JP3445683B2 - Manufacturing method of galvanized steel sheet with excellent pressability, chemical conversion property and adhesive compatibility - Google Patents
Manufacturing method of galvanized steel sheet with excellent pressability, chemical conversion property and adhesive compatibilityInfo
- Publication number
- JP3445683B2 JP3445683B2 JP10231295A JP10231295A JP3445683B2 JP 3445683 B2 JP3445683 B2 JP 3445683B2 JP 10231295 A JP10231295 A JP 10231295A JP 10231295 A JP10231295 A JP 10231295A JP 3445683 B2 JP3445683 B2 JP 3445683B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- film
- chemical conversion
- zinc
- galvanized steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
- C23C28/3225—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Coating With Molten Metal (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明方法は、プレス性、化成処
理性、接着剤適合性に優れた亜鉛系めっき鋼板の製造方
法に関するものである。
【0002】
【従来の技術】亜鉛系めっき鋼板の表面に無機系酸化物
皮膜を生成せしめて、プレス性、化成処理性に優れた鋼
板とすることが特開平4−176878号公報に開示さ
れている。このような表面処理鋼板はプレス成形におい
て摺動性が鋼板以上に向上し、しかも成形時の押疵がな
くなり、かつ、無機系酸化物皮膜もプレスによる剥離等
がなく、化成処理にも優れたものである。
【0003】
【発明が解決しようとする課題】亜鉛系めっき鋼板に上
記のごとき無機系酸化物を生成すると、プレス性、化成
処理性は向上するが、自動車、家電等で溶接の省略ある
いは補強に使用されている接着剤の接着強度を低下させ
る等の課題がある。本発明方法は、このような課題を有
利に解決するためなされたものであり、上記のごとくプ
レス性、化成処理性、接着剤適合性に優れた亜鉛系めっ
き鋼板の製造方法を提供することを目的とするものであ
る。
【0004】
【課題を解決するための手段】上記の目的を解決するた
めになされた本発明は、亜鉛系めっき鋼板の表面を活性
化した後、Mn、Mo、Co、Ni、Ca、V、W、
P、Bの1種又は2種以上の無機系酸化物皮膜を生成せ
しめることを特徴とするものである。
【0005】
【作用】亜鉛系めっき鋼板の表面は、亜鉛やアルミニウ
ム等のめっき層合金元素の酸化皮膜が形成されているこ
とはよく知られており、このような皮膜が形成されてい
ても無機系酸化物皮膜の形成はできプレス性、化成処理
性は向上する。しかしながら、接着剤の接着強度は、亜
鉛やアルミニウム等のめっき層合金元素の酸化皮膜が形
成されている亜鉛めっき鋼板に、無機系酸化物皮膜を形
成した場合と、亜鉛やアルミニウム等の酸化物が形成さ
れていない表面に、無機系酸化物皮膜を形成した場合と
では、後者が格段に優れていることを見出した。この原
因はあきらかではないが以下のごとく推定している。亜
鉛やアルミニウム等の酸化物が形成されていない表面
に、無機系酸化物皮膜を形成した場合は、無機系酸化物
皮膜の形成時にめっき層表面を均一にエッチングし皮膜
の形成がなされるため、めっき層と皮膜の密着性は良好
となる。しかし、亜鉛やアルミニウム等の酸化皮膜が形
成されている表面に、無機系酸化物皮膜を形成した場合
は、無機系酸化物皮膜は薄く、また無形成部分でめっき
層をエッチングした後、酸化物皮膜表面に沈着した状態
で均一に形成される。従ってプレス性は、この無機系酸
化物皮膜の被覆効果によるため、化成処理性は酸化皮膜
及び酸化物皮膜の何れも化成処理液に完全に溶解し、化
成処理皮膜の形成が可能となり効果に差異はないが、接
着剤の接着強度においては、酸化皮膜と無機系酸化物皮
膜の間の結合力が確保できないため低下するものと考え
られる。即ち、本発明においては、無機系酸化物皮膜形
成後の亜鉛系めっき鋼板のプレス性、化成処理性、接着
剤適合性の向上を、先に形成されている酸化皮膜と無機
系酸化物皮膜の皮膜結合力低下を回避するものである。
【0006】酸化皮膜と無機系酸化物皮膜の皮膜結合力
低下を回避する方法として、本発明においては、めっき
層表面を活性化して無機系酸化物皮膜を形成せしめるこ
とにより、めっき層をエッチングして皮膜に供給される
Znやめっき層合金元素の酸化物や水酸化物と一体化を
はかるものである。活性化する方法としては、例えば無
機系酸化物皮膜を形成する前に、アルカリ水溶液で洗浄
する方法、酸性水溶液で洗浄する方法、研削等のごとく
ブラッシングする方法がある。
【0007】上記のごとき無機系酸化物を生成せしめる
亜鉛系めっき鋼板としては、例えば、溶融めっき法、電
気めっき法、蒸着めっき法、溶射法などの各種の製造方
法によるものがあり、めっき組成としては純Znの他、
ZnとFe、ZnとNi、ZnとAl、ZnとMn、Z
nとCr、ZnとTi、ZnとMgなどZnを主成分と
して、あるいは耐食性など諸機能の向上のためFe、N
i、Co、Al、Pb、Sn、Sb、Cu、Ti、S
i、B、P、N、S、O等の1種ないし2種以上の合金
元素及び不純物元素を含み、又SiO2 、Al2O3 な
どのセラミックス微粒子、TiO2 、BaCrO4 など
の酸化物、アクリル樹脂などの有機高分子をめっき層中
に分散させたものがあり、めっき層の厚み方向で単一組
成のもの、連続的あるいは層状に組成が変化するものが
あり、更に多層めっき鋼板では、最上層に、めっき組成
としては純Znの他、ZnとFe、ZnとNi、Znと
Al、ZnとMn、ZnとCr、ZnとTi、ZnとM
gなどZnを主成分として、耐食性などの諸機能の向上
のため1種ないし2種以上の合金元素及び不純物元素を
含み、またSiO2 、Al2O3 などのセラミックス微
粒子、TiO2 、BaCrO4 などの酸化物、アクリル
樹脂などの有機高分子をめっき層中に分散させたものが
ある。例えば、溶融亜鉛めっき鋼板、蒸着亜鉛めっき鋼
板、鉄−亜鉛合金化溶融亜鉛めっき鋼板、亜鉛を主とす
るアルミニウム、鉄などの合金溶融亜鉛めっき鋼板、め
っき層断面方向で下層が合金化されている合金化溶融亜
鉛めっき鋼板(一般にハーフアロイと称する)、片面−
亜鉛合金化溶融亜鉛めっき層、他面溶融亜鉛めっき層か
らなるめっき鋼板、これらのめっき層上に電気めっき、
蒸着めっき等により亜鉛、又は亜鉛を主成分とし、鉄、
ニッケルを含有する金属をめっきした鋼板、あるいは電
気亜鉛めっき鋼板、亜鉛、ニッケル、クロム等合金電気
めっき鋼板等、更に単一合金層又は多層合金電気めっき
鋼板、亜鉛及び亜鉛含有金属の蒸着めっき鋼板等があ
る。その他、SiO2 、Al2O3 などのセラミックス
微粒子、TiO2 酸化物微粒子及び有機高分子などを亜
鉛又は亜鉛合金めっき中に分散させた分散めっき鋼板が
ある。更にアルミニウムめっき鋼板のように亜鉛を含ま
ない、あるいは亜鉛を主成分としないめっき鋼板の表面
に上記のごとき、亜鉛を主成分としためっきを施した多
層めっき鋼板がある。
【0008】上記のごとき亜鉛系めっき鋼板の表面の洗
浄方法としては、例えばオルソ硅酸ソーダ、タン酸ソー
ダ、苛性ソーダ等のpH10以上のアルカリ性水溶液で
洗浄することが好ましい。pH約10未満であると亜鉛
系めっき鋼板表面に発生している酸化物の除去が不十分
になることがあり、また除去に長時間を要することにな
り生産性に影響することがあるので好ましくない。この
ようなアルカリ性水溶液に亜鉛系めっき鋼板を浸漬する
か、アルカリ性水溶液中で電気処理する等によって洗浄
することができる。また塩酸、硫酸等の酸性水溶液によ
り上記のごとく洗浄する。更にブラッシングによって亜
鉛めっき系鋼板表面を浄化して活性化することができ
る。このような化学的な活性化方法の他に、研削やブラ
ッシング等の物理的な活性化方法を用いることができ
る。このように活性化することにより、その表面に無機
系酸化物皮膜を形成すると、先にめっき層表面にあった
亜鉛等の酸化皮膜上に無機系酸化物皮膜が形成されるこ
とがなくなり、無機系酸化物皮膜の密着強度が高まり、
接着剤による接着強度が格段に向上するものと考えられ
る。
【0009】上記のごとく、表面を活性化せしめた亜鉛
系めっき鋼板の表面に生成する無機系酸化物としては、
例えばプレス成形時に金型へのめっき金属の凝着防止機
能を有する酸化物としては、Mn、Mo、Co、Ca、
Ni、V、Wとめっき層をエッチングして皮膜に供給さ
れるZnやめっき層合金元素等の金属酸化物及び/又は
水酸化物を主体とする非晶質構造が主として機能し、プ
レス成形時の摺動に際し、潤滑機能をもつコロガリ潤滑
機能を有する皮膜としては、P、B等からなる酸素酸が
上記非晶質構造に酸素結合を媒介して結合している構造
が主として機能すると考えられる。しかしながら、皮膜
の形成反応は水溶液中から界面のpH上昇を利用して渾
然一体として析出するので、厳密に作用機能を選別でき
るものではなく、皮膜の一部が凝着防止機能を担い、他
の一部がコロガリ潤滑機能を担うと解することができ
る。上記皮膜構成成分は、全て無機物であり、プレス後
の脱脂液には負荷をかけず、化成処理に際してはpHの
低下によって溶解するので、化成皮膜は正常に形成でき
る。なお、これら皮膜形成成分は、化成処理液の含有成
分でもあり化成処理液を汚染しない、また皮膜中に混入
しても障害にならない元素としては、Li、Be、C 、F 、
Na、Mg、Al、Si、Cl、K、Ca、Ni、Mo、V 、W 、Ti、F
e、Rb、Sr、Y 、Zn、Nb、Cs、Ba、ランタニド類のイオ
ンや酸化物、水酸化物、リン酸塩、硫酸塩硝酸塩等はあ
る程度(皮膜中に約10%以下)混入しても影響はな
い。さらにCr、Cd、Pb、Sn、Asは微量であれば、化成処
理性や化成処理液への汚染に影響はなく本発明の効果は
変わらない。
【0010】皮膜生成方法は凝着防止機能を有する皮膜
成分とコロガリ潤滑機能を有する皮膜成分を含有する酸
性水溶液に亜鉛系めっき鋼板を浸漬するか、あるいは陰
極電解処理するこにより、確実に皮膜形成できる。浸漬
処理においては、Znが溶解する際に界面のpHが上昇
し、その結果皮膜成分が水酸化物あるいは酸化物となっ
て析出する。溶解したZnその他のめっき層成分も皮膜
中に混入する酸化還元反応を利用することもできる。Z
nの溶解は酸化反応であり、それに対応して酸化型の金
属イオンは不溶解性の還元型酸化物となって析出する、
リン酸等の酸素酸アニオンも酸化物コロイドも界面のp
H上昇によって析出できる、陰極電解処理は界面のpH
上昇を促進する効果がある、スプレー処理、コーティン
グ処理等の水膜の厚さ調整で界面反応を制御することも
できる。
【0011】凝着防止機能とコロガリ潤滑機能を併せ持
つ皮膜量は金属としては亜鉛系めっき鋼板の表面が活性
化されており、1〜200mg/m2と少量で十分効果が得
られる。1mg/m2未満では明確な潤滑効果が認知でき
ず、200mg/m2を越えても効果は変わらず経済的に不
利である。凝着防止機能とコロガリ潤滑機能を併せ持つ
被覆を形成する態様として、金属酸化物及び/又は水酸
化物を主体とする非晶質構造皮膜と酸素酸皮膜を形成さ
せる場合には、皮膜量は両者ともに金属として1〜20
0mg/m2とこれまた少量で十分効果が得られる。1mg/
m2未満では明確な潤滑効果が認知できず200mg/m2を
越えても効果は変わらず経済的に不利である。金属酸化
物及び/又は水酸化物を主体とする非晶質構造皮膜と酸
素酸皮膜は上記浸漬法や陰極電解処理法の如く界面の化
学反応で析出させる場合には、一般には混合皮膜として
皮膜生成される。しかるに、凝着防止機能を亜鉛めっき
との界面により強く、コロガリ潤滑機能を皮膜の表面に
より強く、傾斜機能的に皮膜形成させること可能であ
る。かくすることにより、高い面圧下での摩擦係数が向
上し、難成形部品をプレス加工する場合のように、亜鉛
めっき鋼板の局部に高面圧がかかるとき、カジリが発生
する限界面圧が向上する効果がある。所謂プレス成形荷
重範囲が広く採れるので、実用上は金型設計が容易にな
り、プレス作業も安定するので大きな利益を享受でき
る。
【0012】傾斜機能型皮膜の生成方法は、金属酸化物
等の溶解度積の相違を利用して、各成分のイオン濃度、
流速、溶解温度、電解処理の場合には電流密度等を調整
することにより、界面のイオン濃度を制御することから
なる。例としてMn 、P系皮膜の場合には、処理溶液に
過マンガン酸カリウム、リン酸、硫酸を配合し、亜鉛め
っき鋼板と反応を起こさせると、Znの溶解と過マンガ
ン酸イオンの還元により、界面のPHの急激な上昇によ
りMn酸化物もしくは水酸化物主体の皮膜が形成され、
皮膜形成により、上昇したPHが低下し、形成した皮膜
の加水分解が起こり、より溶解度の低いリン酸塩となり
皮膜の再形成が行われる。この繰り返しが短時間内に起
こりPは表層に富み、Mnは下層に富んだ傾斜機能にな
るものと考えられる。
【0013】
【実施例】次に本発明方法の実施例を比較例とともに挙
げる。
【表1】【0014】注1)めっき鋼板
EG:電気亜鉛めっき鋼板、AS:合金化溶融亜鉛めっき鋼
板(Fe10%、Al0.2%、残Zn)、GI:溶融亜
鉛めっき鋼板、HA:半合金化溶融亜鉛めっき鋼板( Fe
5%、Al0.3%、残Zn)、Zn−Ni:亜鉛ーニ
ッケル合金電気めっき鋼板(Ni9%、残Zn)、Zn
−Mg:亜鉛マグネシウム合金蒸着めっき鋼板(Mg1
0%、残Zn)、Zn−Cr:Zn−Cr合金電気めっ
き鋼板(Cr14%、残Zn)、Zn−Mn:Zn−M
n合金電気めっき鋼板(Mn20%、残Zn)、Zn−
Al:亜鉛アルミニウム合金溶融めっき鋼板(Al5
%、Mg0.1%、残Zn)、Zn/Al−Zn:亜鉛
上層アルミニウム亜鉛合金溶融めっき鋼板(上層Zn2
g/m2 、下層Al55%、残Zn60g/m2 )、Z
n−Fe:亜鉛−鉄合金電気めっき鋼板(Zn85%、
Fe15%)、Zn−Cr−Ni:Zn−Cr−Ni合
金電気めっき鋼板(Zn85%、Cr13%、Ni2
%)、Zn/Al:亜鉛上層アルミニウムめっき鋼板
(上層Zn1g/m2、下層Al60g/m2 )。鋼板
厚はいずれも0.8mmの普通鋼。 注
2)活性化方法
活性化方法A:めっき鋼板を1〜10秒浸漬。
活性化方法B:めっき鋼板を陰極とし5〜10Adm2
で電解1〜10秒
活性化方法C:めっき鋼板を陽極とし5〜10Adm2
で電解1〜10秒
活性化方法D:めっき鋼板を交番電流を用い5〜10A
dm2 で電解を1〜10秒施した。
活性化方法E:0.5mm径、毛足長さ20mm(ステ
ンレス製)を直径300mmのロール状に形成し、接触
圧10Kgで回転せしめ、めっき鋼板表面を活性化し
た。
注3) 無機系酸化物生成方法
・Mn酸化物は、過マンガン酸カリウムまたは炭酸マン
ガンを、
・P酸化物は、リン酸またはリン酸ナトリウム、リン酸
カリウム、リン酸アンモニウムを、
・Mo酸化物は、モリブデン酸アンモニウムを、
・Co酸化物は、炭酸コバルト、硝酸コバルトを、
・Ni酸化物は、硝酸ニッケル、炭酸ニッケルを、
・Ca酸化物は、硝酸カルシウム、炭酸カルシウムを、
・W酸化物は、タングステン酸アンモニウムまたは、タ
ングステン酸ナトリウムを、
・V酸化物は、バナジン酸アンモニウムまたはバナジン
酸ナトリウムを、
・ホウ酸化物は、ほう酸ナトリウムを、元素濃度として
0.1 〜50g/l の範囲で混合し、浸漬または散布して更に
エアーナイフまたはロール絞りにより塗布量を調節し
て、酸化物を生成し乾燥した。また浸漬または散布後水
洗、更に電解も必要に応じて行った。また上記元素の溶
解度確保のために、必要に応じて硫酸、硝酸や炭酸亜
鉛、水酸化ナトリウム、水酸化カリウムでPH調整を行っ
た。生成量は何れも測定元素量。
注4)化成処理性
化成処理液にはSD5000(日本ペイント社製)を用
い、処方どおり脱脂、表面調整を行った後化成処理を行
った。化成処理皮膜の判定は、SEM(2次電子線像)によ
り、均一に皮膜が形成されているものは○、部分的に皮
膜形成されているものは△、皮膜が形成されていないも
のは×と判定した。注5)接着剤適合性 めっき鋼板を25mm巾の短冊状にし、防錆油(ノック
スラスト530F40、パーカー興産株式会社製)を1
g/m 2 塗油した後、エポキシ系接着剤(EP190、セ
メダイン社製、ヘミング用接着剤を、ラップ代8mm、
接着剤厚み0.15mmで3枚重ねで接着し、170℃
で20分焼付け硬化させた後、引張り試験機で剪断剥離
力を求め、片面の剪断力(kgf/cm 2 )を算出した。
注6)プレス性(摩擦係数)
サンプルサイズ:17mm×300mm、引張り速度:50
0mm/min 、角ビート肩R:1.0/3.0mm、摺動
長:200mm、塗油:ノックスラスト530F40(パ
ーカー興産株式会社)1g/m2の条件で、面圧を100
〜600Kgf の間で数点試験を行い、引き抜き加重を測
定し、面圧と引き抜き加重の傾きから摩擦係数を求め
た。
【0015】
【発明の効果】本発明によれば、少量の無機系酸化物皮
膜の生成によって、プレスにおいて摺動性を冷延鋼板並
以上に向上させ、かつ化成処理皮膜も均一に形成するこ
とができ、これによってラインスピードを向上して生産
性を高めることができる。また少量の無機系酸化物皮膜
の生成により、低コストでプレス性等を向上することが
できる等の優れた効果が得られる。DETAILED DESCRIPTION OF THE INVENTION [0001] The present invention method relates to a press resistance, chemical conversion treatability, a process for producing a superior galvanized steel sheet on the adhesive compatibility. [0002] Japanese Patent Application Laid-Open No. H4-176878 discloses that an inorganic oxide film is formed on the surface of a galvanized steel sheet to obtain a steel sheet having excellent pressability and chemical conversion treatment properties. I have. Such a surface-treated steel sheet has improved slidability in press forming more than a steel sheet, and has no flaws during forming, and also has no inorganic oxide film which is exfoliated by a press and is excellent in chemical conversion treatment. Things. [0003] When the above-mentioned inorganic oxide is formed on a galvanized steel sheet, the pressability and the chemical conversion property are improved. There are problems such as lowering the adhesive strength of the adhesive used. The method of the present invention has been made in order to advantageously solve such problems, and as described above, provides a method for producing a galvanized steel sheet having excellent pressability, chemical conversion property, and adhesive compatibility. It is the purpose. [0004] The above object has been achieved.
SUMMARY OF THE INVENTION The present invention has been made to activate Mn, Mo, Co, Ni, Ca, V, W,
It is characterized in that one or more inorganic oxide films of P and B are formed . [0005] [action] surface of the galvanized steel sheet, the oxide film of the plated layer alloying elements such as zinc or aluminum are formed are well known and inorganic be such coating is formed Forming of a system oxide film is possible, and pressability and chemical conversion treatment are improved. However, the adhesive strength of the adhesive, the galvanized steel sheet oxide film is formed of a plated layer alloying elements such as zinc or aluminum, as in forming an inorganic oxide film, an oxide such as zinc or aluminum In the case where an inorganic oxide film was formed on the surface where the film was not formed, the latter was found to be significantly superior. The cause is not obvious, but is estimated as follows. If an inorganic oxide film is formed on a surface where oxides such as zinc and aluminum are not formed, the coating is formed by uniformly etching the plating layer surface when the inorganic oxide film is formed. The adhesion between the plating layer and the film is good. However, when an inorganic oxide film is formed on the surface where an oxide film such as zinc or aluminum is formed, the inorganic oxide film is thin, and after the plating layer is etched in the non-formed portion, the oxide film is removed. Formed uniformly on the surface of the coating. Therefore, the pressability is due to the coating effect of the inorganic oxide film, so that the chemical conversion treatment completely dissolves both the oxide film and the oxide film in the chemical conversion solution, and the formation of the chemical conversion film becomes possible. However, the adhesive strength of the adhesive is considered to decrease because the bonding force between the oxide film and the inorganic oxide film cannot be secured. That is, in the present invention, the pressability of the zinc-based plated steel sheet after the formation of the inorganic oxide film, the chemical conversion treatment, the improvement of the adhesive compatibility, the previously formed oxide film and the inorganic oxide film. This is to avoid a decrease in film bonding strength. As a method of avoiding a decrease in the bonding strength between the oxide film and the inorganic oxide film, in the present invention, the plating layer is etched by activating the surface of the plating layer to form the inorganic oxide film. To integrate with the oxides and hydroxides of Zn and plating layer alloy elements supplied to the coating. Examples of the activation method include a method of cleaning with an aqueous alkali solution, a method of cleaning with an acidic aqueous solution, and a method of brushing such as grinding before forming an inorganic oxide film. [0007] As the zinc-coated steel sheet for producing an inorganic oxide as described above, for example, there are various production methods such as a hot-dip plating method, an electroplating method, a vapor deposition plating method, and a thermal spraying method. Is pure Zn,
Zn and Fe, Zn and Ni, Zn and Al, Zn and Mn, Z
n and Cr, Zn and Ti, Zn and Mg as main components, or Fe, N for improving various functions such as corrosion resistance.
i, Co, Al, Pb, Sn, Sb, Cu, Ti, S
It contains one or more alloying elements and impurity elements such as i, B, P, N, S, O, etc., ceramic fine particles such as SiO 2 and Al 2 O 3, and oxides such as TiO 2 and BaCrO 4 There are those in which an organic polymer such as an acrylic resin is dispersed in a plating layer, and those having a single composition in the thickness direction of the plating layer, and those in which the composition changes continuously or in a layered manner. In the uppermost layer, as a plating composition, in addition to pure Zn, Zn and Fe, Zn and Ni, Zn and Al, Zn and Mn, Zn and Cr, Zn and Ti, Zn and M
g or Zn as a main component, contains one or more alloying elements and impurity elements for improving various functions such as corrosion resistance, and ceramic fine particles such as SiO 2 and Al 2 O 3 , TiO 2 , BaCrO 4 And an organic polymer such as an acrylic resin dispersed in a plating layer. For example, hot-dip galvanized steel sheet, vapor-deposited galvanized steel sheet, iron-zinc alloyed hot-dip galvanized steel sheet, aluminum mainly containing zinc, hot-dip galvanized steel sheet such as iron, the lower layer is alloyed in the cross-sectional direction of the coating layer Alloyed hot-dip galvanized steel sheet (generally called half alloy), one side
Zinc alloyed hot-dip galvanized layer, galvanized steel sheet consisting of another side hot-dip galvanized layer, electroplating on these plated layers,
Zinc or zinc as a main component by vapor deposition plating, iron,
Steel sheet plated with metal containing nickel, electro-galvanized steel sheet, alloy electro-plated steel sheet such as zinc, nickel, chromium, etc., as well as single alloy layer or multi-layer alloy electro-plated steel sheet, vapor-deposited steel sheet of zinc and zinc-containing metal, etc. There is. In addition, there is a dispersion plated steel sheet in which ceramic fine particles such as SiO 2 and Al 2 O 3 , TiO 2 oxide fine particles, and organic polymer are dispersed in zinc or zinc alloy plating. Further, there is a multi-layer plated steel sheet in which zinc is mainly plated as described above on the surface of a plated steel sheet containing no zinc or not containing zinc as a main component, such as an aluminum plated steel sheet. As a method for cleaning the surface of the galvanized steel sheet as described above, it is preferable to clean the surface with an alkaline aqueous solution having a pH of 10 or more, such as sodium orthosilicate, sodium tantalate, and caustic soda. When the pH is less than about 10, removal of oxides generated on the surface of the galvanized steel sheet may be insufficient, and it may take a long time to remove the oxide, which may affect productivity. Absent. Washing can be performed by immersing the zinc-based plated steel sheet in such an alkaline aqueous solution or by performing electrical treatment in an alkaline aqueous solution. Washing is performed as described above with an acidic aqueous solution such as hydrochloric acid or sulfuric acid. Further, the surface of the galvanized steel sheet can be purified and activated by brushing. In addition to such a chemical activation method, a physical activation method such as grinding or brushing can be used. By activating in this manner, when an inorganic oxide film is formed on the surface, the inorganic oxide film is not formed on the oxide film of zinc or the like previously on the plating layer surface, and the inorganic oxide film is not formed. The adhesion strength of the system oxide film increases,
It is considered that the adhesive strength by the adhesive is remarkably improved. [0009] As described above, inorganic oxides formed on the surface of a zinc-based plated steel sheet whose surface has been activated include:
For example, oxides having a function of preventing adhesion of a plating metal to a mold during press molding include Mn, Mo, Co, Ca,
The amorphous structure mainly composed of metal oxides and / or hydroxides, such as Ni and plating layer alloy elements, supplied to the film by etching the plating layer with Ni, V, W, and Ni, V, W mainly functions during press molding. upon sliding, it is a film having a rolling lubricating function with lubricating function, P, of oxygen acids consisting of such B structure which is attached to mediate oxygen bound to the amorphous structure to function primarily considered Can be However, since the film-forming reaction precipitates completely from the aqueous solution by utilizing the pH rise at the interface, the function of the film cannot be strictly selected. It can be understood that a part performs the roller lubrication function. All of the above-mentioned film constituents are inorganic substances, do not apply a load to the degreasing solution after pressing, and dissolve by the decrease in pH during the chemical conversion treatment, so that the chemical conversion film can be formed normally. Incidentally, these film-forming components, the chemical conversion treatment liquid does not contaminate There chemical conversion treatment liquid even containing component, also as the element which is not an obstacle be mixed in the film, Li, Be, C, F,
Na, Mg, Al, Si, Cl, K, Ca, Ni, Mo, V, W, Ti, F
e, Rb, Sr, Y, Zn, Nb, Cs, Ba, lanthanide ions, oxides, hydroxides, phosphates, sulfate nitrates, etc. are mixed to some extent (about 10% or less in the film). Has no effect. Furthermore, if the amounts of Cr, Cd, Pb, Sn, and As are very small, they do not affect the chemical conversion property or the contamination of the chemical conversion solution, and the effect of the present invention is not changed. [0010] The method of forming a film is such that a zinc-based plated steel sheet is immersed in an acidic aqueous solution containing a film component having an anti-adhesion function and a film component having a rolled lubrication function, or is subjected to cathodic electrolytic treatment to ensure film formation. it can. In the immersion treatment, when Zn dissolves, the pH of the interface increases, and as a result, the film components are precipitated as hydroxides or oxides. Dissolved Zn and other plating layer components can also utilize an oxidation-reduction reaction mixed into the film. Z
The dissolution of n is an oxidation reaction, and the oxidized metal ions correspondingly precipitate as insoluble reduced oxides,
Both oxyacid anions such as phosphoric acid and oxide colloids
Cathodic electrolytic treatment that can be deposited by increasing H
The interface reaction can also be controlled by adjusting the thickness of the water film such as spraying or coating, which has the effect of promoting the rise. The amount of the film having both the anti-adhesion function and the anti-collaring lubrication function is obtained by activating the surface of the galvanized steel sheet as a metal, and a sufficient effect can be obtained with a small amount of 1 to 200 mg / m 2 . If it is less than 1 mg / m 2 , a clear lubricating effect cannot be recognized, and if it exceeds 200 mg / m 2 , the effect does not change and it is economically disadvantageous. In the case of forming an amorphous structure film mainly composed of a metal oxide and / or hydroxide and an oxyacid film as an embodiment for forming a coating having both an anti-adhesion function and a rolling lubrication function, the amount of the film is both Both 1-20 as metal
A sufficient effect can be obtained with a small amount of 0 mg / m 2 . 1mg /
even beyond the 200 mg / m 2 can not recognize a clear lubricating effect is less than m 2 effect is economically disadvantageous unchanged. When the amorphous structure film mainly composed of metal oxide and / or hydroxide and the oxyacid film are deposited by a chemical reaction at the interface as in the above-described immersion method or cathodic electrolysis method, the film is generally formed as a mixed film. Generated. However, the anti-adhesion function is stronger at the interface with the galvanization, and the anti-rolling lubrication function is stronger at the surface of the film, so that the film can be formed with a gradient function. By doing so, the coefficient of friction under high surface pressure is improved, and the critical surface pressure at which galling occurs when a high surface pressure is applied to the local part of galvanized steel sheet, such as when pressing difficult-to-form parts, is improved. Has the effect of doing Since a so-called press forming load range can be widely used, practically, the design of the mold is facilitated, and the press work is also stabilized, so that great benefits can be enjoyed. The method of forming the functionally graded film utilizes the difference in solubility products of metal oxides and the like to obtain the ion concentration of each component,
It consists of controlling the ion concentration at the interface by adjusting the flow rate, the dissolution temperature, and the current density in the case of electrolytic treatment. For example, in the case of a Mn or P-based film, potassium permanganate, phosphoric acid, and sulfuric acid are blended in the treatment solution to cause a reaction with a galvanized steel sheet. By dissolving Zn and reducing permanganate ions, Due to the rapid rise of the pH at the interface, a film mainly composed of Mn oxide or hydroxide is formed,
Due to the formation of the film, the increased PH is reduced, and the formed film is hydrolyzed, resulting in a phosphate having lower solubility, and the film is reformed. It is considered that this repetition occurs within a short time, P is rich in the surface layer, and Mn is a gradient function rich in the lower layer. Next, examples of the method of the present invention will be described together with comparative examples. [Table 1] Note 1) Coated steel sheet EG: Electro-galvanized steel sheet, AS: Galvannealed steel sheet (Fe10%, Al 0.2%, remaining Zn), GI: Hot-dip galvanized steel sheet, HA: Semi-alloyed hot-dip zinc sheet Coated steel sheet (Fe
5%, Al 0.3%, residual Zn), Zn-Ni: zinc-nickel alloy electroplated steel sheet (Ni 9%, residual Zn), Zn
-Mg: zinc-magnesium alloy vapor-deposited plated steel sheet (Mg1
0%, residual Zn), Zn-Cr: Zn-Cr alloy electroplated steel sheet (Cr 14%, residual Zn), Zn-Mn: Zn-M
n alloy electroplated steel sheet (Mn 20%, residual Zn), Zn-
Al: hot-dip galvanized aluminum alloy steel sheet (Al5
%, Mg 0.1%, residual Zn), Zn / Al-Zn: zinc upper layer aluminum zinc alloy hot-dip coated steel sheet (upper layer Zn2
g / m 2, the lower layer Al55%, residual Zn60g / m 2), Z
n-Fe: zinc-iron alloy electroplated steel sheet (Zn 85%,
Fe 15%), Zn-Cr-Ni: Zn-Cr-Ni alloy electroplated steel sheet (Zn 85%, Cr 13%, Ni2
%), Zn / Al: zinc upper layer aluminum-plated steel sheet (upper layer Zn 1 g / m 2 , lower layer Al 60 g / m 2 ). All steel plates are 0.8mm thick . Note 2) Activation method Activation method A: dipped a plated steel sheet for 1 to 10 seconds. Activation method B: 5 to 10 Adm 2 using plated steel sheet as cathode
1 to 10 seconds of activation method C: 5 to 10 Adm 2 using plated steel plate as anode
Activated by electrolysis for 1 to 10 seconds Method D: Plated steel sheet at 5 to 10 A using alternating current
electrolysis was subjected to 1 to 10 seconds at dm 2. Activation method E: A roll of 0.5 mm in diameter and 20 mm in bristle length (made of stainless steel) having a diameter of 300 mm was formed and rotated at a contact pressure of 10 kg to activate the surface of the plated steel sheet. Note 3) Inorganic oxide generation method ・ Mn oxide is potassium permanganate or manganese carbonate ・ P oxide is phosphoric acid or sodium phosphate, potassium phosphate, ammonium phosphate ・ Mo oxide Is ammonium molybdate; Co oxide is cobalt carbonate and cobalt nitrate; Ni oxide is nickel nitrate and nickel carbonate; Ca oxide is calcium nitrate and calcium carbonate; W oxide Is ammonium tungstate or sodium tungstate. ・ V oxide is ammonium vanadate or sodium vanadate. ・ Boride is sodium borate as elemental concentration.
The mixture was mixed in the range of 0.1 to 50 g / l, immersed or sprayed, and the coating amount was further adjusted with an air knife or a roll squeezer to form an oxide and dried. After immersion or spraying, washing with water and further electrolysis were performed as necessary. In order to ensure the solubility of the above elements, pH was adjusted with sulfuric acid, nitric acid, zinc carbonate, sodium hydroxide, and potassium hydroxide as needed. The amounts generated are all measured element amounts. Note 4) Chemical conversion property SD5000 (manufactured by Nippon Paint Co., Ltd.) was used as the chemical conversion solution, and after the degreasing and surface conditioning were performed as prescribed, the chemical conversion treatment was performed. The chemical conversion coating was judged by SEM (secondary electron beam image) as follows: ○ if the film was formed uniformly, Δ if the film was partially formed, × if the film was not formed. It was determined. Note 5) Adhesive-compatible plated steel sheet is made into a 25 mm width strip, and rust preventive oil (knock
Thrust 530F40, manufactured by Parker Kosan Co., Ltd.)
g / m 2 , and an epoxy-based adhesive (EP190, SE
Adhesive for hemming manufactured by Medine Co., Ltd.
Adhesive thickness 0.15mm, three layers bonded together, 170 ° C
And bake for 20 minutes, then shear off with a tensile tester
The force was determined and the shearing force (kgf / cm 2 ) on one side was calculated. Note 6) Pressability (coefficient of friction) Sample size: 17 mm x 300 mm, Tensile speed: 50
Under a condition of 0 mm / min, square beat shoulder R: 1.0 / 3.0 mm, sliding length: 200 mm, oiling: Knoxlast 530F40 (Parker Kosan Co., Ltd.) 1 g / m 2 , the surface pressure was 100.
A few points test was conducted between 〜600 kgf, the pulling load was measured, and the friction coefficient was determined from the surface pressure and the slope of the pulling load. According to the present invention, by forming a small amount of an inorganic oxide film, the slidability in a press can be improved more than that of a cold-rolled steel sheet, and the chemical conversion film can be formed uniformly. Thus, the line speed can be increased and the productivity can be increased. Further, by forming a small amount of the inorganic oxide film, excellent effects such as improvement in pressability at low cost can be obtained.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−101065(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 28/00 C23C 2/26 C23C 22/78 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-101065 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 28/00 C23C 2/26 C23C 22 / 78
Claims (1)
後、Mn、Mo、Co、Ni、Ca、V、W、P、Bの
1種又は2種以上の無機系酸化物皮膜を生成せしめるこ
とを特徴とするプレス性、化成処理性、接着剤適合性に
優れた亜鉛系めっき鋼板の製造方法。(57) [Claims] [Claim 1] After activating the surface of a galvanized steel sheet, Mn, Mo, Co, Ni, Ca, V, W, P, B
A method for producing a galvanized steel sheet having excellent pressability, chemical conversion properties, and adhesive compatibility, wherein one or more inorganic oxide films are formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10231295A JP3445683B2 (en) | 1995-04-26 | 1995-04-26 | Manufacturing method of galvanized steel sheet with excellent pressability, chemical conversion property and adhesive compatibility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10231295A JP3445683B2 (en) | 1995-04-26 | 1995-04-26 | Manufacturing method of galvanized steel sheet with excellent pressability, chemical conversion property and adhesive compatibility |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08296058A JPH08296058A (en) | 1996-11-12 |
JP3445683B2 true JP3445683B2 (en) | 2003-09-08 |
Family
ID=14324085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10231295A Expired - Fee Related JP3445683B2 (en) | 1995-04-26 | 1995-04-26 | Manufacturing method of galvanized steel sheet with excellent pressability, chemical conversion property and adhesive compatibility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3445683B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2437990C (en) | 2000-12-04 | 2007-05-08 | Jfe Steel Corporation | Zinc-base plated steel sheet and method for manufacturing same |
JP4079768B2 (en) * | 2002-12-27 | 2008-04-23 | Jfeスチール株式会社 | Pre-coated steel sheet with excellent environmental harmony and corrosion resistance |
JP4079767B2 (en) * | 2002-12-27 | 2008-04-23 | Jfeスチール株式会社 | Pre-coated steel sheet with excellent environmental harmony, sliding-part peel resistance and corrosion resistance |
JP4517887B2 (en) * | 2005-02-25 | 2010-08-04 | Jfeスチール株式会社 | Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet |
JP5549921B2 (en) * | 2010-02-23 | 2014-07-16 | 新日鐵住金株式会社 | Manufacturing method of hot pressed parts and hot pressed parts |
KR101696115B1 (en) | 2015-12-22 | 2017-01-13 | 주식회사 포스코 | Zinc-plated steel sheet having aftertreating film and aftertreating method thereof |
KR101940882B1 (en) | 2016-12-23 | 2019-01-21 | 주식회사 포스코 | Zinc or zinc alloy plated steel material having excellent sealer adhesiveness and coating composition for forming film having excellent sealer adhesiveness |
JP2021066914A (en) * | 2019-10-21 | 2021-04-30 | 日本パーカライジング株式会社 | Treatment agent and coated metal material |
-
1995
- 1995-04-26 JP JP10231295A patent/JP3445683B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08296058A (en) | 1996-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5525431A (en) | Zinc-base galvanized sheet steel excellent in press-formability, phosphatability, etc. and process for producing the same | |
JP2819427B2 (en) | Galvanized steel sheet with excellent press formability and chemical conversion properties | |
JP3445683B2 (en) | Manufacturing method of galvanized steel sheet with excellent pressability, chemical conversion property and adhesive compatibility | |
JP4615807B2 (en) | Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet | |
KR100234452B1 (en) | Zinciferous plated steel sheet and method for manufacturing same | |
JP2691797B2 (en) | Galvanized steel sheet with excellent press formability and chemical conversion treatment | |
JP2826902B2 (en) | Method for producing galvanized steel sheet with excellent press formability and chemical conversion properties | |
EP0456834B1 (en) | Galvanized steel plate having excellent capability of press working, chemical conversion and the like, and production of said plate | |
JP3132979B2 (en) | Galvanized steel sheet with excellent lubricity, chemical conversion properties and adhesive compatibility | |
JP3153098B2 (en) | Galvanized steel sheet with excellent lubricity, chemical conversion properties, adhesive compatibility, and weldability | |
JP3219453B2 (en) | Manufacturing method of galvanized steel sheet with excellent blackening resistance | |
JP3199980B2 (en) | Galvanized steel sheet with excellent lubricity, chemical conversion properties and adhesive compatibility | |
JP3111903B2 (en) | Manufacturing method of galvanized steel sheet | |
JP3153097B2 (en) | Galvanized steel sheet with excellent lubricity, chemical conversion properties, adhesive compatibility, and weldability | |
JP2819429B2 (en) | Galvanized steel sheet with excellent press formability and chemical conversion properties | |
JP3111904B2 (en) | Manufacturing method of galvanized steel sheet | |
JP3425268B2 (en) | Method for producing galvanized steel sheet with excellent pressability, chemical conversion property, and degreasing solution contamination resistance | |
JP3425270B2 (en) | Method for producing galvanized steel sheet with excellent pressability, chemical conversion property, and degreasing solution contamination resistance | |
JP3191660B2 (en) | Galvanized steel sheet and method for producing the same | |
JP2952835B2 (en) | Manufacturing method of galvanized steel sheet with excellent weldability, pressability and chemical conversion treatment | |
JP3111888B2 (en) | Manufacturing method of galvanized steel sheet | |
JPH0696779B2 (en) | Galvanized steel sheet with excellent press formability and chemical conversion treatment | |
JP3191647B2 (en) | Manufacturing method of galvanized steel sheet | |
JP2819428B2 (en) | Galvanized steel sheet with excellent press formability and chemical conversion properties | |
KR920010777B1 (en) | Electroplating steel sheet with two layer being of alloy metal and process for making |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030613 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080627 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100627 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100627 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 10 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |