JP3439931B2 - Spray pattern measuring device - Google Patents

Spray pattern measuring device

Info

Publication number
JP3439931B2
JP3439931B2 JP26796396A JP26796396A JP3439931B2 JP 3439931 B2 JP3439931 B2 JP 3439931B2 JP 26796396 A JP26796396 A JP 26796396A JP 26796396 A JP26796396 A JP 26796396A JP 3439931 B2 JP3439931 B2 JP 3439931B2
Authority
JP
Japan
Prior art keywords
spray
pressure
measuring
plane
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26796396A
Other languages
Japanese (ja)
Other versions
JPH1090124A (en
Inventor
昭則 斎藤
厚志 塚田
啓壮 武田
穣 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP26796396A priority Critical patent/JP3439931B2/en
Publication of JPH1090124A publication Critical patent/JPH1090124A/en
Application granted granted Critical
Publication of JP3439931B2 publication Critical patent/JP3439931B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は,燃料噴射弁などの噴霧の方向や
広がり等,噴霧のパターンを迅速かつ高精度に測定する
ことのできる噴霧測定装置に関する。
TECHNICAL FIELD The present invention relates to a spray measuring device capable of quickly and highly accurately measuring a spray pattern such as a spray direction and spread of a fuel injection valve.

【0002】燃料噴射弁の噴射特性は,自動車エンジン
の排気浄化性能や燃費性能に密接な関係を有している。
例えば,吸気2弁方式のエンジンでは,燃料を噴射する
ターゲットである吸気ポートの径が小さく,噴霧の方向
や広がり角度を精度良く制御しないと,燃料の一部が壁
面に付着しシリンダ内に吸入されないという不具合を生
ずる。そのため,上記燃料噴射弁の噴射特性,特に噴霧
の方向,広がり角度,噴霧粒の大きさ等を簡便かつ高精
度に測定することは極めて重要である。この中で噴霧粒
の測定は,レーザー光を用いる等の方法によりかなり高
精度の測定が可能となっている。
The injection characteristic of a fuel injection valve is closely related to the exhaust gas purification performance and fuel consumption performance of an automobile engine.
For example, in an engine with two intake valves, the diameter of the intake port, which is the target for injecting fuel, is small, and unless the direction and spread angle of the spray are controlled accurately, part of the fuel adheres to the wall surface and is sucked into the cylinder. The problem that it is not done occurs. Therefore, it is extremely important to measure the injection characteristics of the fuel injection valve, particularly the direction of spray, the spread angle, the size of spray particles, etc., simply and with high accuracy. Among them, the spray particles can be measured with a fairly high accuracy by using a method such as laser light.

【0003】一方,噴霧の方向(噴霧中心の角度)や広
がりの角度は,例えば噴霧を写真撮影しこの写真を基に
して測定されている。また,他の方法としては,レーザ
ー光を用いてレーザー光減衰CT(Computed
Tomography)を形成する方法が知られてい
る。即ち,噴霧にレーザー光を照射し,噴霧粒の散乱に
より減衰するレーザー光の光量や強度を光センサーやテ
レビカメラで測定し,この測定データに対して演算処理
を行い噴霧の断面の2次元映像を作成する。
On the other hand, the direction of spray (angle of spray center) and the angle of spread are measured, for example, by taking a photograph of the spray and based on this photograph. As another method, a laser beam attenuation CT (Computed) is performed by using a laser beam.
Methods of forming tomographies are known. That is, a laser beam is applied to the spray, and the light intensity and intensity of the laser beam that is attenuated by the scattering of spray particles are measured by an optical sensor or a TV camera, and arithmetic processing is performed on the measured data to obtain a two-dimensional image of the cross section of the spray. To create.

【0004】[0004]

【解決しようとする課題】しかしながら,噴霧の方向角
度や広がり角度を写真撮影により検知する方法は,測定
精度に問題があり,また撮影に時間がかかり迅速性に欠
けるという問題がある。即ち,この方法では,噴霧を均
一に照明することが困難であり,映像にムラが発生し,
また噴霧の境界が不鮮明になりがちである。そのため,
噴霧の中心の基準線に対する角度や噴霧の広がり角度も
不正確になる。
[Problems to be Solved] However, the method of detecting the direction angle and the spread angle of the spray by photographing has a problem in measurement accuracy, and also has a problem that photographing is time-consuming and lacking in speediness. That is, with this method, it is difficult to illuminate the spray evenly, and the image becomes uneven.
Moreover, the boundaries of the spray tend to be unclear. for that reason,
The angle of the center of the spray with respect to the reference line and the spread angle of the spray will also be inaccurate.

【0005】また,レーザー光減衰CTを用いる第2の
方法は,噴霧に対してレーザー光を多方向から照射し,
多くのデータを得る必要があるから測定に時間がかか
り,また演算処理にも時間を要し,迅速性に欠ける。ま
た,高性能の処理装置も必要となる。本発明は,かかる
従来の問題点に鑑みてなされたものであり,噴霧のパタ
ーンを高精度かつ迅速に測定することのできる噴霧測定
装置を提供しようとするものである。
The second method using the laser light attenuation CT is to irradiate the spray with laser light from multiple directions,
Since a lot of data needs to be obtained, it takes a long time for measurement, and it also takes a long time for calculation processing, which is not quick. High-performance processing equipment is also required. The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a spray measuring device capable of measuring a spray pattern with high accuracy and speed.

【0006】[0006]

【課題の解決手段】本願の第1発明は,噴霧の噴射角度
や形状等の噴霧パターンを測定する噴霧測定装置であっ
て,噴霧を噴射する被検対象物を保持する保持部材と,
噴霧粒の運動量を圧力として検知し,小面積の圧力を測
定する圧力センサーを有する圧力検知手段と,上記被検
対象物と圧力検知手段の圧力センサーとの間の位置関係
を設定し,当該位置関係を3次元の方向に自在に変更可
能な3次元移動手段を備える位置決め手段と,上記圧力
検知手段の出力信号と上記位置決め手段で設定された位
置関係データとに基づき噴霧が噴射される方向に対して
略垂直で所定の離隔距離にある面内における噴霧の運動
量又は運動量による圧力の分布を演算し編集する演算手
段と,上記圧力センサーを2次元方向に移動させ,上記
演算手段が編集した上記面内における運動量又は圧力の
分布を出力する出力手段とを有し,上記面内における圧
力分布を測定することを特徴とする噴霧測定装置にあ
る。
A first invention of the present application is a spray measuring device for measuring a spray pattern such as a spray angle and a shape of a spray, and a holding member for holding an object to be inspected for spraying the spray.
The momentum of the spray particles is detected as pressure, and the pressure in a small area is measured.
A pressure detecting means having a pressure sensor for the constant, to set the positional relationship between the pressure sensor of the object to be examined and the pressure sensing means, freely changeable in three-dimensional directions the positional relationship
With respect to the direction in which the spray is ejected , based on the positioning means provided with an effective three-dimensional moving means, and the output signal of the pressure detecting means and the positional relationship data set by the positioning means
Computation means for computing and editing the momentum of the spray or the distribution of pressure due to the momentum in a plane that is substantially vertical and at a predetermined separation distance, and the in-plane edited by the computation means by moving the pressure sensor in a two-dimensional direction . And output means for outputting the distribution of momentum or pressure in
A spray measuring device characterized by measuring force distribution .

【0007】第1発明の噴霧測定装置において最も注目
すべきことは,噴霧粒の運動量を圧力として検知する圧
力検知手段を備えると共に上記被検対象物と圧力検知手
段との間の位置関係を設定する位置決め手段を設けたこ
とである。そして,その演算手段は,上記圧力検知手段
の出力信号と上記位置決め手段で設定された位置データ
とに基づき噴霧が噴射される方向に対して略垂直で所定
の離隔距離にある面内における噴霧の運動量又は運動量
による圧力の分布を演算,編集し,出力手段を介してそ
の結果を出力する。
What is most noticeable in the spray measuring apparatus of the first invention is that it is equipped with a pressure detecting means for detecting the momentum of the spray particles as a pressure and the positional relationship between the object to be inspected and the pressure detecting means is set. The positioning means is provided. The calculating means is substantially perpendicular to the spraying direction based on the output signal of the pressure detecting means and the position data set by the positioning means.
The momentum of the spray or the distribution of the pressure due to the momentum in the plane at the separation distance is calculated and edited, and the result is output through the output means.

【0008】一般に噴霧は,運動量を持った粒子の集合
と考えることができる。そして,粒子の集合が保持する
運動量は,噴霧に対し非平行な面に衝突することにより
圧力に変換されるから,所定の面における圧力を測定す
ることにより,噴霧が噴射される方向に対して略垂直で
所定の離隔距離にある面内における運動量の分布を知る
ことができる。そして,その結果は,短時間の内に殆ど
リアルタイムに得ることが出来る。また,圧力センサー
も高精度で信頼性の高いものが容易に得られるから,測
定精度も高い。
Generally, atomization can be considered as a set of particles having momentum. Then, the momentum held by the aggregate of particles is converted into pressure by colliding with a surface that is not parallel to the spray, and therefore, by measuring the pressure on a predetermined surface, it is possible to measure the direction of the spray . Almost vertical
It is possible to know the distribution of momentum within a plane at a predetermined separation distance . And the result can be obtained almost in real time in a short time. In addition, a pressure sensor with high accuracy and high reliability can be easily obtained, so the measurement accuracy is also high.

【0009】そして,その分布の態様により,例えば圧
力が急減し零近傍となる境界的な領域により,噴霧の範
囲(広がり角度)を知ることができ,また圧力分布の中
心的な位置(最も大きい点)から噴霧の方向角度を知る
ことができる。従って,演算手段の編集結果から,噴霧
の方向や広がり角度等の噴霧パターンを得ることができ
る。なお,最終結果やデータを表示する上記出力手段に
は,印刷装置や表示装置等があり,音声による警報手段
を単独であるいは上記装置と併用して用いることもでき
る。
Further, the range of the spray (spread angle) can be known from the mode of the distribution, for example, from the boundary region where the pressure sharply decreases and becomes close to zero, and the central position of the pressure distribution (the largest position) The direction angle of the spray can be known from the point). Therefore, the spray pattern such as the spray direction and spread angle can be obtained from the editing result of the calculation means. The output means for displaying the final result and the data include a printing device, a display device, etc., and the voice alarm means can be used alone or in combination with the above device.

【0010】上記位置決め手段は上記圧力センサーと被
検対象物との位置関係を3次元の方向に自在に変更する
ことの出来る3次元移動手段として構成する。そして,
上記移動手段を用いて圧力センサーを噴霧に垂直で所定
の離隔距離にある面内で移動させ,面内の各点(X,
Y)における圧力(運動量)P(X,Y)を測定する。
The positioning means is constructed as a three-dimensional moving means capable of freely changing the positional relationship between the pressure sensor and the object to be inspected in a three-dimensional direction. And
Using the above moving means, the pressure sensor is moved in a plane perpendicular to the spray and at a predetermined separation distance, and each point (X,
The pressure (momentum) P (X, Y) at Y) is measured.

【0011】上記測定結果P(X,Y)は,座標(X,
Y)と圧力Pとの関係を表す表として印字してもよく,
また圧力Pと横座標X又は縦座標Yとの関係を表すグラ
フ(図2〜図4参照)としてグラフィック表示すること
ができ,或いは,Pの大小を輝度(白黒)変化または色
彩に変換して2次元の白黒画像(図5参照)又はカラー
画像として表示することができる。
The above measurement result P (X, Y) is the coordinate (X,
It may be printed as a table showing the relationship between Y) and the pressure P,
Further, it can be graphically displayed as a graph (see FIGS. 2 to 4) showing the relationship between the pressure P and the abscissa X or the ordinate Y, or by converting the magnitude of P into a luminance (black and white) change or color. It can be displayed as a two-dimensional black and white image (see FIG. 5) or as a color image.

【0012】また,請求項記載のように,圧力検知手
段を,小面積の圧力を測定する圧力センサーを直線状に
配置した1次元センサーアレイとして構成し,位置決め
手段を,上記センサーアレイと被検対象物との位置関係
を噴霧の噴射される方向及び噴霧と垂直な方向の2方向
に自在に変更することの出来る2次元移動手段として構
成する。そして,噴霧が噴射される方向に略垂直で所定
の離隔距離にある面内において,上記圧力センサーを移
動させ上記面内における圧力分布を測定する。
According to a second aspect of the present invention, the pressure detecting means is constructed as a one-dimensional sensor array in which pressure sensors for measuring a pressure in a small area are linearly arranged, and the positioning means is provided with the sensor array and the sensor array. The two-dimensional moving means is capable of freely changing the positional relationship with the object to be inspected, that is, the direction in which the spray is ejected and the direction perpendicular to the spray. Then, the pressure sensor is moved in a plane substantially perpendicular to the direction in which the spray is ejected and at a predetermined separation distance, and the pressure distribution in the plane is measured.

【0013】また,請求項記載のように,圧力検知手
段を,小面積の圧力を測定する圧力センサーを面状に配
置した2次元センサーアレイとして構成し,位置決め手
段を上記センサーアレイを被検対象物に近接または離隔
させる1次元移動手段として構成する。そして,被検対
象物に対して上記センサーアレイを所定の距離に設置
し,噴霧が噴射される方向に対して略垂直な面内におけ
る圧力分布を測定する。
According to a third aspect of the present invention, the pressure detecting means is configured as a two-dimensional sensor array in which pressure sensors for measuring pressure in a small area are arranged in a plane, and the positioning means is used to detect the sensor array. It is configured as a one-dimensional moving means that moves close to or away from an object. Then, the sensor array is installed at a predetermined distance with respect to the object to be inspected, and the pressure distribution in a plane substantially perpendicular to the spraying direction is measured.

【0014】上記のように,本発明によれば,噴霧のパ
ターンを高精度かつ迅速に測定することのできる噴霧測
定装置を得ることができる。そして,上記噴霧測定装置
は,例えば,内燃機関の燃料噴射弁の検査装置に用いる
ことができる。即ち,燃料噴射弁の噴射パターンを計測
し,弁の良否を検査することができる。
As described above, according to the present invention, it is possible to obtain the spray measuring device capable of measuring the spray pattern with high accuracy and speed. The spray measuring device can be used, for example, in a device for inspecting a fuel injection valve of an internal combustion engine. That is, it is possible to measure the injection pattern of the fuel injection valve and inspect the quality of the valve.

【0015】[0015]

【発明の実施の形態】実施形態例1 図1に示すように,本例は,噴霧85の噴射角度θや形
状等の噴霧パターンを測定する噴霧測定装置1であり,
噴霧85を噴射する被検対象物としての燃料噴射弁81
を保持する保持手段11と,噴霧粒の運動量を圧力とし
て検知する圧力センサー21と,被検対象物と圧力セン
サー21との間の位置関係を設定する位置決め手段31
と,圧力センサー21の出力信号と位置決め手段31で
設定された位置関係データとに基づき噴霧85が噴射さ
れる方向に対して略垂直で所定の離隔距離にある面内
おける噴霧85の運動量による圧力の分布を演算し編集
する演算手段41と,上記圧力センサーを2次元方向に
移動させ,演算手段41が編集した上記面内における
次元方向の圧力の分布を出力する出力手段45とを有し
ている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1 As shown in FIG. 1, this embodiment is a spray measuring apparatus 1 for measuring a spray pattern such as a spray angle θ of a spray 85 and a shape,
Fuel injection valve 81 as an object to be inspected for injecting spray 85
Holding means 11 for holding the pressure sensor 21, a pressure sensor 21 for detecting the momentum of the spray particles as pressure, and a positioning means 31 for setting the positional relationship between the object to be inspected and the pressure sensor 21.
And the spray 85 is sprayed based on the output signal of the pressure sensor 21 and the positional relationship data set by the positioning means 31.
The pressure sensor in a two-dimensional direction, and a calculation means 41 for calculating and editing the distribution of the pressure due to the momentum of the spray 85 in a plane substantially perpendicular to the direction in which the pressure sensor is separated.
1 in the plane moved and moved by the calculation means 41
The output means 45 outputs the distribution of the pressure in the dimension.

【0016】本例の圧力検知手段は小面積の圧力を測定
する圧力センサー21であり,位置決め手段31は圧力
センサー21と,燃料噴霧弁81との位置関係を横
(X),縦(Y),高さ(Z)の3方向に自在に変更す
ることの出来る3次元移動手段を備えている。そして,
噴霧85が噴射される方向に対して略垂直で所定の離隔
距離にある(X,Y)座標面内において,上記圧力セン
サー21を2方向に移動させ上記面内における圧力分布
を測定する。
The pressure detecting means of this example is a pressure sensor 21 for measuring the pressure in a small area, and the positioning means 31 has a positional relationship between the pressure sensor 21 and the fuel spray valve 81 in the horizontal (X) and vertical (Y) directions. , Three-dimensional moving means that can be freely changed in three directions of height (Z). And
The pressure sensor 21 is moved in two directions within a (X, Y) coordinate plane that is substantially perpendicular to the direction in which the spray 85 is jetted and at a predetermined separation distance, and the pressure distribution in the plane is measured.

【0017】以下それぞれについて説明を補足する。噴
霧弁81は,燃料タンク82から燃料80が供給され,
駆動回路811,812により駆動される。同図におい
て,符号821は燃料タンクの圧力メーターである。圧
力センサー21は,位置決め手段31のアーム32に固
定されており,アーム32は(X,Y,Z)の3方向に
自在に移動することができる。
A supplementary explanation will be given below for each of them. The fuel 80 is supplied from the fuel tank 82 to the spray valve 81,
It is driven by drive circuits 811 and 812. In the figure, reference numeral 821 is a fuel tank pressure meter. The pressure sensor 21 is fixed to the arm 32 of the positioning means 31, and the arm 32 can freely move in three directions (X, Y, Z).

【0018】即ち,アーム32は,支柱311に沿って
昇降可能であり,支柱311はハンドル312,313
を操作することにより,前後左右に移動する。そして,
圧力センサー21の出力の電気信号は,増幅器22で増
幅され演算手段41に入力される。同図において,符号
12は,噴射された燃料80を保持する容器である。
That is, the arm 32 can be moved up and down along the support column 311 and the support column 311 is handled by the handles 312 and 313.
Operate to move back and forth and left and right. And
The electric signal output from the pressure sensor 21 is amplified by the amplifier 22 and input to the arithmetic means 41. In the figure, reference numeral 12 is a container for holding the injected fuel 80.

【0019】燃料噴霧弁81から燃料80が噴射される
と,燃料80は微細な粒子からなる噴霧85となり飛散
する。噴射された燃料粒子は,通常その直径が数十μm
であり,その数は数億個を超える。噴霧85の粒子は,
噴射による運動エネルギーを保って噴射された方向に進
行する。そして,噴霧粒子の直径をd,進行速度をv,
燃料80の密度をρとすると,噴霧粒子の運動量は(π
3 /6)×ρ×vとなる。
When the fuel 80 is injected from the fuel spray valve 81, the fuel 80 becomes a spray 85 composed of fine particles and scatters. The injected fuel particles usually have a diameter of several tens of μm.
And the number exceeds hundreds of millions. The particles of the spray 85 are
The kinetic energy of the jet is maintained and the jet proceeds in the jet direction. Then, the diameter of the spray particles is d, the traveling speed is v,
If the density of the fuel 80 is ρ, the momentum of the spray particles is (π
a d 3/6) × ρ × v.

【0020】噴霧粒子は一群となって進行し,噴霧が保
持する運動量は,噴霧の空間的な領域における燃料粒子
の運動量の集積値となる。そして,圧力センサー21の
検知面に噴霧85が衝突すると,噴霧85が保持してい
た運動量は直ちに圧力に変換され,圧力センサー21は
その圧力Pを短時間の内に計測することができる。そし
て,噴霧の有する運動量が大きい程,また噴霧粒子の密
集度が大きい程,検知される圧力Pが大きくなる。
The spray particles travel as a group, and the momentum held by the spray becomes an integrated value of the momentum of the fuel particles in the spatial region of the spray. When the spray 85 collides with the detection surface of the pressure sensor 21, the momentum held by the spray 85 is immediately converted into pressure, and the pressure sensor 21 can measure the pressure P within a short time. The detected pressure P increases as the momentum of the spray increases and the density of the spray particles increases.

【0021】換言すれば,設定された領域の圧力Pを測
定することにより,その領域の噴霧粒子の密集度を知る
ことができる。そして,各領域の圧力(密集度)を2次
元的に表示することにより,どの領域に噴霧粒子が密集
しているかが分かる。そして,この圧力(密集度)の分
布から,最も密集度の高い点を選択し噴霧弁81の噴射
口との位置関係を計算することにより,噴霧85の方向
角度が分かる。また,噴霧85の圧力(密集度)が0近
傍に減衰する境界から噴霧85の広がり角度θを算出す
ることができる。また,これらの結果は,殆ど時間遅れ
がなく,ほぼリアルタイムに得ることが出来る。
In other words, by measuring the pressure P in the set area, the density of the spray particles in that area can be known. Then, by displaying the pressure (density) of each area two-dimensionally, it is possible to know in which area the spray particles are dense. Then, the direction angle of the spray 85 can be known by selecting the point having the highest density from this pressure (density) distribution and calculating the positional relationship with the injection port of the spray valve 81. Further, the spread angle θ of the spray 85 can be calculated from the boundary at which the pressure (density) of the spray 85 attenuates near zero. In addition, these results can be obtained almost in real time with almost no time delay.

【0022】図2,図3は,高圧ガソリン噴射弁の場合
におけるX軸上及びY軸上のセンサー出力値(mV)
を,出力手段45の表示画面にそれぞれグラフ表示した
ものの1例である(噴射パルス印加後3mS)。また,
同図の左端に示すように,センサー出力の大きさに応じ
て色付けをし,(X,Y)平面に図示すれば全体をカラ
ー表示することができる。
2 and 3 show sensor output values (mV) on the X-axis and the Y-axis in the case of a high-pressure gasoline injection valve.
Is an example of what is graphically displayed on the display screen of the output means 45 (3 mS after the injection pulse is applied). Also,
As shown at the left end of the figure, coloring can be done according to the size of the sensor output, and the whole can be displayed in color if shown in the (X, Y) plane.

【0023】また,図4は2ホールタイプの燃料噴射弁
に対する,X軸上におけるセンサー出力値をグラフ表示
した1例であり,燃料噴射弁81の下方50mmの位置
で測定したものである(噴射パルス印加後6mS)。図
5は,これをセンサーの出力に応じて明度(白黒)を変
化させ,(X,Y)平面に図示した図の1例である。図
5の左右に別れているパターンにおいて,その圧力の1
番高い点を取り噴射弁81の噴射口と結ぶ線を求め,2
方向に噴射された噴霧の角度を知ることができる。
FIG. 4 is a graph showing an example of the sensor output value on the X axis for a 2-hole type fuel injection valve, which is measured at a position 50 mm below the fuel injection valve 81 (injection). 6 mS after pulse application). FIG. 5 is an example of a diagram in which the lightness (black and white) is changed according to the output of the sensor and is shown in the (X, Y) plane. In the pattern divided into left and right in FIG.
Find the line that connects the highest point and the injection port of the injection valve 81, and
The angle of the spray injected in the direction can be known.

【0024】また,2つの噴霧パターンのそれぞれにお
いて噴霧の圧力(密集度)が0近傍に減衰する境界か
ら,それぞれの噴霧の広がり角度θを算出することがで
きる。図2〜図4のグラフが示すように,本装置1によ
れば,噴霧85の圧力分布(粒子分布)を極めて詳細に
検知することができる。従って,本例の噴霧測定装置1
によれば,燃料噴射弁81の噴霧の方向角度や広がり角
度を高精度かつ迅速に測定することができる。また,測
定結果は,殆ど時間遅れが無く短時間の内に得ることが
できる。
Further, the spread angle θ of each spray can be calculated from the boundary where the spray pressure (density) in each of the two spray patterns decays to near zero. As shown in the graphs of FIGS. 2 to 4, according to the present device 1, the pressure distribution (particle distribution) of the spray 85 can be detected in extremely detail. Therefore, the spray measuring device 1 of this example
According to this, the direction angle and spread angle of the spray of the fuel injection valve 81 can be measured with high accuracy and speed. In addition, the measurement result can be obtained within a short time with almost no time delay.

【0025】実施形態例2 本例の噴霧測定装置1は,図6,図7に示すように,実
施形態例1において,圧力検知手段は,小面積の圧力を
測定するセンサーエレメント251(図8)を横(X座
標)方向に直線状に配置した1次元センサーアレイ25
であり,位置決め手段35は,センサーアレイ25と燃
料噴射弁81との位置関係を噴霧の噴射される方向であ
るZ方向及び噴霧と垂直なY方向の2方向に自在に変更
することの出来る2次元移動手段である。そして,セン
サーアレイ25は,位置決め手段35の左右のアーム3
51,352の間に取り付けられている。
Embodiment 2 As shown in FIGS. 6 and 7, the spray measuring apparatus 1 of this embodiment is similar to Embodiment 1 except that the pressure detecting means has a sensor element 251 (FIG. 8) for measuring pressure in a small area. ) Linearly arranged in the lateral (X coordinate) direction
The positioning means 35 can freely change the positional relationship between the sensor array 25 and the fuel injection valve 81 in two directions, ie, the Z direction, which is the direction in which the spray is injected, and the Y direction, which is perpendicular to the spray. It is a means of dimension movement. The sensor array 25 includes the left and right arms 3 of the positioning means 35.
It is attached between 51 and 352.

【0026】そして,装置1は,噴霧が噴射される方向
に対して略垂直で噴射弁81と所定の離隔距離にある
(X,Y)面内において,センサーアレイ25をY方向
に移動させ実施形態例1と同様に上記面内における噴霧
の圧力分布を測定する。図8に示すように,センサーア
レイ25を構成する各センサーエレメント251は増幅
器252で信号増幅されてA/D変換された後,マルチ
プレクサ253でスキャンされてパーソナルコンピュー
ター40に入力される。
The apparatus 1 is implemented by moving the sensor array 25 in the Y direction within the (X, Y) plane that is substantially perpendicular to the direction in which the spray is sprayed and is at a predetermined distance from the injection valve 81. The pressure distribution of the spray in the plane is measured in the same manner as in the first embodiment. As shown in FIG. 8, each sensor element 251 constituting the sensor array 25 is signal-amplified by an amplifier 252 and A / D converted, and then scanned by a multiplexer 253 and input to the personal computer 40.

【0027】そして,本例では,演算手段が行う演算処
理はパーソナルコンピューター40のプログラムにより
実行され,図2〜図5に示したものと同様の結果はパー
ソナルコンピューター40のディスプレイ43(図7,
図8)に表示される。その他については実施形態例1と
同様である。
In this example, the arithmetic processing performed by the arithmetic means is executed by the program of the personal computer 40, and the same result as that shown in FIGS. 2 to 5 is obtained by the display 43 (FIG. 7, FIG. 7) of the personal computer 40.
8) is displayed. Others are the same as those in the first embodiment.

【0028】[0028]

【発明の効果】上記のように,本発明によれば,噴霧の
パターンを高精度かつ迅速に測定することのできる噴霧
測定装置を得ることができる。
As described above, according to the present invention, it is possible to obtain the spray measuring device capable of measuring the spray pattern with high accuracy and speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態例1の噴霧測定装置のシステム構成
図。
FIG. 1 is a system configuration diagram of a spray measurement device according to a first embodiment.

【図2】実施形態例1の噴霧測定装置が測定した高圧ガ
ソリン噴射弁の噴霧のX軸上の圧力分布(センサー出力
値)を示す図。
FIG. 2 is a diagram showing a pressure distribution (sensor output value) on the X-axis of the spray of the high-pressure gasoline injection valve measured by the spray measurement device of the first embodiment.

【図3】実施形態例1の噴霧測定装置が測定した高圧ガ
ソリン噴射弁の噴霧のY軸上の圧力分布(センサー出力
値)を示す図。
FIG. 3 is a diagram showing a pressure distribution (sensor output value) on the Y axis of the spray of the high-pressure gasoline injection valve measured by the spray measurement device of the first embodiment.

【図4】実施形態例1の噴霧測定装置が測定した2ホー
ルタイプの燃料噴射弁の噴霧のX軸上の圧力分布(セン
サー出力値)を示す図。
FIG. 4 is a diagram showing a pressure distribution (sensor output value) on the X-axis of the spray of the 2-hole type fuel injection valve measured by the spray measurement device of the first embodiment.

【図5】実施形態例1の噴霧測定装置が測定した2ホー
ルタイプの燃料噴射弁の噴霧の圧力分布(センサー出力
値)を明暗に変換して示した図。
FIG. 5 is a diagram showing the pressure distribution (sensor output value) of the spray of the two-hole type fuel injection valve measured by the spray measurement device of the first embodiment, converted into light and dark.

【図6】実施形態例2の噴霧測定装置の噴霧測定部近傍
の斜視図。
FIG. 6 is a perspective view of the vicinity of the spray measuring unit of the spray measuring apparatus according to the second embodiment.

【図7】実施形態例2の噴霧測定装置の正面図。FIG. 7 is a front view of the spray measuring device according to the second embodiment.

【図8】実施形態例2の噴霧測定装置においてパーソナ
ルコンピューターに入力される信号の回路図。
FIG. 8 is a circuit diagram of a signal input to a personal computer in the spray measurement device according to the second embodiment.

【符号の説明】[Explanation of symbols]

11,110...保持手段, 21,25...圧力検知手段(圧力センサー), 31,35...位置決め手段, 40,41...演算手段, 43,45...出力手段, 81...被検対象物(噴射弁), 85...噴霧, 11,110. . . Holding means, 21, 25. . . Pressure detection means (pressure sensor), 31, 35. . . Positioning means, 40, 41. . . Computing means, 43, 45. . . Output means, 81. . . Object to be inspected (injection valve), 85. . . Spray,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武田 啓壮 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 小川 穣 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 平9−49472(JP,A) 特開 平2−130260(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01M 15/00 F02M 65/00 306 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keisou Takeda 1 Toyota-cho, Toyota City, Aichi Prefecture, Toyota Motor Corporation (72) Inventor Minoru Ogawa 1-cho, Toyota City, Aichi Prefecture, Toyota Motor Corporation (56) References JP-A-9-49472 (JP, A) JP-A-2-130260 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01M 15/00 F02M 65 / 00 306

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 噴霧の噴射角度や形状等の噴霧パターン
を測定する噴霧測定装置であって, 噴霧を噴射する被検対象物を保持する保持部材と,噴霧
粒の運動量を圧力として検知し,小面積の圧力を測定す
る圧力センサーを有する圧力検知手段と,上記被検対象
物と圧力検知手段の圧力センサーとの間の位置関係を設
し,当該位置関係を3次元の方向に自在に変更可能な
3次元移動手段を備える位置決め手段と,上記圧力検知
手段の出力信号と上記位置決め手段で設定された位置関
係データとに基づき噴霧が噴射される方向に対して略垂
直で所定の離隔距離にある面内における噴霧の運動量又
は運動量による圧力の分布を演算し編集する演算手段
と,上記圧力センサーを2次元方向に移動させ,上記演
算手段が編集した上記面内における運動量又は圧力の分
布を出力する出力手段とを有し,上記面内における圧力
分布を測定することを特徴とする噴霧測定装置。
1. A spray measuring device for measuring a spray pattern such as a spray angle and a shape of spray, which comprises a holding member for holding an object to be inspected for spraying, and a momentum of spray particles as pressure , Measure small area pressure
It is possible to set a positional relationship between the pressure detecting means having a pressure sensor and a pressure sensor of the object to be inspected and the pressure detecting means , and to change the positional relationship freely in a three-dimensional direction.
Based on the positioning means including the three-dimensional moving means, the output signal of the pressure detecting means, and the positional relationship data set by the positioning means, the spray is substantially perpendicular to the spraying direction.
A calculation means for calculating and editing the momentum of the spray or a distribution of pressure due to the momentum in a plane directly at a predetermined separation distance, and the pressure sensor is moved in a two-dimensional direction, and in the plane edited by the calculation means . Output means for outputting momentum or pressure distribution, and pressure in the plane
A spray measuring device characterized by measuring the distribution .
【請求項2】 請求項1において,前記圧力検知手段
は,小面積の圧力を測定する圧力センサーを直線状に配
置した1次元センサーアレイを有し,前記位置決め手段
は,上記センサーアレイと被検対象物との位置関係を噴
霧の噴射される方向及び噴霧と垂直な方向の2方向に自
在に変更することの出来る2次元移動手段を備えてお
り, 噴霧が噴射される方向に対して略垂直で所定の離隔距離
にある面内において,上記圧力センサーを移動させ上記
面内における圧力分布を測定することを特徴とする噴霧
測定装置。
2. The pressure detecting means according to claim 1, wherein the pressure detecting means has a one-dimensional sensor array in which pressure sensors for measuring pressure in a small area are linearly arranged, and the positioning means includes the sensor array and the test object. Equipped with a two-dimensional moving means that can freely change the positional relationship with the target object in two directions, the direction in which the spray is sprayed and the direction perpendicular to the spray, and is substantially perpendicular to the direction in which the spray is sprayed. 2. A spray measuring device, characterized in that the pressure sensor is moved within a plane at a predetermined separation distance to measure the pressure distribution in the plane.
【請求項3】 請求項1において,前記圧力検知手段
は,小面積の圧力を測定する圧力センサーを面状に配置
した2次元センサーアレイであり,前記位置決め手段は
上記センサーアレイを被検対象物に近接または離隔させ
る1次元移動手段を備えており, 被検対象物に対して上記センサーアレイを所定の距離に
設置し,噴霧が噴射される方向に対して略垂直で所定の
離隔距離にある面内おける圧力分布を測定することを
特徴とする噴霧測定装置。
3. The pressure detecting means according to claim 1, which is a two-dimensional sensor array in which pressure sensors for measuring pressure in a small area are arranged in a plane, and the positioning means uses the sensor array as an object to be inspected. It is equipped with a one-dimensional moving means for moving it closer to or further away from the object, the sensor array is installed at a predetermined distance with respect to the object to be inspected, and the distance is substantially perpendicular to the spraying direction and at a predetermined distance. spray measuring apparatus characterized by measuring the pressure distribution definitive in the plane.
JP26796396A 1996-09-17 1996-09-17 Spray pattern measuring device Expired - Fee Related JP3439931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26796396A JP3439931B2 (en) 1996-09-17 1996-09-17 Spray pattern measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26796396A JP3439931B2 (en) 1996-09-17 1996-09-17 Spray pattern measuring device

Publications (2)

Publication Number Publication Date
JPH1090124A JPH1090124A (en) 1998-04-10
JP3439931B2 true JP3439931B2 (en) 2003-08-25

Family

ID=17452032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26796396A Expired - Fee Related JP3439931B2 (en) 1996-09-17 1996-09-17 Spray pattern measuring device

Country Status (1)

Country Link
JP (1) JP3439931B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091848A1 (en) 2001-05-15 2002-11-21 The Procter & Gamble Company Confectionery compositions
GB0713678D0 (en) * 2007-07-13 2007-08-22 Delphi Tech Inc Apparatus and methods for testing a fuel injector nozzle
CN105352710B (en) * 2015-10-20 2017-09-05 辽宁工程技术大学 A kind of nozzle real impact domain range test system
CN106441837B (en) * 2016-09-05 2018-11-02 中国民航大学 A kind of aero-engine fuel nozzle Auto-Test System
EP3456953B1 (en) * 2017-09-13 2021-07-14 Vitesco Technologies GmbH Apparatus and method for testing a fuel injector nozzle
CN111946518A (en) * 2020-08-07 2020-11-17 哈尔滨工程大学 Umbrella-type oil sprayer spraying local momentum testing device

Also Published As

Publication number Publication date
JPH1090124A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
US8134703B2 (en) Apparatus for the quality control of nozzles
US5748311A (en) Apparatus and method of particle geometry measurement by speckle pattern analysis
EP3719441A1 (en) Three-dimensional measuring system
Chen et al. Three-dimensional three-component air flow visualization in a steady-state engine flow bench using a plenoptic camera
CN1945204A (en) Three dimension outline measuring device and method for mirror article surface
JP2007315976A (en) Method and apparatus for measuring position, particle diameter, and velocity of fine droplets, bubbles, and particles
Shao et al. Quantitative characterization of diesel sprays using digital imaging techniques
JP3439931B2 (en) Spray pattern measuring device
US20010040214A1 (en) Method and apparatus for extending particle image velocimetry to determine particle size and three dimensional velocity
Na et al. Nondestructive evaluation method for standardization of fused filament fabrication based additive manufacturing
CN107037130A (en) Monocular vision three-D ultrasonic nondestructive detection system and detection method
JP3875653B2 (en) Droplet state measuring device and state measuring method
WO2010107895A2 (en) Spray angle measurement apparatus and method
Liao et al. A dense 3-D point cloud measurement based on 1-D background-normalized Fourier transform
JPH02130260A (en) Inspection of mist injection characteristic
CN107543502B (en) Optical device for real-time detecting full-field thickness
GB2285129A (en) Ultrasonic defect testing
Palero et al. Droplet-size-classified stereoscopic PIV for spray characterization
JP3324809B2 (en) Measurement point indicator for 3D measurement
JPH09196624A (en) Method and apparatus for measurement of very small size
Iffa et al. Concentration measurement of injected gaseous fuel using quantitative schlieren and optical tomography
Fouras et al. An improved, free surface, topographic technique
Höcker et al. Application of particle image velocimetry to transonic flows
US7196777B1 (en) Global laser rangefinder profilometry
JPH04203905A (en) Measuring-point member for optical measurement and optical method for measurement

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees