JP3444793B2 - Method of manufacturing gas discharge panel - Google Patents

Method of manufacturing gas discharge panel

Info

Publication number
JP3444793B2
JP3444793B2 JP24273098A JP24273098A JP3444793B2 JP 3444793 B2 JP3444793 B2 JP 3444793B2 JP 24273098 A JP24273098 A JP 24273098A JP 24273098 A JP24273098 A JP 24273098A JP 3444793 B2 JP3444793 B2 JP 3444793B2
Authority
JP
Japan
Prior art keywords
protective layer
manufacturing
gas discharge
discharge panel
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24273098A
Other languages
Japanese (ja)
Other versions
JP2000076989A (en
Inventor
秀明 安井
純一 日比野
祐助 高田
秀隆 東野
光弘 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP24273098A priority Critical patent/JP3444793B2/en
Publication of JP2000076989A publication Critical patent/JP2000076989A/en
Application granted granted Critical
Publication of JP3444793B2 publication Critical patent/JP3444793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、誘電体層と保護層
が形成された基板を用いたガス放電パネルの製造方法に
関する。
TECHNICAL FIELD The present invention relates to a method of manufacturing a gas discharge panel using a substrate having a dielectric layer and a protective layer formed thereon.

【0002】[0002]

【従来の技術】従来、この種のガス放電パネルとして
は、図5に示すAC型のプラズマディスプレイパネル
(以下、PDPという)が知られている。
2. Description of the Related Art Conventionally, as this type of gas discharge panel, an AC type plasma display panel (hereinafter referred to as PDP) shown in FIG. 5 has been known.

【0003】このPDPは、内表面上に複数本の電極
1,誘電体層2及び保護層3が形成されたガラス製の上
部パネル側の基板4と、電極1とは直交する向きに沿っ
て配置された複数本の電極5及び誘電体層6が内表面上
に形成され、かつ、誘電体層6上の所定位置毎には発光
領域を区画する低融点ガラス製の隔壁7が並列形成され
たガラス製の下部パネル側の基板8とを対向配置したう
えで、外周端縁を低融点ガラスからなる封着部材9でも
って封着した構成の外囲器10を備えている。
In this PDP, a glass upper panel side substrate 4 having a plurality of electrodes 1, a dielectric layer 2 and a protective layer 3 formed on the inner surface thereof and an electrode 1 are arranged in a direction orthogonal to each other. A plurality of electrodes 5 and a dielectric layer 6 that are arranged are formed on the inner surface, and partition walls 7 made of low melting point glass that partition a light emitting region are formed in parallel at predetermined positions on the dielectric layer 6. Further, there is provided an envelope 10 having a structure in which a substrate 8 made of glass on the lower panel side is arranged to face each other, and an outer peripheral edge is sealed by a sealing member 9 made of low melting point glass.

【0004】そして、隔壁7によって区画された各発光
領域ごとの誘電体層6の上にはカラー表示を実現するた
めの蛍光体11が塗布されており、外囲器10内には放
電空間12で放電を行わせるため、ネオン及びキセノン
を混合してなる放電ガスが下部パネル基板8の孔8aと
チップ管13を通して約500Torrの圧力で封入さ
れている。なお、封入後、図に示すようにチップ管13
は封止されている。
A phosphor 11 for realizing a color display is applied on the dielectric layer 6 for each light emitting region partitioned by the partition wall 7, and a discharge space 12 is provided in the envelope 10. In order to cause the discharge at 1, a discharge gas containing a mixture of neon and xenon is sealed at a pressure of about 500 Torr through the hole 8a of the lower panel substrate 8 and the chip tube 13. After encapsulation, as shown in the figure, the tip tube 13
Are sealed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記ガ
ス放電パネルの放電電圧などで示される放電特性は、保
護層3の形成条件,膜質により大きく左右されており、
厳しい工程管理が必要とされていたが、それでも、ばら
つきが発生し、放電状態の安定化が困難であり、製品の
表示品位の不安定につながるものであった。
However, the discharge characteristics represented by the discharge voltage of the above gas discharge panel are greatly influenced by the formation conditions and film quality of the protective layer 3,
Although strict process control was required, variation still occurred, and it was difficult to stabilize the discharge state, leading to instability in the display quality of the product.

【0006】この原因として考えられるのは、保護層の
形成後のパネル化に至る工程までの処理や、処理前後で
の放置時間などによると考えられるが、詳細は不明であ
る。本発明は、放電特性の良好な優れた表示品位を実現
するガス放電パネルと、そのパネルを安定して製造でき
る製造方法を提供することを目的する。
The cause of this is considered to be the treatment up to the step of forming a panel after the formation of the protective layer and the time allowed to stand before and after the treatment, but the details are unknown. An object of the present invention is to provide a gas discharge panel that realizes excellent display quality with good discharge characteristics, and a manufacturing method capable of stably manufacturing the panel.

【0007】[0007]

【課題を解決するための手段】本発明のガス放電パネル
の製造方法は、誘電体層と保護層が形成された基板の前
記保護層を酸化させる表面改質することを特徴とする。
A method of manufacturing a gas discharge panel according to the present invention is characterized in that a surface of a substrate having a dielectric layer and a protective layer formed thereon is oxidized to modify the protective layer.

【0008】この本発明によると、放電特性の良好な優
れた表示品位を実現するガス放電パネルとそのパネルを
安定して製造できる。
According to the present invention, it is possible to stably manufacture a gas discharge panel which realizes excellent display quality with good discharge characteristics and the panel.

【0009】[0009]

【発明の実施の形態】本発明のガス放電パネルの製造方
法は、2枚の基板の間に放電空間が設けられたガス放電
パネルの製造方法であって、前記基板の少なくとも一方
に誘電体層と保護層とを順次形成した後、大気解放しな
いで、酸素を含む雰囲気中において前記保護層に紫外線
照射を行って前記保護層の表面改質を行うことを特徴と
する。
BEST MODE FOR CARRYING OUT THE INVENTION A method of manufacturing a gas discharge panel according to the present invention is a method of manufacturing a gas discharge panel in which a discharge space is provided between two substrates, and a dielectric layer is provided on at least one of the substrates. And the protective layer are sequentially formed, and then the atmosphere is not released.
In addition, the protective layer is irradiated with ultraviolet rays in an atmosphere containing oxygen to modify the surface of the protective layer.

【0010】[0010]

【0011】また、本発明のガス放電パネルの製造方法
は、減圧雰囲気で前記紫外線照射を行うことを特徴とす
る。
The method of manufacturing the gas discharge panel of the present invention
Is characterized in that the ultraviolet irradiation is performed in a reduced pressure atmosphere .

【0012】また、本発明のガス放電パネルの製造方法
は、2枚の基板の間に放電空間が設けられたガス放電パ
ネルの製造方法であって、前記基板の少なくとも一方に
誘電体層と保護層とを順次形成した後、大気解放しない
で、酸素を含むガスからなるプラズマ中に前記保護層を
曝して前記保護層の表面改質を行うことを特徴とする。
The method of manufacturing a gas discharge panel according to the present invention is a method of manufacturing a gas discharge panel in which a discharge space is provided between two substrates, wherein at least one of the substrates has a dielectric layer and a protective layer. After forming the layers sequentially, do not release to the atmosphere
Then, the surface of the protective layer is modified by exposing the protective layer to a plasma containing a gas containing oxygen.

【0013】[0013]

【0014】また、本発明のガス放電パネルの製造方法
は、2枚の基板の間に放電空間が設けられたガス放電パ
ネルの製造方法であって、前記基板の少なくとも一方に
誘電体層と保護層とを順次形成した後、大気解放しない
で、前記保護層に酸素イオンの打ち込みを行って前記保
護層の表面改質を行うことを特徴とする。
The method of manufacturing a gas discharge panel of the present invention is a method of manufacturing a gas discharge panel in which a discharge space is provided between two substrates, wherein at least one of the substrates has a dielectric layer and a protective layer. After forming the layers sequentially, do not release to the atmosphere
Then, the surface of the protective layer is modified by implanting oxygen ions into the protective layer.

【0015】[0015]

【0016】また、本発明のガス放電パネルの製造方法
、前記保護層の表面をドライエッチング処理によりエ
ッチングした後、前記保護層の表面改質を行うことを特
徴とする。
[0016] A method of manufacturing a gas discharge panel of the present invention, after the surface of the protective layer is etched by dry etching, and performing surface modification of the protective layer.

【0017】[0017]

【0018】また、本発明のガス放電パネルの製造方法
は、前記保護層が、アルカリ土類金属の酸化物またはア
ルカリ土類金属のフッ化物あるいはこれらの混合物の膜
であることを特徴とする。
[0018] In the method of manufacturing the gas discharge panel of the present invention, the protective layer, characterized in that it is a film of an oxide or fluoride or mixtures of these alkaline earth metal of the alkaline earth metals.

【0019】[0019]

【0020】[0020]

【0021】本発明により、保護層の表面改質により保
護層が膜質の安定化が図られ、保護層形成時の膜質のバ
ラツキ、パネル化に至る工程までの処理、処理前後での
放置時間等に起因するパネル化した際の放電電圧の上昇
等の放電特性の劣化を引き起こすことを防ぎ、本発明を
採用した際には、放電特性が良好なガス放電パネルを安
定して得られた。
According to the present invention, the quality of the protective layer is stabilized by the surface modification of the protective layer, the variation of the film quality at the time of forming the protective layer, the treatment up to the step of forming a panel, the time before and after the treatment, etc. It was possible to prevent deterioration of discharge characteristics such as increase in discharge voltage when the panel was formed due to the above, and when the present invention was adopted, a gas discharge panel having good discharge characteristics was stably obtained.

【0022】以下、本発明のガス放電パネルの製造方法
を具体的な各実施の形態に基づいて説明する。なお、従
来例を示す図5と同様の作用をなすものには同一の符号
を付けて説明する。
The method of manufacturing the gas discharge panel of the present invention will be described below based on each specific embodiment. It should be noted that components having the same functions as those of the conventional example shown in FIG.

【0023】(実施の形態1)図1はPDPの製造に使
用する基板を加工する装置を示す。基板4には、電極
1,誘電体層2,保護層3が形成されている。
(Embodiment 1) FIG. 1 shows an apparatus for processing a substrate used for manufacturing a PDP. An electrode 1, a dielectric layer 2, and a protective layer 3 are formed on the substrate 4.

【0024】この基板4は、真空チャンバ18にセット
して加工されて、加工後の基板4を使用してPDPが製
造される。真空チャンバ18には、酸素ガス導入系1
4、アルゴンガス導入系15、真空排気系16、366
nm付近の波長を主とする紫外線照射ランプ17が具備
されており、加工を受ける基板4は、この真空チャンバ
18内の基板加熱冷却機構およびRFバイアス印加機構
を有するRF電極(基板ホルダ)19に設置し、RF電
極(基板ホルダ)19の温度を30℃に制御し、アルゴ
ンガス導入系15より1000ccmのアルゴンガスと
酸素ガス導入系14より100ccmの酸素ガスを導入
し、真空排気系16により真空チャンバ18内の圧力を
300mTorrに調整する。
The substrate 4 is set in the vacuum chamber 18 and processed, and a PDP is manufactured using the processed substrate 4. In the vacuum chamber 18, the oxygen gas introduction system 1
4, argon gas introduction system 15, vacuum exhaust system 16, 366
The substrate 4 to be processed is provided with an ultraviolet irradiation lamp 17 mainly having a wavelength near nm, and an RF electrode (substrate holder) 19 having a substrate heating and cooling mechanism and an RF bias applying mechanism in the vacuum chamber 18 is provided for the substrate 4. It is installed, the temperature of the RF electrode (substrate holder) 19 is controlled at 30 ° C., an argon gas of 1000 ccm from the argon gas introduction system 15 and an oxygen gas of 100 ccm from the oxygen gas introduction system 14 are introduced, and a vacuum exhaust system 16 evacuates. The pressure inside the chamber 18 is adjusted to 300 mTorr.

【0025】そしてRF電極(基板ホルダ)19に3W
/cm2 のRFパワ−を印加し、基板4の保護層3の上
にプラズマを発生させ、15分間ドライエッチング処理
し、保護層3の表面層を約50Åエッチング処理する。
3W is applied to the RF electrode (substrate holder) 19.
RF power of / cm 2 is applied to generate plasma on the protective layer 3 of the substrate 4 and dry etching is performed for 15 minutes, and the surface layer of the protective layer 3 is etched by about 50Å.

【0026】その後、一度、アルゴンガス、酸素ガスの
導入を停止し、残留ガスを排気した後、酸素ガス導入系
14より3000ccmの酸素ガスを導入し、真空排気
系16により真空チャンバ18内の圧力を50Torr
に調整する。基板はRF電極(基板ホルダ)19を15
0℃に加熱制御し保持しておく。そして紫外線照射ラン
プ17を点灯し、5分間照射して表面改質した。
After that, the introduction of argon gas and oxygen gas is once stopped, the residual gas is exhausted, then 3000 ccm of oxygen gas is introduced from the oxygen gas introduction system 14, and the pressure in the vacuum chamber 18 is set by the vacuum exhaust system 16. To 50 Torr
Adjust to. The substrate is an RF electrode (substrate holder) 19
It is controlled by heating at 0 ° C and kept. Then, the ultraviolet irradiation lamp 17 was turned on and irradiated for 5 minutes to modify the surface.

【0027】この表面改質の処理による保護層の膜改質
の詳細なプロセスは不明だが、紫外線照射により酸素分
子がオゾンとなり、保護層(MgO)の表面付近のカ−
ボン等の吸着物および、蒸着時に巻く中に取り込まれた
カ−ボン等の含有物をCO2として除去していると考え
られる。
Although the detailed process of film modification of the protective layer by this surface modification treatment is unknown, oxygen molecules become ozone by the irradiation of ultraviolet rays, and the carbon near the surface of the protective layer (MgO) is covered.
It is considered that the adsorbed substances such as bon and the contained substances such as carbon taken in during winding during vapor deposition are removed as CO 2 .

【0028】また、EB蒸着法などにより形成された保
護層(MgO)のMg/Oの比は1/1でなくOに比べ
Mgが多い状態で形成されているため、オゾン分子など
が表面近傍のMgの酸素欠損部分と結合し、保護層表面
付近はMgとOがすべて結合している安定な膜面とな
り、パネル化に至るまでの後工程において保護層が吸着
や反応をしにくくなるのではないかと考えられる。
Further, since the protective layer (MgO) formed by the EB vapor deposition method has a Mg / O ratio not 1/1 but a larger amount of Mg than O, ozone molecules and the like are near the surface. In the vicinity of the surface of the protective layer, a stable film surface is formed in which all of Mg and O are combined, and it becomes difficult for the protective layer to adsorb or react in the subsequent steps until panel formation. It is thought to be.

【0029】また、吸着などにより表面付近に形成され
たMgCO3 もオゾンにより分解されMgOに変化して
いるのではないかと考えられる。また、紫外線照射ラン
プ17による処理を実施する前に、保護層3の表面近傍
の吸着ガス等をドライエッチング処理により除去するた
め、より一層、後工程等により変化しにくい保護層3と
なっていると考えられる。
It is also considered that the MgCO 3 formed near the surface by adsorption or the like is also decomposed by ozone and changed into MgO. Further, since the adsorbed gas and the like in the vicinity of the surface of the protective layer 3 is removed by the dry etching treatment before the treatment with the ultraviolet irradiation lamp 17, the protective layer 3 is further hard to be changed in the subsequent steps. it is conceivable that.

【0030】本製造方法により従来のように高い放電電
圧や放電電圧のばらつき等の放電特性の不安定、劣化を
生じない、従来に比べ10%程度低い安定した放電電圧
のパネルの製造を行うことができた。
By this manufacturing method, it is possible to manufacture a panel having a stable discharge voltage which is about 10% lower than the conventional one, without causing instability and deterioration of discharge characteristics such as high discharge voltage and variation in discharge voltage as in the conventional case. I was able to.

【0031】また、この実施の形態では366nm付近
の波長を主とする紫外線照射ランプを用いて実施した
が、314nm付近や436nm付近などの波長を主と
する紫外線照射ランプでも同様な効果が得られており、
本実施例の紫外線照射ランプに限定されるものではな
い。
Further, in this embodiment, the ultraviolet irradiation lamp mainly having a wavelength near 366 nm is used, but the same effect can be obtained by the ultraviolet irradiation lamp mainly having a wavelength near 314 nm or 436 nm. And
It is not limited to the ultraviolet irradiation lamp of this embodiment.

【0032】また、保護層としてMgOを用いたが、M
gFや(MgO+MgF)の混合層でもよく、アルカリ
土類金属の酸化物またはアルカリ土類金属のフッ化物あ
るいはこれらの混合物の膜などを使用することができ、
本実施例に限定されるものではない。
Although MgO is used as the protective layer, M
A mixed layer of gF and (MgO + MgF) may be used, and an oxide of an alkaline earth metal, a fluoride of an alkaline earth metal, or a film of a mixture thereof can be used.
The present invention is not limited to this example.

【0033】(実施の形態2)図2はPDPの製造に使
用する基板を加工する装置を示す。基板4には、電極
1,誘電体層2,保護層3が形成されている。
(Second Embodiment) FIG. 2 shows an apparatus for processing a substrate used for manufacturing a PDP. An electrode 1, a dielectric layer 2, and a protective layer 3 are formed on the substrate 4.

【0034】この基板4は、真空チャンバ24にセット
して加工されて、加工後の基板4を使用してPDPが製
造される。真空チャンバ24には、アルゴンガス導入系
20、酸素ガス導入系21、真空排気系22、基板加熱
冷却機構およびRFバイアス印加機構を具備したRF電
極(基板ホルダ)23が具備されており、加工を受ける
基板4は、この真空チャンバ24内のRF電極23に設
置し、RF電極(基板ホルダ)23の温度を30℃に制
御し、アルゴンガス導入系20より1000ccmのア
ルゴンガスと酸素ガス導入系21より100ccmの酸
素ガスを導入し、真空排気系22により真空チャンバ2
5内の圧力を300mTorrに調整する。
The substrate 4 is set in the vacuum chamber 24 and processed, and a PDP is manufactured using the processed substrate 4. The vacuum chamber 24 is provided with an argon gas introduction system 20, an oxygen gas introduction system 21, a vacuum exhaust system 22, an RF electrode (substrate holder) 23 equipped with a substrate heating / cooling mechanism and an RF bias applying mechanism. The substrate 4 to be received is installed in the RF electrode 23 in the vacuum chamber 24, the temperature of the RF electrode (substrate holder) 23 is controlled at 30 ° C., and the argon gas and oxygen gas introduction system 21 of 1000 ccm is supplied from the argon gas introduction system 20. Oxygen gas of 100 ccm is introduced, and the vacuum chamber 2 is driven by the vacuum exhaust system 22.
Adjust the pressure in 5 to 300 mTorr.

【0035】そしてRF電極(基板ホルダ)23に3W
/cm2 のRFパワ−を印加し、設置した保護層3上に
プラズマを発生させ、15分間ドライエッチング処理
し、保護層3の表層を約50Åエッチング処理する。
3W is applied to the RF electrode (substrate holder) 23.
/ Cm 2 of RF power is applied to generate plasma on the protective layer 3 provided, and dry etching is performed for 15 minutes, and the surface layer of the protective layer 3 is etched by about 50Å.

【0036】その後、一度、アルゴンガス、酸素ガスの
導入を停止し、残留ガスを排気した後、酸素ガス導入系
21より1000ccmの酸素ガスを導入し、真空排気
系22により真空チャンバ25内の圧力を300mTo
rrに調整する。
After that, once the introduction of argon gas and oxygen gas is stopped and the residual gas is exhausted, 1000 ccm of oxygen gas is introduced from the oxygen gas introduction system 21, and the pressure in the vacuum chamber 25 is set by the vacuum exhaust system 22. To 300mTo
Adjust to rr.

【0037】RF電極(基板ホルダ)23は100℃に
加熱制御する。そしてRF電極(基板ホルダ)23に3
W/cm2のRFパワ−を投入し、酸素プラズマに保護
層3を曝し、20分処理して表面改質した。
The RF electrode (substrate holder) 23 is heated and controlled at 100 ° C. Then, the RF electrode (substrate holder) 23
An RF power of W / cm 2 was introduced, the protective layer 3 was exposed to oxygen plasma, and treated for 20 minutes for surface modification.

【0038】この表面処理による膜改質の詳細なプロセ
スは不明だが、酸素プラズマによる処理により活性な酸
素原子、分子により保護層(MgO)表面付近のカ−ボ
ン等の吸着物をCO2 として除去していると考えられ
る。
Although the detailed process of film modification by this surface treatment is unknown, the adsorbates such as carbon near the surface of the protective layer (MgO) are removed as CO 2 by the active oxygen atoms and molecules by the treatment with oxygen plasma. it seems to do.

【0039】また、EB蒸着法等により形成された保護
層(MgO)のMg/Oの比は1/1でなくOに比べM
gが多い状態で形成されているため、活性な酸素原子、
分子が表面近傍のMgの酸素欠損部分と結合し、保護層
表面付近はMgとOがすべて結合している安定な膜面と
なり、後工程において吸着や反応をしにくくなるのでは
ないかと考えられる。
The protective layer (MgO) formed by the EB vapor deposition method does not have a Mg / O ratio of 1/1 but M as compared with O.
Since it is formed in a state in which g is large, active oxygen atoms,
It is considered that the molecules are bonded to the oxygen deficient portion of Mg near the surface, and a stable film surface in which all Mg and O are bonded is formed near the surface of the protective layer, which makes it difficult to adsorb or react in the subsequent process. .

【0040】本製造方法により従来のように高い放電電
圧や放電電圧のばらつき等の放電特性の不安定、劣化を
生じない、従来に比べ10%程度低い安定した放電電圧
のパネルの製造を行うことができる。
By this manufacturing method, it is possible to manufacture a panel having a stable discharge voltage which is about 10% lower than the conventional one, without causing instability and deterioration of the discharge characteristic such as high discharge voltage and variation in discharge voltage as in the conventional one. You can

【0041】また、本実施例では酸素プラズマにより保
護層3の表面改質を実施したが、図3に示すように、イ
オンガン25を用いて保護層3に酸素イオンを打ち込み
を行うことにより、表面改質を実施してもよい。
In this embodiment, the surface of the protective layer 3 was modified by oxygen plasma. However, as shown in FIG. 3, by implanting oxygen ions into the protective layer 3 using the ion gun 25, the surface of the protective layer 3 was improved. Modification may be carried out.

【0042】また、保護層としてMgOを用いたが、M
gFや(MgO+MgF)の混合層でもよく、アルカリ
土類金属の酸化物またはアルカリ土類金属のフッ化物あ
るいはこれらの混合物の膜などを使用することができ、
本実施例に限定されるものではない。
Although MgO is used as the protective layer, M
A mixed layer of gF and (MgO + MgF) may be used, and an oxide of an alkaline earth metal, a fluoride of an alkaline earth metal, or a film of a mixture thereof can be used.
The present invention is not limited to this example.

【0043】(実施の形態3)図4は本実施の形態に係
る保護層の形成と表面改質に関する装置の処理工程を示
す。
(Embodiment 3) FIG. 4 shows processing steps of an apparatus relating to formation of a protective layer and surface modification according to the present embodiment.

【0044】従来では、保護層3としてのMgO膜はE
B蒸着装置などの真空成膜装置で形成され、真空装置か
ら大気中に出され、次工程に送られる。のが一般的であ
るが、本実施例において、図4(a)に示すインライン
型の装置では、電極1と誘電体層2が形成された基板を
ロ−ドロック室26に投入し、基板加熱室27、基板加
熱+バッファ−室28で基板加熱を実施した後、蒸着室
29で保護層が形成される。保護層3が形成された後、
真空状態を破らずにエッチング室30に送られドライエ
ッチング処理により保護層3の表面を約50Åエッチン
グし、次の表面改質室31で先に記した発明の(実施の
形態1)または(実施の形態2)の表面処理が実施さ
れ、その後、基板冷却+バッファ室32で冷却された
後、アンロ−ドロック室33から取り出される。
Conventionally, the MgO film as the protective layer 3 is formed of E
The film is formed by a vacuum film forming apparatus such as a B vapor deposition apparatus, and is discharged into the atmosphere from the vacuum apparatus and sent to the next step. In the present embodiment, in the in-line type device shown in FIG. 4A, the substrate on which the electrode 1 and the dielectric layer 2 are formed is put into the load lock chamber 26 to heat the substrate. After the substrate is heated in the chamber 27 and the substrate heating + buffer-chamber 28, a protective layer is formed in the vapor deposition chamber 29. After the protective layer 3 is formed,
It is sent to the etching chamber 30 without breaking the vacuum state and the surface of the protective layer 3 is etched by about 50Å by a dry etching process, and then the following surface reforming chamber 31 is used (Embodiment 1) or (Embodiment 1) of the invention described above. The surface treatment of Embodiment 2) is performed, and after that, the substrate is cooled and cooled in the buffer chamber 32, and then taken out from the unload lock chamber 33.

【0045】また、図4(b)に示すように枚葉型で
は、ロ−ドロック26から投入された基板は、移載室3
4を経由して、基板加熱室27,基板加熱+バッファ−
室28,蒸着室29,エッチング室30,表面改質室3
1,基板冷却室32へ矢印で示すように順に送られて処
理され、アンロ−ドロック室33から取り出される。
As shown in FIG. 4 (b), in the single wafer type, the substrate loaded from the load lock 26 is transferred to the transfer chamber 3
4 via the substrate heating chamber 27, substrate heating + buffer-
Chamber 28, vapor deposition chamber 29, etching chamber 30, surface modification chamber 3
1, the substrates are sequentially sent to the substrate cooling chamber 32 as indicated by the arrow for processing and taken out from the unload lock chamber 33.

【0046】本実施例の形態により保護層を形成した
後、大気解放せずに表面改質の処理が実施されるため、
大気解放した時に生じるガス吸着などの発生が防げ、成
膜時に膜中に取り込まれる不純物や、成膜装置内のガス
による吸着だけになるため、表面改質処理の効果がより
一層大きくなる。
After forming the protective layer according to the embodiment, the surface modification treatment is carried out without exposing to the atmosphere.
The generation of gas adsorption and the like that occurs when exposed to the atmosphere can be prevented, and only the impurities taken into the film during film formation and the gas in the film forming apparatus can be adsorbed, so that the effect of the surface modification treatment is further enhanced.

【0047】本製造方法により従来のように高い放電電
圧や放電電圧のばらつき等の放電特性の不安定、劣化を
生じない、従来に比べ13%程度低い安定した放電電圧
のパネルの製造を行うことができた。
By this manufacturing method, it is possible to manufacture a panel having a stable discharge voltage which is about 13% lower than that of the conventional one, which does not cause instability and deterioration of the discharge characteristics such as high discharge voltage and variation of the discharge voltage as in the conventional one. I was able to.

【0048】また、本実施例において保護層としてMg
Oを用いたが、MgFやMgO+MgFの混合層などで
もよく、アルカリ土類金属の酸化物またはアルカリ土類
金属のフッ化物あるいはこれらの混合物の膜などを使用
することができ、本実施例に限定されるものではない。
Further, in this embodiment, Mg is used as a protective layer.
Although O is used, a layer of MgF or a mixed layer of MgO + MgF may be used, and an oxide of an alkaline earth metal, a fluoride of an alkaline earth metal, or a film of a mixture thereof can be used. It is not something that will be done.

【0049】[0049]

【発明の効果】以上のように本発明によれば、保護層の
表面改質を行うことで、保護層形成時の膜質のバラツ
キ、パネル化までの後工程の処理、処理前後での放置時
間による影響を受けにくい安定な膜質とするために、パ
ネル化した際の放電特性の良好なガス放電パネルが実現
でき、また、厳しい工程管理を必要としない安易な製造
工程で、表示特性の良好なガス放電パネルの安定した製
造を実現できる。
As described above, according to the present invention, by performing surface modification of the protective layer, there are variations in film quality at the time of forming the protective layer, post-processes until panel formation, and a standing time before and after the process. In order to obtain a stable film quality that is not easily affected by, it is possible to realize a gas discharge panel with good discharge characteristics when it is made into a panel, and a simple manufacturing process that does not require strict process control, and good display characteristics. It is possible to realize stable manufacturing of the gas discharge panel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の(実施の形態1)の製造工程において
保護層の表面改質を実行する装置の概略断面図
FIG. 1 is a schematic cross-sectional view of an apparatus for performing surface modification of a protective layer in the manufacturing process of (Embodiment 1) of the present invention.

【図2】本発明の(実施の形態2)の製造工程において
保護層の表面改質を実行する装置の概略断面図
FIG. 2 is a schematic cross-sectional view of an apparatus for performing surface modification of a protective layer in the manufacturing process of (Embodiment 2) of the present invention.

【図3】本発明の製造工程において保護層の表面改質を
実行する装置の別の実施の形態の概略断面図
FIG. 3 is a schematic cross-sectional view of another embodiment of an apparatus for performing surface modification of a protective layer in the manufacturing process of the present invention.

【図4】本発明の(実施の形態3)の保護層形成と表面
改質を実施するインライン型装置と枚葉型装置の処理工
程を示す概略断面図
FIG. 4 is a schematic cross-sectional view showing the processing steps of an in-line type device and a single-wafer type device for carrying out protective layer formation and surface modification of (Embodiment 3) of the present invention.

【図5】従来のPDPの破断斜視図FIG. 5 is a cutaway perspective view of a conventional PDP.

【符号の説明】[Explanation of symbols]

1 電極 2 誘電体層 3 保護層 4 基板 5 電極 6 誘電体層 7 隔壁 8 基板 8a 孔 9 封着部材 10 外囲器 11 蛍光体 12 放電空間 13 チップ管 14 酸素ガス導入系 15 アルゴンガス導入系 16 真空空排気系 17 紫外線照射ランプ 18 真空チャンバ 19 RF電極(基板ホルダ) 20 アルゴンガス導入系 21 酸素ガス導入系 22 真空排気系 23 RF電極(基板ホルダ) 24 真空チャンバ 25 イオンガン 26 ロ−ドロック室 27 基板加熱室 28 基板加熱+バッファ室 29 蒸着室 30 エッチング室 31 表面改質室 32 基板冷却+バッファ室 33 アンロ−ドロック室 34 移載室 1 electrode 2 Dielectric layer 3 protective layer 4 substrates 5 electrodes 6 Dielectric layer 7 partition 8 substrates 8a hole 9 Sealing member 10 envelope 11 phosphor 12 discharge space 13 tip tubes 14 Oxygen gas introduction system 15 Argon gas introduction system 16 Vacuum exhaust system 17 UV irradiation lamp 18 vacuum chamber 19 RF electrode (substrate holder) 20 Argon gas introduction system 21 Oxygen gas introduction system 22 Vacuum exhaust system 23 RF electrode (substrate holder) 24 vacuum chamber 25 ion gun 26 load lock room 27 Substrate heating chamber 28 Substrate heating + buffer chamber 29 deposition chamber 30 etching room 31 Surface modification room 32 Substrate cooling + buffer chamber 33 Unlock lock room 34 Transfer Room

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東野 秀隆 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 大谷 光弘 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平8−255562(JP,A) 特開 平5−234519(JP,A) 特開 平5−94766(JP,A) 特開 昭61−75515(JP,A) 特開2000−156153(JP,A) 特開2000−57939(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01J 9/02 H01J 11/02 ─────────────────────────────────────────────────── ─── Continued front page (72) Hidetaka Higashino Hidetaka Higashino 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Mitsuhiro Otani 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (56) References JP-A-8-255562 (JP, A) JP-A-5-234519 (JP, A) JP-A-5-94766 (JP, A) JP-A-61-75515 (JP, A) JP 2000-156153 (JP, A) JP 2000-57939 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01J 9/02 H01J 11/02

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2枚の基板の間に放電空間が設けられたガ
ス放電パネルの製造方法であって、 前記基板の少なくとも一方に誘電体層と保護層とを順次
形成した後、大気解放しないで、酸素を含む雰囲気中に
おいて前記保護層に紫外線照射を行って前記保護層の表
面改質を行うガス放電パネルの製造方法。
1. A method of manufacturing a gas discharge panel in which a discharge space is provided between two substrates, wherein a dielectric layer and a protective layer are sequentially formed on at least one of the substrates and the atmosphere is not exposed to the atmosphere. In the method for producing a gas discharge panel, the protective layer is irradiated with ultraviolet rays in an atmosphere containing oxygen to modify the surface of the protective layer.
【請求項2】減圧雰囲気で前記紫外線照射を行うことを
特徴とする請求項1記載のガス放電パネルの製造方法。
2. The method for manufacturing a gas discharge panel according to claim 1, wherein the ultraviolet irradiation is performed in a reduced pressure atmosphere.
【請求項3】2枚の基板の間に放電空間が設けられたガ
ス放電パネルの製造方法であって、前記基板の少なくと
も一方に誘電体層と保護層とを順次形成した後、大気解
放しないで、酸素を含むガスからなるプラズマ中に前記
保護層を曝して前記保護層の表面改質を行うガス放電パ
ネルの製造方法。
3. A method of manufacturing a gas discharge panel in which a discharge space is provided between two substrates, wherein a dielectric layer and a protective layer are sequentially formed on at least one of the substrates, and then an atmospheric solution is formed.
A method of manufacturing a gas discharge panel, wherein the surface of the protective layer is modified by exposing the protective layer to a plasma containing a gas containing oxygen without releasing .
【請求項4】2枚の基板の間に放電空間が設けられたガ
ス放電パネルの製造方法であって、前記基板の少なくと
も一方に誘電体層と保護層とを順次形成した後、大気解
放しないで、前記保護層に酸素イオンの打ち込みを行っ
て前記保護層の表面改質を行うガス放電パネルの製造方
法。
4. A method of manufacturing a gas discharge panel in which a discharge space is provided between two substrates, wherein a dielectric layer and a protective layer are sequentially formed on at least one of the substrates, and then an atmospheric solution is formed.
A method of manufacturing a gas discharge panel , wherein oxygen ions are implanted into the protective layer so as not to release the surface to modify the surface of the protective layer.
【請求項5】前記保護層の表面をドライエッチング処理
によりエッチングした後、前記保護層の表面改質を行う
請求項1ないし請求項4のいずれかに記載のガス放電パ
ネルの製造方法。
5. The method for manufacturing a gas discharge panel according to claim 1, wherein after the surface of the protective layer is etched by dry etching, the surface of the protective layer is modified.
【請求項6】前記保護層が、アルカリ土類金属の酸化物
またはアルカリ土類金属のフッ化物あるいはこれらの混
合物の膜であることを特徴とする請求項1ないし請求項
5の何れかに記載のガス放電パネルの製造方法。
6. The protective layer is an oxide of an alkaline earth metal.
Or alkaline earth metal fluorides or mixtures thereof
It is a compound film, The manufacturing method of the gas discharge panel in any one of Claim 1 thru | or 5 characterized by the above-mentioned.
JP24273098A 1998-08-28 1998-08-28 Method of manufacturing gas discharge panel Expired - Fee Related JP3444793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24273098A JP3444793B2 (en) 1998-08-28 1998-08-28 Method of manufacturing gas discharge panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24273098A JP3444793B2 (en) 1998-08-28 1998-08-28 Method of manufacturing gas discharge panel

Publications (2)

Publication Number Publication Date
JP2000076989A JP2000076989A (en) 2000-03-14
JP3444793B2 true JP3444793B2 (en) 2003-09-08

Family

ID=17093404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24273098A Expired - Fee Related JP3444793B2 (en) 1998-08-28 1998-08-28 Method of manufacturing gas discharge panel

Country Status (1)

Country Link
JP (1) JP3444793B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070471B2 (en) 2000-03-31 2006-07-04 Matsushita Electric Industrial Co. Ltd. Production method for plasma display panel
JP4587523B2 (en) * 2000-05-02 2010-11-24 株式会社アルバック Method for manufacturing plasma display device
JP2003031117A (en) * 2001-07-10 2003-01-31 Nec Corp Manufacturing method and manufacturing device of dielectric layer
DE60329013D1 (en) * 2002-11-22 2009-10-08 Panasonic Corp PLASMA DISPLAY PANEL AND METHOD FOR THE PRODUCTION THEREOF
WO2004095496A1 (en) 2003-04-22 2004-11-04 Matsushita Electric Industrial Co., Ltd. Plasma display panel and method for producing same
JP2005019391A (en) * 2003-05-30 2005-01-20 Pioneer Plasma Display Corp Vapor deposition material, manufacturing method of plasma display panel using the same, and manufacturing method of plasma display device
JP4516457B2 (en) * 2005-03-17 2010-08-04 宇部マテリアルズ株式会社 Method for modifying magnesium oxide thin film
US20090096375A1 (en) * 2005-04-08 2009-04-16 Hideki Yamashita Plasma Display Panel and Method for Manufacturing Same
KR100711512B1 (en) * 2005-11-01 2007-04-27 엘지전자 주식회사 Plasma display panel with protective layer ease of electron emission and manufacturing methods thereof
JP2007335215A (en) * 2006-06-14 2007-12-27 Pioneer Electronic Corp Manufacturing method of plasma display panel
DE112009001885T5 (en) * 2008-08-05 2011-05-19 ULVAC, Inc., Chigasaki-shi Vacuum processing apparatus and vacuum processing method
JP4629800B2 (en) * 2010-05-17 2011-02-09 株式会社アルバック Plasma display device manufacturing equipment
KR102191323B1 (en) * 2019-04-26 2020-12-15 주식회사 테토스 Automated substrate side deposition method

Also Published As

Publication number Publication date
JP2000076989A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
JP3444793B2 (en) Method of manufacturing gas discharge panel
US6329298B1 (en) Apparatus for treating samples
JP3073451B2 (en) Method for manufacturing plasma display panel
JP2002157952A (en) Cold cathode forming method, electron emitting element and application device therefor
JP2007119833A (en) Vapor deposition film formation method, protective film formation method, and device for manufacturing plasma display panel
JP2007077446A (en) Method for producing protective film, and device for producing the same
JP2002117757A (en) Plasma display panel and its manufacturing method
WO2005006380A1 (en) Process for producing plasma display panel and apparatus therefor
JP3906536B2 (en) Method for manufacturing plasma display panel
JP2000357684A (en) Improvement in plasma treatment by decreasing gaseous contamination
JPS6113634A (en) Plasma processor
JP2000057939A (en) Manufacture of plasma display panel
JP4249330B2 (en) Method and apparatus for manufacturing plasma display panel
JPH05343391A (en) Manufacture of semiconductor device
JPH0992133A (en) Manufacture of plasma display panel
JP2002069617A (en) Forming method for preventive film and material for forming this film
JP5124082B2 (en) PDP manufacturing equipment
JP2007317486A (en) Plasma display panel, and method and device for manufacturing plasma display panel
WO2005006381A1 (en) Method for manufacturing plasma display panel
JPH08255562A (en) Formation of protection film for dielectric substance of plasma display panel
JPH11135475A (en) Manufacture of semiconductor device
KR100509522B1 (en) Method of cleaning MgO layer and method of fabricating plasma display panel using the same
JP2002289102A (en) Plasma display
JP2544129B2 (en) Plasma processing device
JP2005209462A (en) Processing method of dielectric protecting film and plasma display panel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130627

LAPS Cancellation because of no payment of annual fees