JP3443900B2 - Separation membrane treatment method - Google Patents

Separation membrane treatment method

Info

Publication number
JP3443900B2
JP3443900B2 JP27428893A JP27428893A JP3443900B2 JP 3443900 B2 JP3443900 B2 JP 3443900B2 JP 27428893 A JP27428893 A JP 27428893A JP 27428893 A JP27428893 A JP 27428893A JP 3443900 B2 JP3443900 B2 JP 3443900B2
Authority
JP
Japan
Prior art keywords
gas
chlorine
membrane
plasma
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27428893A
Other languages
Japanese (ja)
Other versions
JPH07124449A (en
Inventor
俊和 菅沼
孝典 穴澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP27428893A priority Critical patent/JP3443900B2/en
Publication of JPH07124449A publication Critical patent/JPH07124449A/en
Application granted granted Critical
Publication of JP3443900B2 publication Critical patent/JP3443900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は分離膜の分離性能を向上
させるための処理法に関するものである。
TECHNICAL FIELD The present invention relates to a treatment method for improving the separation performance of a separation membrane.

【0002】[0002]

【従来の技術】分離膜には、透過性と分離性の良いこと
が要求されており、特に空気中の酸素と窒素を気体の状
態で分離する高分子膜素材について従来から種々検討さ
れているが、透過性が良いものは分離性が不十分であ
り、分離性の良いものは透過性が不十分であった。そこ
でこれを解決する方法の1つとしてプラズマ処理やプラ
ズマ重合、コーティング等による表面処理の検討がなさ
れてきた。例えば特開平3−284325号には塩素化
低級アルカンのフッ素化合物でのプラズマ処理が、特開
昭62−19206号には塩素ガスでのプラズマ処理が
開示されている。このようにプラズマ処理の場合、従来
使用されてきた処理ガスは、塩素ガスやフッ素含有ガス
であり、本発明の脂肪族炭化水素の2〜4塩素置換体を
処理ガスとして用いたケースは知られていない。
2. Description of the Related Art Separation membranes are required to have good permeability and separability, and various polymer membrane materials for separating oxygen and nitrogen in the air in a gaseous state have been variously studied. However, those having good permeability had insufficient separability, and those having good separability had insufficient permeability. Therefore, as one of the methods for solving this, a surface treatment by plasma treatment, plasma polymerization, coating, or the like has been studied. For example, JP-A-3-284325 discloses plasma treatment with a fluorine compound of chlorinated lower alkane, and JP-A-62-19206 discloses plasma treatment with chlorine gas. As described above, in the case of plasma processing, the processing gas that has been conventionally used is chlorine gas or fluorine-containing gas, and it is known that the aliphatic hydrocarbon of the present invention having 2 to 4 chlorine-substituted compounds is used as the processing gas. Not not.

【0003】[0003]

【本発明が解決しようとする問題点】これまで知られて
いる範囲では高分子膜素材自体やコーティング処理の場
合や、プラズマ処理において塩素ガスやフッ素含有ガス
を用いた場合、酸素透過速度が実用上問題ない程度に高
い分離膜の酸素/窒素の分離係数の値は、せいぜい5程
度であり、いまだ不十分なものであった。また、プラズ
マ重合などの処理では、分離係数がこれより向上するも
のの透過速度が処理前の1/10以下に低下し、実用上
問題があった。そこで本発明の目的は、気体透過性に優
れ、かつ分離性にも優れた膜を得ることにある。
[Problems to be Solved by the Invention] In the range known to date, the oxygen permeation rate is practical when the polymer film material itself or the coating process or when chlorine gas or fluorine-containing gas is used in the plasma process. The value of the oxygen / nitrogen separation coefficient of the separation membrane, which is high enough to cause no problem, is about 5 at most, which is still insufficient. Further, in the processing such as plasma polymerization, the separation coefficient was improved, but the permeation rate was reduced to 1/10 or less of that before the processing, which was a practical problem. Therefore, an object of the present invention is to obtain a membrane having excellent gas permeability and excellent separability.

【0004】[0004]

【問題を解決するための手段】本発明者等は、分離膜
(以下単に膜と称することもある)の分離性を更に高め
るための改質方法について鋭意検討の結果、透過速度の
低下が著しくなく、かつ分離性を向上することができる
新規なプラズマ処理方法を見いだし、本発明に到達し
た。
Means for Solving the Problems The inventors of the present invention have earnestly studied a modification method for further improving the separability of a separation membrane (hereinafter also simply referred to as a membrane), and as a result, the permeation rate was significantly decreased. The present invention has been accomplished by finding a novel plasma processing method that can improve the separability without the need.

【0005】即ち本発明は、4−メチル−ペンテン系重
合体からなる非多孔質緻密層を有する分離膜の緻密層
を、飽和炭化水素の塩素置換体のガス又は蒸気の存在下
でプラズマ処理することを特徴とする分離膜の処理法に
関する。
That is, the present invention relates to a 4-methyl-pentene-based heavy chain.
The present invention relates to a method for treating a separation membrane, which comprises subjecting a dense layer of a separation membrane having a non-porous dense layer made of coalesce to plasma treatment in the presence of a gas or vapor of a chlorine-substituted saturated hydrocarbon.

【0006】本発明に於ける分離膜は、その表面に非多
孔の緻密層を有していればよく、対称膜(均質膜)であ
っても非対称膜(不均質膜)であっても良い。好ましく
は非対称膜である。又、分離膜は緻密層と多孔質支持層
が同一素材であるローブ型非対称膜でも、緻密層と多孔
質支持層が異なる素材からなる複合膜であってもよい。
緻密層の位置は特に制限はなく、例えば多孔質支持体の
表面または内部に非多孔の緻密層が形成された膜であっ
て良く、好ましくは膜表面にあるものが良い。緻密層の
厚さは薄い程、透過速度が大きくなるため性能面からは
好ましいが、強度や耐久性の点からはある程度の厚みが
必要となる。具体的には、0.01μm〜10μmの間
にあるものが好ましい。又膜の形状は任意であり、例え
ば平膜状でも、管状でも、中空糸状でも構わないが、中
空糸状であることが表面積を大きくできモジュールの構
造を単純にできるため好ましい。
The separation membrane in the present invention may have a non-porous dense layer on its surface, and may be a symmetrical membrane (homogeneous membrane) or an asymmetric membrane (heterogeneous membrane). . Asymmetric membranes are preferred. The separation membrane may be a lobe-type asymmetric membrane in which the dense layer and the porous support layer are the same material, or a composite membrane in which the dense layer and the porous support layer are different materials.
The position of the dense layer is not particularly limited, and may be, for example, a film in which a non-porous dense layer is formed on the surface or inside of a porous support, preferably on the surface of the film. The smaller the dense layer, the higher the permeation rate, which is preferable in terms of performance, but a certain thickness is required in terms of strength and durability. Specifically, it is preferably in the range of 0.01 μm to 10 μm. Further, the shape of the membrane is arbitrary, and for example, it may be a flat membrane shape, a tubular shape, or a hollow fiber shape, but the hollow fiber shape is preferable because the surface area can be increased and the module structure can be simplified.

【0007】このような膜は公知の方法、例えば水面展
開法、溶媒キャスト法等の作製方法や、乾式紡糸法、湿
式紡糸法、溶融紡糸法により得ることができる。又これ
らの膜にコ−ティングなどの複合化を行って得る事もで
きる。
Such a membrane can be obtained by a known method such as a water surface development method, a solvent casting method or the like, a dry spinning method, a wet spinning method or a melt spinning method. It is also possible to obtain these films by compounding such as coating.

【0008】緻密層の素材となるポリ4−メチルペンテ
ン−1系重合体とは、単独重合体、又は4−メチルペン
テン−1を50mol%以上含有する共重合体やポリマー
ブレンドを言う。共重合成分としてはオレフィン類が好
ましい。
Poly-4-methylpente as a material for the dense layer
The -1-polymer is a homopolymer or a copolymer or polymer blend containing 50 mol% or more of 4-methylpentene-1. Olefins are preferred as the copolymerization component.

【0009】一般的なプラズマ処理については、「高分
子表面改質」井出文雄著(近代編集社、1977年)の
低温プラズマ処理法や、特開昭62−19206号に詳
しく記載されている。簡略に述べると、電場などで励起
されたプラズマ状態の空間に、処理する分離膜を置き、
そこにプラズマ種(本発明では脂肪族炭化水素の塩素置
換体がこれに相当する。)を導入することで、これを活
性化し、ラジカルやイオンにして分離膜表面を改質する
処理である。
The general plasma treatment is described in detail in "Polymer surface modification" by Fumio Ide (Modern Editing Co., 1977) and the low-temperature plasma treatment method and JP-A-62-19206. Briefly, the separation membrane to be processed is placed in the space of the plasma state excited by the electric field,
By introducing a plasma species (the chlorine-substituted product of an aliphatic hydrocarbon corresponds to this in the present invention) thereto, it is activated, and the surface of the separation membrane is modified by radicals or ions.

【0010】処理に用いるプラズマ種であるガスあるい
は蒸気は、脂肪族炭化水素の2〜4塩素置換体、好まし
くは飽和炭化水素の塩素置換体である。脂肪族飽和炭化
水素の塩素置換体としては、メタン、エタンの塩素置換
体が特に好ましく、例えば、ジクロロメタン、クロロホ
ルム、四塩化炭素、1,1−ジクロロエタン、1,2−ジクロ
ロエタン、1,1,1−トリクロロエタン、1,1,2−トリクロ
ロエタン、1,1,1,2−テトラクロロエタン等が挙げられ
る。また脂肪族不飽和炭化水素の2〜4塩素置換体とし
ては、エチレンの2〜4塩素置換体が好ましく、例えば
1,1−ジクロルエチレン、1,2−ジクロロエチレン、トリ
クロロエチレン、テトラクロロエチレン等が挙げられ
る。本発明に使用する脂肪族炭化水素の2〜4塩素置換
体には、さらに酸素、臭素等の他の原子が入っているこ
とも可能であるが、塩素のみの置換体が好ましい。
The gas or vapor that is the plasma species used in the treatment is a 2-4 chlorine-substituted aliphatic hydrocarbon, preferably a saturated hydrocarbon-substituted chlorine. As a chlorine-substituted product of an aliphatic saturated hydrocarbon, methane, a chlorine-substituted product of ethane is particularly preferable, for example, dichloromethane, chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1. -Trichloroethane, 1,1,2-trichloroethane, 1,1,1,2-tetrachloroethane and the like can be mentioned. Further, as the 2-4 chlorine-substituted product of the aliphatic unsaturated hydrocarbon, a 2-4 chlorine-substituted product of ethylene is preferable, and for example,
1,1-dichloroethylene, 1,2-dichloroethylene, trichloroethylene, tetrachloroethylene and the like can be mentioned. The 2 to 4 chlorine-substituted product of the aliphatic hydrocarbon used in the present invention may further contain other atoms such as oxygen and bromine, but the chlorine-only product is preferred.

【0011】プラズマ種として使用するガス又は蒸気
は、キャリアガス(不活性ガス、酸素、フロン、等)で
希釈しても構わない。或いは、2種類以上のガス又は蒸
気を混合させて用いても構わない。このようなガス又は
蒸気をプラズマ種として使用することにより、酸素透過
速度は実用上問題ない程度で、著しい低下を伴う事無
く、分離係数を向上させる事が出来る。
The gas or vapor used as the plasma species may be diluted with a carrier gas (inert gas, oxygen, chlorofluorocarbon, etc.). Alternatively, two or more kinds of gas or vapor may be mixed and used. By using such a gas or vapor as the plasma species, the oxygen permeation rate can be improved to a practical level without causing a significant decrease and the separation coefficient can be improved.

【0012】このプラズマ処理に用いる装置は公知の装
置でよく、電場を作用させる方式としては、内部電極方
式、外部電極(無電極)方式のいずれの方式でもよい。
内部電極法では直流、交流、高周波の電場を、外部電極
法では高周波の電場を、それぞれ連続して又はパルス状
にして作用させることによりプラズマを発生させる。プ
ラズマ発生様式はグロー放電、コロナ放電、火花放電等
各種様式が適用できる。放電出力、真空度、ガス流量等
の処理条件は、処理する分離膜および処理に用いるガス
又は蒸気によって適当な条件範囲を選ぶことができる。
The apparatus used for this plasma treatment may be a known apparatus, and the method of applying an electric field may be either an internal electrode method or an external electrode (no electrode) method.
Plasma is generated by applying a direct current, an alternating current, and a high frequency electric field in the internal electrode method and by operating a high frequency electric field in the external electrode method continuously or in a pulsed manner. Various modes such as glow discharge, corona discharge, and spark discharge can be applied to the plasma generation mode. Regarding the processing conditions such as discharge output, degree of vacuum, gas flow rate, etc., an appropriate range of conditions can be selected depending on the separation membrane to be processed and the gas or vapor used for the processing.

【0013】プラズマ処理の真空度は、0.01〜10
トール程度の範囲で、好ましくは0.05〜1トールの
範囲であり、使用するガス又は蒸気によって適宜決定で
きる。放電出力は、1〜500W程度、好ましくは10
〜100Wで行う。出力は大きすぎると試料(膜)自体
にダメージをもたらすおそれがあり、小さすぎるとプラ
ズマ状態を十分に保てない。
The degree of vacuum in the plasma treatment is 0.01 to 10
The range is about torr, preferably 0.05 to 1 torr, and can be appropriately determined depending on the gas or vapor used. The discharge output is about 1 to 500 W, preferably 10
~ 100W. If the output is too high, the sample (film) itself may be damaged, and if it is too low, the plasma state cannot be sufficiently maintained.

【0014】処理時間は、短ければ試料に与えるダメー
ジが少なくてすむが、ある程度以上ないと処理効果が現
れないので、1秒から30分、好ましくは10秒から1
0分程度がよい。
If the treatment time is short, the damage to the sample is small, but the treatment effect does not appear unless it is above a certain level, so 1 second to 30 minutes, preferably 10 seconds to 1
About 0 minutes is good.

【0015】プラズマ処理に際して、処理される分離膜
はその緻密層が処理されればよい。従って、例えば分離
膜を作成後、膜の一定量を集束した状態でプラズマ処理
する方法、あるいは分離膜を作成する工程中で連続的に
移動する膜にプラズマ処理する方法などの方法を用いる
ことができる。
In the plasma treatment, the dense layer of the separation membrane to be treated may be treated. Therefore, for example, it is possible to use a method such as a method of performing plasma treatment in a state where a fixed amount of the membrane is focused after forming the separation membrane, or a method of performing plasma treatment on the membrane that continuously moves in the step of forming the separation membrane. it can.

【0016】本発明の処理は、気体分離膜、液体分離
膜、気液接触用隔膜等、各種分離膜に有効であるが、特
に気体分離膜が好ましい。本発明により得られる膜は例
えば、空気からの酸素富化空気や窒素富化空気の製造、
炭酸ガスの分離回収、水素ガスの回収、液体に溶解して
いる気体の脱気、特に選択的脱気、液体への気体の溶
解、特に選択的溶解、パーベーパレション等に使用でき
る。
The treatment of the present invention is effective for various separation membranes such as gas separation membranes, liquid separation membranes, gas-liquid contacting separation membranes, etc., but gas separation membranes are particularly preferable. The membrane obtained by the present invention is, for example, the production of oxygen-enriched air or nitrogen-enriched air from air,
It can be used for separation and recovery of carbon dioxide gas, recovery of hydrogen gas, degassing of gas dissolved in liquid, particularly selective degassing, dissolution of gas in liquid, particularly selective dissolution, pervaporation and the like.

【0017】プラズマ処理を行った分離膜の評価は、気
体透過速度、分離係数を測定することで行った。ここで
言う気体透過速度の単位は、cm3/cm2・sec・c
mHgで、気体透過係数に膜の厚さを加味した実用上の
指標である。また、分離係数は酸素透過速度を窒素透過
速度で除した値である。気体透過速度、及び分離係数
は、ASTMD1434(圧力法)に基づき測定した。
The plasma-treated separation membrane was evaluated by measuring the gas permeation rate and the separation coefficient. The unit of gas permeation rate here is cm 3 / cm 2 · sec · c
In mHg, it is a practical index in which the film thickness is added to the gas permeability coefficient. The separation coefficient is a value obtained by dividing the oxygen permeation rate by the nitrogen permeation rate. The gas permeation rate and the separation coefficient were measured based on ASTM D1434 (pressure method).

【0018】[0018]

【実施例】以下に実施例を挙げて説明するが、本発明は
これらの例に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0019】<実施例1>オレフィン系重合体としてポ
リ4−メチルペンテン−1を用いて、溶融延伸法にて外
径約200μm、肉厚30μmの中空糸不均質膜を作成
した。この不均質膜は、走差型電子顕微鏡(SEM)に
よれば、外表面に非多孔質緻密層を有していた。この不
均質膜の酸素透過速度(QO2)、及び酸素と窒素の分離
係数(QO2/QN2)はそれぞれ1.2×10-5cm3/cm2
・sec・cmHg、3.8であった。これを長さ約300m
mにし、60本の糸束とし、束の両端を固定した。プラ
ズマ処理を行う真空容器には、直径100mm、長さ5
00mmの石英製の容器を用いた。その周囲にプラズマ
を発生させる高周波コイルが設置されている。試料を出
し入れする蓋が容器に設けられ、真空度を保つためOリ
ングにより密閉できるようにされている。蓋をあけて試
料の糸束を真空容器中に入れ、真空容器内を真空ポンプ
によって0.001トールになるまで排気した。その
後、真空ポンプを作動させたまま、ガス導入用の配管よ
りプラズマ種となる四塩化炭素を導入し、管内の真空度
を0.1ト−ルになるように調整した。真空度が安定し
たら高周波電源、及びマッチングボックスを作動させ
て、コイルに高周波電圧を印加し、容器内にプラズマを
発生させた。出力50Wでプラズマ放電を1分行った。
処理した不均質膜の酸素透過速度、および酸素と窒素の
分離係数を測定した。その結果を表1に示す。
Example 1 Using poly-4-methylpentene-1 as an olefin polymer, a hollow fiber heterogeneous membrane having an outer diameter of about 200 μm and a wall thickness of 30 μm was prepared by a melt drawing method. According to a scanning electron microscope (SEM), this heterogeneous film had a non-porous dense layer on the outer surface. The oxygen permeation rate (Q O2 ) and the separation coefficient of oxygen and nitrogen (Q O2 / Q N2 ) of this heterogeneous membrane were 1.2 × 10 −5 cm 3 / cm 2 respectively.
-Sec · cmHg was 3.8. This is about 300m long
The yarn length was set to m, a yarn bundle of 60 yarns was fixed, and both ends of the yarn bundle were fixed. The vacuum container for plasma processing has a diameter of 100 mm and a length of 5
A 00 mm quartz container was used. A high-frequency coil that generates plasma is installed around it. The container is provided with a lid for loading and unloading the sample and can be closed by an O-ring to maintain the degree of vacuum. The lid was opened, the yarn bundle of the sample was placed in a vacuum vessel, and the inside of the vacuum vessel was evacuated by a vacuum pump until the pressure reached 0.001 torr. Then, while operating the vacuum pump, carbon tetrachloride serving as a plasma species was introduced through a gas introduction pipe, and the degree of vacuum in the pipe was adjusted to 0.1 torr. When the degree of vacuum became stable, a high frequency power supply and a matching box were operated, a high frequency voltage was applied to the coil, and plasma was generated in the container. Plasma discharge was performed at an output of 50 W for 1 minute.
The oxygen permeation rate of the treated heterogeneous membrane and the separation factor of oxygen and nitrogen were measured. The results are shown in Table 1.

【0020】<実施例2>プラズマ種として、クロロホ
ルムを用いること以外は、実施例1と同様の処理を行っ
た。その結果を表1に示す。
Example 2 The same process as in Example 1 was performed except that chloroform was used as the plasma species. The results are shown in Table 1.

【0021】<実施例3>プラズマ種として、ジクロロ
メタンを用いること以外は、実施例1と同様の処理を行
った。その結果を表1に示す。
Example 3 The same process as in Example 1 was carried out except that dichloromethane was used as the plasma species. The results are shown in Table 1.

【0022】<実施例4>プラズマ種として、トリクロ
ロエチレンを用いる以外は、実施例1と同様の処理を行
った。その結果を表1に示す。
<Example 4> The same treatment as in Example 1 was performed except that trichlorethylene was used as the plasma species. The results are shown in Table 1.

【0023】<実施例5> プラズマ種として、1,1,1−トリクロロエタンを用いる
以外は、実施例1と同様の処理を行った。その結果を表
1に示す。
Example 5 The same process as in Example 1 was carried out except that 1,1,1-trichloroethane was used as the plasma species. The results are shown in Table 1.

【0024】<比較例1> ポリジメチルシロキサンからなる中空糸(外径320μ
m、肉厚80μm)を分離膜として用いること以外は、
実施例1と同様の処理を行った。なお、処理前の特性
は、酸素透過速度が、0.5×10−5cm/cm・se
c・cmHg、分離係数が2であった。その結果を表1に示
す。
Comparative Example 1 Hollow fiber made of polydimethylsiloxane (outer diameter 320 μm)
m, wall thickness 80 μm) except that a separation membrane is used.
The same process as in Example 1 was performed. The characteristic before the treatment is that the oxygen permeation rate is 0.5 × 10 −5 cm 3 / cm 2 · se.
c · cmHg, separation factor was 2. The results are shown in Table 1.

【0025】<比較例1> ポリ−1−トリメチルシリル−1−プロピンの粉末をト
ルエンに溶解させ、常法によりフィルム(厚さ30μ
m)を得た。これを分離膜として用い実施例1と同様の
処理を行った。なお、処理前の特性は、フィルム自体に
経時変化があり、時間の経過により酸素透過速度が低下
するが、フィルム作成より1昼夜経過後で酸素透過速度
が20×10−5cm/cm・sec・cmHg、分離係数が
1.4であった。その結果を表1に示す。
Comparative Example 1 Poly-1-trimethylsilyl-1-propyne powder was dissolved in toluene and a film (thickness 30 μm was prepared by a conventional method.
m) was obtained. Using this as a separation membrane, the same treatment as in Example 1 was performed. The characteristic of the pre-treatment, there are changes over time in the film itself, but decreases the oxygen transmission rate over time, the oxygen permeation rate 20 × after one day elapsed from the film created 10 -5 cm 3 / cm 2 -Sec-cmHg, separation factor was 1.4. The results are shown in Table 1.

【0026】[0026]

【表1】 (*1)単位 ×10−5cm/cm・sec・cmHg[Table 1] (* 1) Unit x 10 -5 cm 3 / cm 2 · sec · cmHg

【0027】<比較例> プラズマ種として、塩素ガスを用いること以外は、実施
例1と同様の処理を行った。その結果を表2に示す。
<Comparative Example 3 > The same treatment as in Example 1 was performed except that chlorine gas was used as the plasma species. The results are shown in Table 2.

【0028】<比較例> プラズマ種として、四弗化炭素を用いること以外は、実
施例1と同様の処理を行った。その結果を表2に示す。
Comparative Example 4 The same treatment as in Example 1 was carried out except that carbon tetrafluoride was used as the plasma species. The results are shown in Table 2.

【0029】[0029]

【表2】 (*1)単位 ×10−5cm/cm・sec・cmHg[Table 2] (* 1) Unit x 10 -5 cm 3 / cm 2 · sec · cmHg

【0030】[0030]

【発明の効果】本発明の処理法を用いれば、気体透過速
度の著しい低下を伴うことなく分離性能を向上させるこ
とができる。特に酸素と窒素の透過係数比が優れた気体
分離膜が得られる。
By using the treatment method of the present invention, the separation performance can be improved without significantly reducing the gas permeation rate. In particular, a gas separation membrane having an excellent oxygen and nitrogen permeability coefficient ratio can be obtained.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01D 67/00 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) B01D 67/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 4−メチル−ペンテン系重合体からなる
非多孔質緻密層を有する分離膜の緻密層を、脂肪族炭化
水素の2〜4塩素置換体のガス又は蒸気の存在下でプラ
ズマ処理することを特徴とする分離膜の処理法。
1. A dense layer of a separation membrane having a non-porous dense layer made of a 4-methyl-pentene polymer is provided with a gas or vapor of 2 to 4 chlorine-substituted aliphatic hydrocarbon. A method for treating a separation membrane, which comprises performing a plasma treatment below.
【請求項2】 脂肪族炭化水素の2〜4塩素置換体が飽
和炭化水素の塩素置換体である請求項1記載の処理法。
2. The treatment method according to claim 1, wherein the 2 to 4 chlorine-substituted product of the aliphatic hydrocarbon is a chlorine-substituted product of the saturated hydrocarbon.
【請求項3】 飽和炭化水素の塩素置換体がメタン又は
エタンの塩素置換体である請求項2記載の処理法。
3. The method according to claim 2, wherein the chlorine-substituted product of saturated hydrocarbon is a chlorine-substituted product of methane or ethane.
【請求項4】 分離膜が、中空糸膜である請求項1〜
のいずれか1つに記載の処理法
4. A separation membrane according to claim 1-3 is a hollow fiber membrane
The processing method according to any one of 1.
JP27428893A 1993-11-02 1993-11-02 Separation membrane treatment method Expired - Fee Related JP3443900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27428893A JP3443900B2 (en) 1993-11-02 1993-11-02 Separation membrane treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27428893A JP3443900B2 (en) 1993-11-02 1993-11-02 Separation membrane treatment method

Publications (2)

Publication Number Publication Date
JPH07124449A JPH07124449A (en) 1995-05-16
JP3443900B2 true JP3443900B2 (en) 2003-09-08

Family

ID=17539565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27428893A Expired - Fee Related JP3443900B2 (en) 1993-11-02 1993-11-02 Separation membrane treatment method

Country Status (1)

Country Link
JP (1) JP3443900B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015095034A1 (en) 2013-12-16 2015-06-25 Sabic Global Technologies B.V. Uv and thermally treated polymeric membranes
KR20170005901A (en) 2013-12-16 2017-01-16 사빅 글로벌 테크놀러지스 비.브이. Treated mixed matrix polymeric membranes
EP3057691A4 (en) * 2013-12-16 2016-08-31 Sabic Global Technologies Bv Plasma-treated polymeric membranes

Also Published As

Publication number Publication date
JPH07124449A (en) 1995-05-16

Similar Documents

Publication Publication Date Title
CA1248492A (en) Ultraviolet light assisted fluorination of polymer surfaces
Occhiello et al. Hydrophobic recovery of oxygen-plasma-treated polystyrene
JP3405808B2 (en) Method of forming deposits of silicon oxide and apparatus used therefor
JPH0748715A (en) Method for plasma polymerization and surface modification of inside hollow micro-base material and article manufactured by this method
JPH01100265A (en) Apparatus suitable for plasma surface treatment and production of film layer
EP0526203B1 (en) Separation membrane
JP3443900B2 (en) Separation membrane treatment method
Kiplinger et al. Gas transport in partially fluorinated low‐density polyethylene
Ruaan et al. Oxygen/nitrogen separation by polybutadiene/polycarbonate composite membranes modified by ethylenediamine plasma
US4696686A (en) Oxygen separating member and process for producing the same
JP3455611B2 (en) Method and apparatus for modifying porous body
Inagaki et al. Gas separation membranes made by plasma polymerization of perfluorobenzene/cf4 and pentafluorobenzene/cf4 mixtures
US4607088A (en) Shaped body for gas separation
JP2007327047A (en) Surface fluorination of plastic material
JPH05329342A (en) Production of polymeric separation membrane
JP4430209B2 (en) Plastic tube manufacturing apparatus having inner surface processing function, and inner surface processing plastic tube manufacturing method using the apparatus
JPS6250174B2 (en)
JP3093072B2 (en) Surface modification method
EP0334453A2 (en) A process for preparing non-porous, selective membrane layers
Shao et al. Effect of Plasma Treatment on the Gas Permeability of Poly (4‐methyl‐2‐pentyne) Membranes
Inagaki et al. Gas separation membrane made by plasma polymerization of 1, 3‐ditrifluoromethylbenzene/CF4 mixture
WO2005113654A2 (en) Method for preparing a hollow element of a fuel system
JPH07236822A (en) Gas-separation membrane using surface modified polyimide resin, and its production
JPS62116776A (en) Production of thin film
Inagaki Gas selective plasma polymerization membrane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees