| Q-I '|-| I-Q' |) dt
This is a crossing component calculation circuit 301. Also, FIG.
The frequency offset detection circuit 102 of FIG.
Timing information calculation circuit 2 of offset detection circuit 100
0, the integration interval length is the guard interval length TgAs
Synchronous timing by taking the next integral ∫ | I-I '| dt
G t GAnd a timing information calculation circuit 200 for obtaining information of
In addition, the crossing component amount calculation circuit 30 is set to | Q-I '|-|
After calculating IQ '|, the integration interval length is set to the guard interval.
Le length TgAs successive integration ∫ (| Q-I '|-| I-Q' |) d
This is a cross component calculation circuit 302 for obtaining t.

【0019】タイミング情報算出回路200は、同相成
分Iと遅延同相成分I'とから、引算回路21、絶対値
回路22、積分回路23で順にI−I'、|I−I'|、
∫|I−I'|dt(積分区間長Tg)を順に求めるもので
ある。交差成分算出回路301は、直交成分Qと遅延同
相成分I'とから、引算回路31I、絶対値回路32
I、積分回路33Iで順にQ−I'、|Q−I'|、∫|
Q−I'|dt(積分区間長Tg)を順に求め、同相成分I
と遅延直交成分Q'とから、引算回路31Q、絶対値回
路32Q、積分回路33Qで順にI−Q'、|I−Q'
|、∫|I−Q'|dt(積分区間長Tg)を順に求め引算
回路341で積分∫(|Q−I'|−|I−Q'|)dtを求
めるものである。また、交差成分算出回路302は、直
交成分Qと遅延同相成分I'とから、引算回路31I、
絶対値回路32Iで順にQ−I'、|Q−I'|を順に求
め、同相成分Iと遅延直交成分Q'とから、引算回路3
1Q、絶対値回路32Qで順にI−Q'、|I−Q'|を
順に求め、引算回路342で|Q−I'|−|I−Q'|
を求め、積分回路332で積分∫(|Q−I'|−|I−
Q'|)dtを求めるものである。
In the timing information calculation circuit 200, the subtraction circuit 21, the absolute value circuit 22, and the integration circuit 23 are sequentially I-I ', | I-I' |, from the in-phase component I and the delayed in-phase component I '.
∫ | II ′ | dt (integration interval length T g ) is sequentially obtained. The cross component calculation circuit 301 calculates a subtraction circuit 31I and an absolute value circuit 32 from the quadrature component Q and the delayed in-phase component I ′.
I, in the integrating circuit 33I, Q-I ', | Q-I' |, ∫ |
Q-I '| dt (integration interval length Tg ) is sequentially obtained, and the in-phase component I
From the delay quadrature component Q ', the subtraction circuit 31Q, the absolute value circuit 32Q, and the integration circuit 33Q sequentially take IQ', | I-Q '.
|, ∫ | I−Q ′ | dt (integration interval length T g ) is sequentially obtained, and the subtraction circuit 341 obtains the integral ∫ (| Q−I ′ | − | I−Q ′ |) dt. Further, the crossing component calculation circuit 302 calculates the subtraction circuit 31I from the quadrature component Q and the delayed in-phase component I ′,
The absolute value circuit 32I sequentially determines Q-I 'and | Q-I' |, and the subtraction circuit 3 calculates the in-phase component I and the delayed quadrature component Q '.
1Q, absolute value circuit 32Q sequentially obtains IQ ', | I-Q' |, and subtraction circuit 342 obtains | Q-I '|-| I-Q' |
And the integration circuit 332 integrates ∫ (| Q−I ′ | − | I−
Q '|) dt is obtained.

【0020】本発明の積分の符号を変えたものを求めて
も当然周波数オフセットは検出できる。また、タイミン
グ情報の算出としては、直交成分Qと遅延直交成分Q'
とから求めることも当然に可能である。これらの変形は
当然に本発明に包含される。
Naturally, the frequency offset can be detected even if the integral sign of the present invention is changed. Further, the calculation of the timing information includes the quadrature component Q and the delay quadrature component Q ′
Of course, it is also possible to ask from. These variations are naturally included in the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る周波数オフセット検出回路の構成
の概略を示すブロック図。
FIG. 1 is a block diagram showing a schematic configuration of a frequency offset detection circuit according to the present invention.

【図2】本発明に係る周波数オフセット検出回路を組み
込んだマルチキャリア受信装置の構成の概略を示すブロ
ック図。
FIG. 2 is a block diagram showing the outline of the configuration of a multicarrier receiver incorporating a frequency offset detection circuit according to the present invention.

【図3】本発明の概念を示す説明図。FIG. 3 is an explanatory diagram showing the concept of the present invention.

【図4】本発明における積分演算の内容を示す概念図。FIG. 4 is a conceptual diagram showing the contents of integration calculation in the present invention.

【図5】本発明の、位相がπ/2ずれた概念を示す説明
図。
FIG. 5 is an explanatory diagram showing the concept of the present invention in which the phase is shifted by π / 2.

【図6】位相がπ/2ずれたときの積分を示すグラフ
図。
FIG. 6 is a graph showing integration when the phase is shifted by π / 2.

【図7】本発明の、位相が−π/2ずれた概念を示す説
明図。
FIG. 7 is an explanatory diagram showing the concept of the present invention in which the phase is shifted by −π / 2.

【図8】位相が−π/2ずれたときの積分を示すグラフ
図。
FIG. 8 is a graph showing integration when the phase is shifted by −π / 2.

【図9】本発明の積分と周波数オフセットΔfの関係を
示すシミュレーション図。
FIG. 9 is a simulation diagram showing the relationship between integration and frequency offset Δf according to the present invention.

【図10】本発明の周波数オフセット検出回路の構成を
示すブロック図。
FIG. 10 is a block diagram showing a configuration of a frequency offset detection circuit of the present invention.

【図11】本発明の別の周波数オフセット検出回路の構
成を示すブロック図。
FIG. 11 is a block diagram showing the configuration of another frequency offset detection circuit of the present invention.

【図12】従来の周波数オフセット検出回路の構成を示
すブロック図。
FIG. 12 is a block diagram showing a configuration of a conventional frequency offset detection circuit.

【符号の説明】[Explanation of symbols]

I 同相成分 Q 直交成分 I' 遅延同相成分 Q' 遅延直交成分 Ig ガードインターバル部分の同相成分 I0 有効シンボルのガードインターバル部分の複写元部
分の同相成分 Qg ガードインターバル部分の直交成分 Q0 有効シンボルのガードインターバル部分の複写元部
分の直交成分 T 有効シンボル長 Tg ガードインターバル長 tG 同期タイミング
I in-phase component Q quadrature component I'delayed in-phase component Q'delayed quadrature component I g in-phase component of guard interval portion I 0 valid in-phase component of copy source portion of guard interval portion of symbol Q g orthogonal component Q 0 of guard interval portion Orthogonal component of copy source part of guard interval part of symbol T effective symbol length T g guard interval length t G synchronization timing

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−321733(JP,A) 特開 平7−99486(JP,A) 特開 平9−200176(JP,A) 特開 平6−244818(JP,A) (58)調査した分野(Int.Cl.7,DB名) H04J 11/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-9-321733 (JP, A) JP-A-7-99486 (JP, A) JP-A-9-200176 (JP, A) JP-A-6- 244818 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) H04J 11/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有効シンボルと、有効シンボルの一部を
複写したガードインターバルとから成る信号を受信する
マルチキャリア受信方式において、 受信信号から直交復調された同相成分Iと直交成分Qと
を各々有効シンボル分Tだけそれぞれ遅延させ、遅延同
相成分I'と遅延直交成分Q'とにする同相成分遅延手段
及び直交成分遅延手段と、 同相成分Iと遅延同相成分I'とから、同期タイミング
Gを検出するためのタイミング情報算出手段と、 同相成分Iと直交成分Qと遅延同相成分I'と遅延直交
成分Q'とから、積分∫(|Q−I'|−|I−Q'|)dt
をガードインターバル長Tgで算出する交差成分量算出
手段と、 前記タイミング情報算出手段の情報から同期タイミング
Gにおける前記交差成分量算出手段の出力を出力する
ゲート手段とを有し、 前記ゲート手段の出力から前記受信信号を直交復調する
ための周波数を補正することを特徴とするマルチキャリ
ア受信方式。
1. In a multi-carrier reception system for receiving a signal composed of an effective symbol and a guard interval obtained by copying a part of the effective symbol, an in-phase component I and an orthogonal component Q, which are quadrature-demodulated from a received signal, are respectively effective. The synchronization timing t G is calculated from the in-phase component delay means and the quadrature-component delay means for delaying only the symbol T to form the delayed in-phase component I ′ and the delayed quadrature component Q ′, and the in-phase component I and the delayed in-phase component I ′. From the timing information calculating means for detecting, the in-phase component I, the quadrature component Q, the delayed in-phase component I ′ and the delayed quadrature component Q ′, the integral ∫ (| Q−I ′ | − | I−Q ′ |) dt
The has a cross-component amount calculating means for calculating with the guard interval length T g, and a gate means for outputting an output of the cross-component amount calculating means in the synchronization timing t G from the information of the timing information calculating means, said gate means A frequency for correcting the received signal for quadrature demodulation is corrected from the output of the multi-carrier reception system.
【請求項2】 前記タイミング情報算出手段の出力がガ
ードインターバル長T gの積分∫|I−I'|dtであるこ
とを特徴とする請求項1に記載のマルチキャリア受信方
式。
2. The output of the timing information calculation means is
Interval length T gThe integral of ∫ | II ′ | dt
The multi-carrier receiving method according to claim 1, wherein
formula.
【請求項3】 有効シンボルと、有効シンボルの一部を
複写したガードインターバルとから成る信号を受信する
マルチキャリア受信装置において、 受信信号から直交復調された同相成分Iと直交成分Qと
を各々有効シンボル分Tだけそれぞれ遅延させ、遅延同
相成分I'と遅延直交成分Q'とにする同相成分遅延回路
及び直交成分遅延回路と、 同相成分Iと遅延同相成分I'とから、同期タイミング
Gを検出するためのタイミング情報算出回路と、 同相成分Iと直交成分Qと遅延同相成分I'と遅延直交
成分Q'とから、積分∫(|Q−I'|−|I−Q'|)dt
をガードインターバル長Tgで算出する交差成分量算出
回路と、 前記タイミング情報算出回路の情報から同期タイミング
Gにおける前記交差成分量算出回路の出力を出力する
ゲート回路とを有し、 前記ゲート回路の出力から前記受信信号を直交復調する
ための周波数を補正することを特徴とするマルチキャリ
ア受信装置。
3. A multicarrier receiving apparatus for receiving a signal composed of an effective symbol and a guard interval obtained by copying a part of the effective symbol, and an in-phase component I and an orthogonal component Q, which are quadrature-demodulated from a received signal, are respectively effective. The synchronization timing t G is calculated from the in-phase component delay circuit and the quadrature-component delay circuit that delay the symbol component T to form the delayed in-phase component I ′ and the delayed quadrature component Q ′, and the in-phase component I and the delayed in-phase component I ′. From the timing information calculation circuit for detection, the in-phase component I, the quadrature component Q, the delayed in-phase component I'and the delayed quadrature component Q ', the integral ∫ (| Q-I' |-| I-Q '|) dt
The has a cross-component amount calculating circuit for calculating guard interval length T g, and a gate circuit which outputs the output of the cross-component amount calculating circuit in the synchronization timing t G from the information of the timing information calculating circuit, said gate circuit The multi-carrier receiving apparatus is characterized in that the frequency for quadrature demodulating the received signal is corrected from the output of.
【請求項4】 前記タイミング情報算出回路の出力がガ
ードインターバル長T gの積分∫|I−I'|dtであるこ
とを特徴とする請求項3に記載のマルチキャリア受信装
置。
4. The output of the timing information calculation circuit is
Interval length T gThe integral of ∫ | II ′ | dt
4. The multi-carrier receiver according to claim 3, wherein
Place
【請求項5】 有効シンボルと、有効シンボルの一部を
複写したガードインターバルとから成る信号を受信する
マルチキャリア受信装置の周波数オフセット検出回路に
おいて、 受信信号から直交復調された同相成分Iと直交成分Qと
を各々有効シンボル分Tだけそれぞれ遅延させ、遅延同
相成分I'と遅延直交成分Q'とにする同相成分遅延回路
及び直交成分遅延回路と、 同相成分Iと遅延同相成分I'とから、同期タイミング
Gを検出するためのタイミング情報算出回路と、 同相成分Iと直交成分Qと遅延同相成分I'と遅延直交
成分Q'とから、積分∫(|Q−I'|−|I−Q'|)dt
をガードインターバル長Tgで算出する交差成分量算出
回路と、 前記タイミング情報算出回路の情報から同期タイミング
Gにおける前記交差成分量算出回路の出力を出力する
ゲート回路とを有し、 前記ゲート回路の出力を前記受信信号を直交復調するた
めの周波数を補正するための信号とすることを特徴とす
るマルチキャリア受信装置用周波数オフセット検出回
路。
5. In a frequency offset detection circuit of a multicarrier receiver for receiving a signal composed of an effective symbol and a guard interval obtained by copying a part of the effective symbol, an in-phase component I and an orthogonal component which are quadrature demodulated from a received signal. From the in-phase component delay circuit and the quadrature-component delay circuit that delay Q and each by the effective symbol T to form the delayed in-phase component I ′ and the delayed quadrature component Q ′, and the in-phase component I and the delayed in-phase component I ′, From the timing information calculation circuit for detecting the synchronization timing t G , the in-phase component I, the quadrature component Q, the delayed in-phase component I ′ and the delayed quadrature component Q ′, the integral ∫ (| Q−I ′ | − | I− Q '|) dt
The has a cross-component amount calculating circuit for calculating guard interval length T g, and a gate circuit which outputs the output of the cross-component amount calculating circuit in the synchronization timing t G from the information of the timing information calculating circuit, said gate circuit Is used as a signal for correcting a frequency for quadrature demodulating the received signal, a frequency offset detection circuit for a multicarrier receiver.
【請求項6】 前記タイミング情報算出回路の出力がガ
ードインターバル長T gの積分∫|I−I'|dtであるこ
とを特徴とする請求項5に記載のマルチキャリア受信装
置用周波数オフセット検出回路。
6. The output of the timing information calculation circuit is
Interval length T gThe integral of ∫ | II ′ | dt
The multi-carrier receiving device according to claim 5, characterized in that
Frequency offset detection circuit for storage.
JP29155599A 1999-10-13 1999-10-13 Multicarrier receiving system, receiving apparatus and frequency offset detecting circuit for receiving apparatus Expired - Fee Related JP3446684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29155599A JP3446684B2 (en) 1999-10-13 1999-10-13 Multicarrier receiving system, receiving apparatus and frequency offset detecting circuit for receiving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29155599A JP3446684B2 (en) 1999-10-13 1999-10-13 Multicarrier receiving system, receiving apparatus and frequency offset detecting circuit for receiving apparatus

Publications (2)

Publication Number Publication Date
JP2001111520A JP2001111520A (en) 2001-04-20
JP3446684B2 true JP3446684B2 (en) 2003-09-16

Family

ID=17770442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29155599A Expired - Fee Related JP3446684B2 (en) 1999-10-13 1999-10-13 Multicarrier receiving system, receiving apparatus and frequency offset detecting circuit for receiving apparatus

Country Status (1)

Country Link
JP (1) JP3446684B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520825B2 (en) * 2004-11-09 2010-08-11 日本放送協会 Guard interval detection device, guard interval detection method, and frequency offset detection device

Also Published As

Publication number Publication date
JP2001111520A (en) 2001-04-20

Similar Documents

Publication Publication Date Title
EP0772330A2 (en) Receiver and method for receiving OFDM signals
WO1997044932A1 (en) Apparatus and method for signal timing error detection
JP2000228656A (en) Afc circuit
TWI335165B (en) Timing synchronization for m-dpsk channels field of the disclosure
US5748682A (en) Oscillator frequency offset error estimator for communications systems
US6169448B1 (en) Digital demodulator
JP3446684B2 (en) Multicarrier receiving system, receiving apparatus and frequency offset detecting circuit for receiving apparatus
JP2000059332A (en) Circuit and method for detecting delay profile
US6603820B1 (en) Demodulator having rotation means for frequency offset correction
JPH0779363B2 (en) Delay detection circuit
JP3421879B2 (en) Demodulator
JP2910695B2 (en) Costas loop carrier recovery circuit
JP2003152674A (en) Frequency synchronization method and ofdm receiver using the same
JP3446687B2 (en) Multicarrier receiving system and synchronization circuit for receiving apparatus
JP2853728B2 (en) Digital demodulation circuit
JP2000252950A (en) Synchronizing circuit for multi-carrier reception device and multi-carrier reception device
JP2000151545A (en) Demodulator, demodulation method and provision medium
JPH07154383A (en) Frame synchronization detection circuit
JP2001285246A (en) Carrier frequency error detection circuit
JP3688260B2 (en) Carrier frequency synchronization method and carrier frequency synchronization circuit for OFDM signal demodulator
JP2008098840A (en) Pilot signal receiver
JPH0583218A (en) Orthogonal frequency division multiplex system demodulator
JP2002101067A (en) Method and device for correlation peak detection of receiver
JPH066397A (en) Delay detector
JPH10210092A (en) Phase detection circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees