JP3438499B2 - Solidified material for fluidized backfill and fluidized treated soil using the same - Google Patents

Solidified material for fluidized backfill and fluidized treated soil using the same

Info

Publication number
JP3438499B2
JP3438499B2 JP34177796A JP34177796A JP3438499B2 JP 3438499 B2 JP3438499 B2 JP 3438499B2 JP 34177796 A JP34177796 A JP 34177796A JP 34177796 A JP34177796 A JP 34177796A JP 3438499 B2 JP3438499 B2 JP 3438499B2
Authority
JP
Japan
Prior art keywords
soil
fluidized
solidifying material
volcanic ash
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34177796A
Other languages
Japanese (ja)
Other versions
JPH10182212A (en
Inventor
行雄 田坂
本隆 江川
修 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP34177796A priority Critical patent/JP3438499B2/en
Publication of JPH10182212A publication Critical patent/JPH10182212A/en
Application granted granted Critical
Publication of JP3438499B2 publication Critical patent/JP3438499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • C04B2103/0006Alkali metal or inorganic ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • C04B2103/001Alkaline earth metal or Mg-compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主に関東地域の都
市街路における上下水管、ガス管、電気配線、電話回線
等の埋設や補修工事における掘削個所の流動化埋戻工法
に好適に用いることができる流動化埋戻用固化材および
それを用いた流動化処理土に関する。
TECHNICAL FIELD The present invention is suitable for use in a fluidized backfilling method for excavating a sewage pipe, a gas pipe, an electric wiring, a telephone line or the like in an urban street in the Kanto region or for excavating a repair work. The present invention relates to a solidifying material for fluidized backfilling and a fluidized treated soil using the solidified material.

【0002】[0002]

【従来の技術】従来、上下水管、ガス管、電気配線およ
び電話回線等の埋設や補修工事に伴って発生する掘削個
所の埋め戻しは、山砂等の良質土を使用してランマ等で
転圧する方法で行なわれている。しかし、山砂等の非粘
性材料では、複雑な配管回りの充填が困難であり、不十
分な充填が道路陥没の原因となることがある。また、特
に都市部への山砂等の調達・搬入並びに都市部からの掘
削土の搬出・廃棄等は単にコスト面での負担が大きくな
るだけでなく、山砂採取箇所および掘削土廃棄箇所の環
境保全の観点からも問題があることから、従来工法の見
直しが必要となっている。この従来工法の有する問題点
を解決する一つの方法は、掘削土そのものを埋戻し材と
して使用することであり、掘削土に水および固化材を混
合撹拌して流動性と固化性が付与された転圧不要スラリ
ーを調製し、それを埋戻し材とする流動化埋戻工法が検
討されている。埋め戻しに用いる処理土スラリーには、
埋設管下部や輻輳した管と管の隙間に充填可能な流動
性、打設後できるだけ短時間で、埋め戻した処理土上に
砂または砕石の転圧等の復旧作業ができる速硬性および
人力掘削が可能な再掘削性等が求められ、一般に、打設
時の流動性はKODAN305シリンダー法(道路公団
規格)で150〜200mm、一軸圧縮強さは、打設後
1時間以内に0.1〜0.3kgf/cm2 、打設後2
8日後で3〜8kgf/cm2 の値が必要とされてい
る。
2. Description of the Related Art Conventionally, the backfilling of excavation points caused by the burial and repair work of water and sewer pipes, gas pipes, electric wiring, telephone lines, etc. has been carried out by using a good quality soil such as mountain sand with a rammer. It is done by the method of pressing. However, with non-viscous materials such as sand and sand, it is difficult to fill complicated pipes, and insufficient filling may cause road collapse. In addition, in particular, not only the cost burden becomes large when procuring and carrying in mountain sand, etc. into the urban area and unloading and discarding excavated soil from the urban area, but also at the point where the mountain sand is collected and the excavated soil is discarded. Since there are problems from the viewpoint of environmental protection, it is necessary to review the conventional construction method. One method of solving the problems of this conventional method is to use the excavated soil itself as a backfill material, and the excavated soil was mixed with water and a solidifying material to give fluidity and solidification. A fluidization backfilling method is being studied in which a compaction-free slurry is prepared and used as a backfill material. For the treated soil slurry used for backfilling,
Fluidity that can be filled in the lower part of buried pipes and gaps between congested pipes, quick hardening and human excavation that enables restoration work such as compaction of sand or crushed stone on the backfilled treated soil in the shortest possible time after placing In general, the fluidity at the time of driving is 150-200 mm by the Kodan 305 cylinder method (Road Standards), and the uniaxial compressive strength is 0.1-hour within 1 hour after driving. 0.3 kgf / cm 2 , 2 after placing
Values of 3-8 kgf / cm 2 are required after 8 days.

【0003】このような流動化埋戻工法においては、カ
ルシウムアルミネート、カルシウムサルフォアルミネー
ト系化合物、半水石膏等を主成分としたものに各種添加
材を加えた固化材の使用が検討されており、例えば、特
開平1−299913号、特開平5−17771号、特
開平7−26542号、特開平7−292356号、特
開平6−298553号および特開平8−109377
号の各公報に開示されている。
In such a fluidized backfilling method, the use of a solidifying material containing calcium aluminate, a calcium sulphoaluminate compound, hemihydrate gypsum, etc. as a main component and various additives has been studied. For example, JP-A-1-299913, JP-A-5-17771, JP-A-7-26542, JP-A-7-292356, JP-A-6-298553 and JP-A-8-109377.
It is disclosed in each publication of the issue.

【0004】一方、流動化埋戻工法は、主に都市部で検
討が進められており、特に、首都圏を始めとする関東地
域の都市部での検討が盛んである。この地域における主
たる掘削土は関東ロームと呼ばれる火山灰質粘性土であ
るが、この火山灰質粘性土用固化材としては、古くより
石灰、石膏の効果が公知であり、これにポルトランドセ
メントを加えた系についても、例えば、特許第2503
771号明細書等に開示されている。
On the other hand, the fluidization backfilling method is being studied mainly in urban areas, and particularly in urban areas in the Kanto region including the Tokyo metropolitan area. The main excavated soil in this area is volcanic ash cohesive soil called Kanto loam, but as a solidifying material for this volcanic ash cohesive soil, the effect of lime and gypsum has been known for a long time. Also, for example, Japanese Patent No. 2503
771 specification etc. are disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、カルシ
ウムアルミネート、カルシウムサルフォアルミネート系
より成る固化材は高価であり、また、従来の石灰系の火
山灰質粘性土用固化材は、上述の流動化埋戻工法のよう
な特殊な施工に必要な条件、特に、必要な流動性を確保
することが不可能であるだけでなく、火山灰質粘性土以
外の一般の粗粒土や細粒度に対する効果が小さいという
欠点を有している。本発明の目的は、火山灰質粘性土の
流動化埋戻処理工法用に特に好適に使用できるが、火山
灰質粘性土以外にも適用可能な、すなわち、火山灰質粘
性土が土壌の主成分である関東地域における流動化埋戻
処理工法用として好適に使用可能であり、且つ、安価な
新規固化材およびそれを用いた流動化処理土を提供する
ことである。
However, the solidifying material composed of calcium aluminate or calcium sulphoaluminate is expensive, and the conventional solidifying material for lime-based volcanic ash cohesive soil is the above-mentioned fluidized material. Not only is it impossible to ensure the necessary fluidity for special construction such as the backfilling method, especially the effect on general coarse-grained soil and fine-grained soil other than volcanic ash cohesive soil. It has the drawback of being small. The object of the present invention can be particularly suitably used for the fluidized backfilling method of volcanic ash cohesive soil, but is applicable to other than volcanic ash cohesive soil, that is, volcanic ash cohesive soil is the main component of soil. (EN) It is possible to provide a novel solidified material which can be suitably used for a fluidization backfilling method in the Kanto region and is inexpensive, and a fluidized soil using the same.

【0006】[0006]

【課題を解決するための手段】本発明では、ポルトラン
ドセメント、石膏、生石灰およびアルカリ金属塩または
アルカリ土類金属塩の各成分を特定の割合で含む固化材
が、火山灰質粘性土を含む土壌の流動化埋戻処理工法用
として優れた特性を示すことを見出し、上記課題を解決
した。すなわち、本発明は、ポルトランドセメント30
〜60重量%、石膏20〜40重量%、生石灰10〜4
0重量%および、アルカリ金属塩またはアルカリ土類金
属塩0.2〜7重量%より成る流動化埋戻用固化材に関
する。また、本発明は、上記流動化埋戻用固化材を、調
整含水比が160〜220%である火山灰質粘性土に添
加した流動化処理土、または、調整含水比が30〜80
%であり、且つ火山灰質粘性土を乾燥重量基準で10〜
30%含む粗粒土に添加した流動化処理土に関する。以
下に本発明を詳しく説明する。
In the present invention, a solidifying material containing Portland cement, gypsum, quick lime, and alkali metal salt or alkaline earth metal salt components in a specific ratio is a soil containing volcanic cohesive soil. The inventors have found that they exhibit excellent properties for use in the fluidized backfilling method, and have solved the above problems. That is, the present invention relates to Portland cement 30.
~ 60 wt%, gypsum 20-40 wt%, quicklime 10-4
The present invention relates to a solidifying material for fluidized backfilling, which comprises 0% by weight and 0.2 to 7% by weight of an alkali metal salt or an alkaline earth metal salt. In addition, the present invention provides a fluidized soil in which the solidifying material for fluidization backfilling is added to volcanic ash cohesive soil having an adjusted water content ratio of 160 to 220%, or an adjusted water content ratio of 30 to 80.
%, And volcanic ash cohesive soil on a dry weight basis of 10 to
It relates to fluidized soil added to coarse-grained soil containing 30%. The present invention will be described in detail below.

【0007】本発明の固化材に使用できるポルトランド
セメントの例としては、早強、普通、中庸熱各セメント
および耐硫酸塩ポルトランドセメント等が挙げられる
が、これ等の内では、早強セメントの使用が好ましい。
固化材中のポルトランドセメントの量は30〜60重量
%、好ましくは40〜50重量%とする。ポルトランド
セメントの量が30重量%未満では、粗粒土に適用した
場合に十分な中・長期強度が得られず、60重量%より
多い場合には、火山灰質粘性土に対して十分な速硬性が
得られない。
Examples of Portland cement that can be used in the solidifying material of the present invention include early-strength, normal, moderate heat cements and sulfate resistant Portland cement. Among these, the early-strength cement is used. Is preferred.
The amount of Portland cement in the solidifying material is 30 to 60% by weight, preferably 40 to 50% by weight. When the amount of Portland cement is less than 30% by weight, sufficient medium / long-term strength cannot be obtained when applied to coarse-grained soil, and when it is more than 60% by weight, it has sufficient rapid hardening property against volcanic ash clay soil. Can't get

【0008】石膏成分は、無水石膏、二水石膏、半水石
膏の粉砕品がその種類を問わず、単独または混合物とし
て好適に使用できる。固化材中における石膏の量は、2
0〜40重量%、好ましくは25〜35重量%である。
石膏の量が20重量%より少ないと、粗粒土に適用した
場合には長期強度が過大となるため再掘削が困難にな
り、火山灰質粘性土へ適用した場合には必要な初期強度
を得ることが出来ない。一方、石膏量が40重量%より
多すぎると、必要な初期強度が得られないだけでなく、
処理土に過大膨張が生じる場合があり好ましくない。
As the gypsum component, crushed products of anhydrous gypsum, gypsum dihydrate, and gypsum hemihydrate can be used singly or as a mixture regardless of the kind. The amount of gypsum in the solidified material is 2
It is 0 to 40% by weight, preferably 25 to 35% by weight.
If the amount of gypsum is less than 20% by weight, the long-term strength will be excessive when applied to coarse-grained soil, making re-drilling difficult and obtaining the required initial strength when applied to volcanic cohesive soil. I can't. On the other hand, if the amount of gypsum is more than 40% by weight, not only the necessary initial strength cannot be obtained, but also
The treated soil may undesirably expand excessively.

【0009】また、本発明における固化材のもう一つの
構成成分である生石灰としては、軟焼生石灰の粒状品お
よび粉状品、硬焼生石灰の粉状品が好適に使用できる。
軟焼生石灰の粒状品としては地盤改良等に一般に用いら
れている1mm、3mm、5mm各アンダー品、粉状品
では軟焼、硬焼共に200(74μm)、100(14
9μm)メッシュアンダー品を挙げることが出来るが、
硬焼生石灰の粉状品の使用が、流動性と速硬性のバラン
スに優れ、最も好ましい。
As quick lime which is another constituent of the solidifying material of the present invention, soft burned quick lime granular products and powdered products, and hard burned quick lime powdered products can be preferably used.
As soft-burnt quick lime granular products, which are generally used for ground improvement, etc., 1 mm, 3 mm and 5 mm under products, and powdered products, both soft-baked and hard-baked 200 (74 μm), 100 (14
9 μm) Mesh under products can be mentioned,
It is most preferable to use a powdered product of hard-baked quicklime because it has an excellent balance of fluidity and rapid hardening.

【0010】固化材中の生石灰の適正な量は10〜40
重量%であるが、生石灰の焼成度および粒度に応じて調
整するのが良く、例えば、軟焼生石灰の粒状品では25
〜40、軟焼生石灰の粉状品では10〜20、そして硬
焼生石灰の粉状品では15〜30各重量%とするのが好
ましい。生石灰の量が少なすぎると、所望する初期強度
が得られず、多すぎると処理土の流動性の確保が困難と
なる。生石灰の粒度を前記した粒度より更に細かく、或
いは逆に粗くすることにより、その量が10〜40重量
%を外れた範囲でも所望の流動性と初期強度が得られる
場合もあるが、交通開放可能な短・中期強度が得られな
いか、或いは再掘削が不可能な程度にまで長期強度が高
くなり好ましくない。
The proper amount of quicklime in the solidified material is 10-40.
% By weight, but it may be adjusted according to the degree of firing and particle size of quicklime, for example, 25 for soft-burnt quicklime granules.
-40, 10 to 20 for soft burned lime powder, and 15 to 30 for hard burned lime powder. If the amount of quick lime is too small, the desired initial strength cannot be obtained, and if it is too large, it becomes difficult to secure the fluidity of the treated soil. If the particle size of quicklime is made finer than the above, or conversely coarser, the desired fluidity and initial strength may be obtained even if the amount is out of the range of 10 to 40% by weight, but the traffic can be opened. It is not preferable because the short and medium-term strength cannot be obtained, or the long-term strength becomes high to the extent that re-drilling is impossible.

【0011】本発明の固化材には、硫酸ナトリウムまた
は硫酸マグネシウムを使用する。潮解性がなく且つ多量
添加時の短期強度への影響が少ないからである。硫酸マ
グネシウムは、無水塩、1水塩、7水塩が何れも使用可
能であるが、入手の容易な7水塩の使用が好ましい。硫
酸ナトリウムまたは硫酸マグネシウムの添加量は、0.
2〜7重量%とするがこの範囲内で分子量、結晶水量お
よび溶解速度の影響を考慮して適宜決定する。硫酸ナト
リウムまたは硫酸マグネシウムの添加量が0.2重量%
より少ないと、必要な流動性確保が困難であり、7重量
%より多くなると、短期強度が低下するだけでなく、堀
削土の処理コストが高くなる。
The solidifying material of the present invention includes sodium sulfate or
Uses magnesium sulfate . This is because it has no deliquescent property and has little effect on short-term strength when a large amount is added. As magnesium sulfate, any of anhydrous salt, monohydrate, and heptahydrate can be used, but it is preferable to use heptahydrate which is easily available. The amount of sodium sulfate or magnesium sulfate added was 0.
The amount is 2 to 7% by weight, but is appropriately determined within this range in consideration of the effects of the molecular weight, the amount of water of crystallization and the dissolution rate. 0.2% by weight of sodium sulfate or magnesium sulfate
If it is less, it is difficult to secure the required fluidity, and if it is more than 7% by weight, not only the short-term strength decreases but also the excavation soil treatment cost increases.

【0012】本発明の固化材が処理対象とするのは火山
灰質粘性土または火山灰質粘性土を主成分とする土壌で
あるが、火山灰質粘性土はその土質により、火山灰質粘
性土I型、火山灰質粘性土II型および有機火山灰土の三
種類に分類される。本発明の固化材は、含水比を本発明
の範囲に調整しさえすればその三種の何れへも適用可能
である。中でも、自然含水比が80〜130%である、
火山灰質II型に分類される関東ロームには特に好適に使
用できる。処理対象とする土壌の含水比は、火山灰質粘
性土の場合には160〜220%、火山灰質粘性土が混
入した粗粒土の場合には30〜80%に調整するのが良
。含水比がこの範囲を外れて小さい場合には、処理土
の流動性を確保できず、また、この範囲を外れて大きく
なると、固化が十分でなく所望する初期強度が得られず
好ましくない。
The solidifying material of the present invention treats volcanic ash cohesive soil or soil containing volcanic ash cohesive soil as a main component, but volcanic ash cohesive soil is classified into volcanic ash cohesive soil type I, It is classified into three types: volcanic ash clay type II and organic volcanic ash soil. The solidifying material of the present invention can be applied to any of the three types as long as the water content ratio is adjusted within the range of the present invention. Among them, the natural water content is 80 to 130%,
It can be used particularly suitably for Kanto loam classified as volcanic ash type II. Water content ratio of the soil to be processed is 160 to 220 percent in the case of ash quality cohesive soil, is good to adjust the 30% to 80% in the case of coarse soil volcanic ash quality cohesive soil is mixed
Yes . If the water content ratio is smaller than this range, the fluidity of the treated soil cannot be secured, and if it exceeds this range, the solidification is insufficient and the desired initial strength cannot be obtained, which is not preferable.

【0013】また、本発明の固化材の使用量は、固化対
象土の土質、処理土の備えるべき目標スペックを考慮し
て決定することになるが、処理土1m3 当たり、火山灰
質粘性土で100〜150kg、火山灰質粘性土が混入
した粗粒土で70〜120kg程度である。固化材の使
用量が少なすぎると、固化が不十分であり所望する初期
強度が得られず、また、多すぎると、処理土の流動性の
確保が困難となり、好ましくない。
[0013] The amount of the solidifying material of the present invention, soil solidification target soil, it will be determined in consideration of the target specification to comprise the treated soil, treated soil 1 m 3 per volcanic ash quality Clay 100 to 150 kg, and 70 to 120 kg for coarse-grained soil mixed with volcanic ash cohesive soil. If the amount of the solidifying material used is too small, the solidification is insufficient and the desired initial strength cannot be obtained, and if it is too large, it becomes difficult to secure the fluidity of the treated soil, which is not preferable.

【0014】粗粒土は、地盤工学会の規定する日本統一
分類の定める、粗粒分が50%以上のものである。この
粗粒土に混合する火山灰質粘性土の量は、粗粒土と火山
灰質粘性土とも乾燥重量を基準として10〜30%であ
る。10%未満では必要な速硬性が得られず、30%よ
り大としても添加量に見合う固化特性の改善効果を示さ
ないばかりか、逆に強度が低下し、掘削土処理コストも
高くなる。
The coarse-grained soil has a coarse-grained content of 50% or more, which is defined by the Japan Unified Classification prescribed by the Geotechnical Society. The amount of the volcanic ash cohesive soil mixed with the coarse-grained soil is 10 to 30% based on the dry weight of both the coarse-grained soil and the volcanic ash cohesive soil. If it is less than 10%, the required rapid hardening cannot be obtained, and if it exceeds 30%, not only the effect of improving the solidification property corresponding to the added amount is not exhibited, but conversely the strength is lowered and the excavated soil treatment cost is increased.

【0015】本発明の固化材の使用に当たっては、処理
土の流動性、土砂再生率を向上させる目的で高性能減水
剤、流動化剤を併用することもできる。また、流動性を
長時間維持させる必要が生じた場合には、公知の凝結遅
延剤を併用することもできる。
In using the solidifying material of the present invention, a high-performance water reducing agent and a fluidizing agent may be used in combination for the purpose of improving the fluidity of the treated soil and the soil recovery rate. Further, when it is necessary to maintain the fluidity for a long time, a known set retarder can be used in combination.

【0016】本発明の固化材中に存在する生石灰は、火
山灰質粘性土と反応し、石膏の存在下でエトリンガイト
等を生成し、初期強度の発現に寄与する。また、生石灰
の消費に伴う発熱は、系全体の反応速度を増加させる。
一方、ポルトランドセメントは主に適度な中・長期強度
の発現に寄与し、その水和反応も生石灰により促進され
る。硫酸マグネシウム等のアルカリ金属塩、アルカリ土
類金属塩は、生石灰と火山灰質粘性土の急激な反応をコ
ントロールして処理土に適度の流動性を付与する。
The quicklime existing in the solidified material of the present invention reacts with volcanic ash cohesive soil to form ettringite and the like in the presence of gypsum, and contributes to the development of initial strength. In addition, the heat generated by consumption of quick lime increases the reaction rate of the entire system.
On the other hand, Portland cement mainly contributes to the development of moderate and long-term strength, and its hydration reaction is also accelerated by quicklime. Alkali metal salts such as magnesium sulfate and alkaline earth metal salts control the rapid reaction between quick lime and volcanic ash cohesive soil to impart appropriate fluidity to the treated soil.

【0017】流動化埋戻工法に必要とされる流動性や初
期強度発現性は、主に、生石灰の反応速度に依存する。
この生石灰の反応速度は、焼成度や粒度によって異な
り、それに依存して、前述したように最適添加量が存在
する。本発明の固化材は、石膏、ポルトランドセメント
およびアルカリ金属またはアルカリ土類金属塩の量を生
石灰の反応特性に合わせて規定しているため、優れた流
動性と速硬性および適度の長期強度を発現するものと考
えられる。また、本発明の固化材は、火山灰質粘性土以
外の掘削土に対する効果は小さいが、粗粒土については
火山灰質粘性土を適量添加することにより固化可能であ
るだけでなく、固化材必要量が大幅に低減できることも
大きな特徴である。
The fluidity and the initial strength development required for the fluidized backfilling method mainly depend on the reaction rate of quicklime.
The reaction rate of this quick lime varies depending on the firing degree and particle size, and depending on it, the optimum addition amount exists as described above. Since the solidifying material of the present invention regulates the amounts of gypsum, Portland cement and alkali metal or alkaline earth metal salt in accordance with the reaction characteristics of quicklime, it exhibits excellent fluidity, rapid hardening and moderate long-term strength. It is supposed to do. Further, the solidifying material of the present invention has a small effect on excavated soil other than volcanic ash cohesive soil, but for coarse-grained soil, not only can it be solidified by adding an appropriate amount of volcanic ash cohesive soil, but the required amount of solidifying material Is also a major feature.

【0018】[0018]

【発明の実施の形態】以下に具体的例を示して本発明を
更に詳しく説明する。 (1)固化材の調 固化材の調製には、次に示す原料を使用した。ポルトラ
ンドセメント:早強ポルトランドセメント 生石灰:軟焼成石灰 0〜1mmm品 および 100
メッシュアンダー品 硬焼成石灰 100メッシュアンダー品 無水石膏:タイ産天然II型無水石膏 硫酸マグネシウム:市販品 7水塩 硫酸ナトリウム:市販品試薬特級 10水塩 所定量のセメント、石膏、生石灰および硫酸マグネシウ
ムまたは硫酸ナトリウムをポリエチレン製袋に入れ3
手混合し、表2(実施例15種)および表3(比較
例10種)に示す、組成の互いに異なる25種の固化材
を得た。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to specific examples. (1) Preparation of tone made solidifying material solidifying material used the ingredients shown below. Portland Cement: Early Strength Portland Cement Quick Lime: Soft Calcined Lime 0 to 1 mm Product and 100
Mesh under product Hard baked lime 100 Mesh under product Anhydrous gypsum: Thai natural type II anhydrous gypsum magnesium sulfate: commercial product 7 hydrate sodium sulfate: commercial product reagent special grade 10 hydrate prescribed amount of cement, gypsum, quicklime and magnesium sulfate or 3 min <br/> placed sodium sulfate in a polyethylene bag, hand mixed, shown in Table 2 (example 15 species) and Table 3 (Comparative example 10 species), a different 25 types of solidifying material composition Obtained.

【0019】(2)固化材による土質処理 使用した供試土は表1に示す2種である。(2) Soil treatment with solidifying material The two types of test soil used are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】実施例1〜15および比較例1〜10 20℃恒温室内において、関東ローム100重量部に対
し、上水40重量部を加え撹拌混合して含水比180%
のスラリーを調製した。このスラリーに、表2、3に示
す組成を有する固化材14重量部(130kg/m3
を加えホバートミキサーで1分間撹拌混合し、処理土を
得た。 実施例16、17および比較例11〜13 20℃恒温室内において、表1に示す粗粒土、関東ロー
ムおよび上水を混合し、その際、両土の混合割合に応じ
て上水の量を加減し、スラリーの含水比を調整した。生
成スラリーに表2の実施例2に使用したものと同じ固化
材を100kg/m3 の割合で加え、ホバートミキサー
で1分間撹拌混合して処理土を得た。
Examples 1 to 15 and Comparative Examples 1 to 10 In a thermostatic chamber at 20 ° C., 40 parts by weight of tap water was added to 100 parts by weight of Kanto loam, and the mixture was stirred and mixed to obtain a water content of 180%.
Was prepared. 14 parts by weight of solidifying material (130 kg / m 3 ) having the composition shown in Tables 2 and 3 was added to this slurry.
Was added and mixed by stirring for 1 minute with a Hobart mixer to obtain treated soil. Examples 16 and 17 and Comparative Examples 11 to 13 Coarse-grained soil shown in Table 1, Kanto loam and tap water were mixed in a thermostatic chamber at 20 ° C., and the amount of tap water was changed according to the mixing ratio of the two soils. The water content of the slurry was adjusted by adjusting the water content. The same solidifying material as that used in Example 2 in Table 2 was added to the produced slurry at a rate of 100 kg / m 3 , and the mixture was stirred and mixed with a Hobart mixer for 1 minute to obtain a treated soil.

【0022】(3)処理土の特性測定 流動性:混練直後および3分後の処理土について、道路
公団規格であるKODAN305シリンダー法で測定し
た。 一軸圧縮強さ:処理土を内径50mm、高さ100mm
の円筒型枠に流し込み、処理土の発熱を考慮して30℃
で密封養生した後脱型し、JCAS L−01「セメン
ト系固化材による安定処理土の試験方法」に則って一軸
圧縮強さを測定した。 断熱温度上昇の測定:実施例3、4については、固化材
添加後の処理土の断熱温度上昇を測定した。測定は、断
熱カロリメータ[東京理工(株)製、ACM−126]
を用いて行なった。流動性、一軸圧縮強さの測定結果を
表2(実施例1〜15)、表3(比較例1〜10)およ
び表4(実施例16、17、比較例11〜13)に示
し、断熱温度上昇測定結果を図1に示す。
(3) Characteristic Measurement of Treated Soil Flowability: The treated soil immediately after kneading and after 3 minutes was measured by the Kodan 305 cylinder method which is a standard of the Highway Public Corporation. Uniaxial compressive strength: 50 mm inside diameter of treated soil, 100 mm height
Pour into the cylindrical formwork of 30 ℃ considering the heat of the treated soil
Then, the uniaxial compressive strength was measured in accordance with JCAS L-01 "Test method for stable treated soil by cement-based solidifying material". Measurement of adiabatic temperature rise: For Examples 3 and 4, the adiabatic temperature rise of the treated soil after addition of the solidifying material was measured. Adiabatic calorimeter [Tokyo Riko Co., Ltd., ACM-126]
Was performed using. The measurement results of fluidity and uniaxial compression strength are shown in Table 2 (Examples 1 to 15), Table 3 (Comparative Examples 1 to 10) and Table 4 (Examples 16 and 17, Comparative Examples 11 to 13), and the heat insulation The temperature rise measurement result is shown in FIG.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】表3の実施例が示すように、火山灰質粘性
土に対して本発明の固化材を添加した流動化処理土は、
混練終了直後および混練終了3分後のフロー値が150
〜200mmの範囲であり、ガス管等の埋設管周りの充
填に十分な流動性を有している。また、成型後の一軸圧
縮強さは、30分後:約0.2〜0.6kgf/c
2 、4時間後:0.9〜1.4kgf/cm2 であ
り、処理土を埋戻した後短時間で表層に砂を敷き均し転
圧による復旧作業が可能な速硬性を示した。また、28
日後の一軸圧縮強さは約3〜6kgf/cm2 と再掘削
可能な強度内に留まっている。また、図1に示す、実施
例3、4に対する断熱温度上昇曲線では、混練後1時間
以内に急激な発熱が終了し、本発明の処理材による固化
が、混練後短時間の内に有効、且つ効率的に進むことを
示している。これに対し、表3の比較例に示す、本発明
の特許請求範囲を外れた組成を有する固化材を添加した
流動化処理土は、必要な流動性を示さないか或いは処理
30分または4時間後の一軸圧縮強度が小さすぎるな
ど、好ましい結果を示さない。
As shown in the examples of Table 3, the fluidized soil obtained by adding the solidifying material of the present invention to the volcanic ash clay soil,
Immediately after kneading and 3 minutes after kneading, the flow value is 150
It is in the range of up to 200 mm and has sufficient fluidity for filling around a buried pipe such as a gas pipe. The uniaxial compressive strength after molding is 30 minutes later: about 0.2 to 0.6 kgf / c.
m 2, 4 hours later: a 0.9~1.4kgf / cm 2, the recovery operation by short time leveling laid sand surface compaction after backfilling the processing soil showed fast curing possible . Also 28
The uniaxial compressive strength after day is about 3 to 6 kgf / cm 2 , which is within the re-excavable strength. In addition, in the adiabatic temperature rise curves for Examples 3 and 4 shown in FIG. 1, rapid heat generation ends within 1 hour after kneading, and solidification by the treatment material of the present invention is effective within a short time after kneading. And it shows that it progresses efficiently. On the other hand, the fluidized treated soil to which the solidifying material having the composition outside the scope of the claims of the present invention, which is shown in the comparative example of Table 3, does not show the necessary fluidity or is treated for 30 minutes or 4 hours. The subsequent uniaxial compressive strength is too small to show favorable results.

【0027】一方、粗粒土についても、表4の実施例が
示すように、火山灰質粘性土を添加し、且つ含水比を調
整した後に本発明の固化材を添加した流動化処理土は、
混練終了直後および混練終了3分後のフロー値は170
〜190mmの範囲であり、ガス管等の周りを充填可能
な流動性を有しているだけでなく、成型後の一軸圧縮強
さは、30分後:約0.2〜0.3kgf/cm2 、4
時間後:0.9〜1.4kgf/cm2 であり、打設後
短時間で処理土上に砂層の転圧等の復旧作業が可能な速
硬性を示した。また、28日後の一軸圧縮強さは、約7
〜8kgf/cm2 と再掘削可能な強度内に留まった。
これに対し、比較例に示す、火山灰質粘性土の添加量ま
たは含水比が本発明の特許請求範囲を外れた組成を有す
る流動化処理土は、十分な流動性は示すものの、処理後
30分または4時間後においても、その後の工程に耐え
る十分な一軸圧縮強さが発現しないだけでなく、28日
後の一軸圧縮強さが再掘削が困難な程度にまで高くなり
すぎ、好ましい結果を示さない。
On the other hand, as for the coarse-grained soil, as shown in the examples of Table 4, the fluidized soil in which the volcanic ash cohesive soil was added and the water content ratio was adjusted and then the solidifying material of the present invention was added,
The flow value is 170 immediately after the end of kneading and 3 minutes after the end of kneading.
The uniaxial compressive strength after molding is 30 minutes: about 0.2 to 0.3 kgf / cm, in addition to having fluidity that allows filling around gas pipes and the like. Two , four
After time: 0.9 to 1.4 kgf / cm 2 , which showed rapid hardening that enables restoration work such as compaction of the sand layer on the treated soil in a short time after placing. The uniaxial compressive strength after 28 days is about 7
It remained within the re-excavable strength of ~ 8 kgf / cm 2 .
On the other hand, the fluidized soil having a composition in which the addition amount or water content of the volcanic ash cohesive soil shown in Comparative Example has a composition outside the scope of the claims of the present invention shows sufficient fluidity, but 30 minutes after the treatment. Even after 4 hours, not only does not develop sufficient uniaxial compressive strength to withstand the subsequent process, but also the uniaxial compressive strength after 28 days becomes too high to make re-drilling difficult, which does not show favorable results. .

【0028】[0028]

【発明の効果】本発明の固化材は、火山灰質粘性土を含
む土壌の固化処理に優れた流動性と速硬性を合わせ持
ち、且つ、硬化後も再掘削可能な程度の長期強度を発現
することから、火山灰質土壌を主成分とする関東地域の
都市街路における上下水管、ガス管、電気配線および電
話回線等の埋設や補修作業に伴う掘削箇所の流動化埋戻
工法に好適に使用できる。又、粗粒土に対しても、火山
灰質粘性土を適量混合することにより、速硬性を有する
流動化処理の土が得られる。更に、カルシウムアルミネ
ート、カルシウムサルフォアルミネート等の高価な特殊
材料を使用しないため、固化材コストの大幅な削減が可
能である。
EFFECTS OF THE INVENTION The solidifying material of the present invention has excellent fluidity and quick-hardening property for solidifying soil containing volcanic ash cohesive soil, and exhibits long-term strength that allows re-excavation even after hardening. Therefore, it can be suitably used for a fluidized backfilling method for excavation sites associated with burying and repairing water and sewer pipes, gas pipes, electric wiring, telephone lines, etc. in city streets in the Kanto region whose main component is volcanic ash soil. Also, for coarse-grained soil, fluidized soil having a rapid hardening property can be obtained by mixing an appropriate amount of volcanic ash cohesive soil. Further, since expensive special materials such as calcium aluminate and calcium sulfaluminate are not used, the cost of the solidifying material can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固化材で処理した土の固化に伴う断熱
温度上昇の一例を示す。
FIG. 1 shows an example of an increase in adiabatic temperature associated with solidification of soil treated with the solidifying material of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // E02D 3/00 101 E02D 3/00 101 C09K 103:00 C09K 103:00 (58)調査した分野(Int.Cl.7,DB名) C04B 28/14 C04B 22/06 C04B 22/10 C04B 22/14 C09K 17/02 C09K 17/06 C09K 17/10 E02D 3/00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI // E02D 3/00 101 E02D 3/00 101 C09K 103: 00 C09K 103: 00 (58) Fields investigated (Int.Cl. 7 , DB name) C04B 28/14 C04B 22/06 C04B 22/10 C04B 22/14 C09K 17/02 C09K 17/06 C09K 17/10 E02D 3/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポルトランドセメント30〜60重量%、
石膏20〜40重量%、生石灰10〜40重量%及び
酸ナトリウムまたは硫酸マグネシウム0.2〜7重量%
より成り、これ等原料に混入して不可避的に導入される
アルミニウム化合物以外にアルミニウム化合物を含まな
いことを特徴とする、火山灰質粘性土または火山灰質粘
性土を乾燥重量基準で10〜30%含む土壌用流動化埋
戻用固化材。
1. Portland cement 30 to 60% by weight,
Gypsum 20-40% by weight, quick lime 10-40% by weight and sulfur
Sodium acid salt or magnesium sulfate 0.2 to 7% by weight
Ri More forming, is inevitably introduced mixed thereto or the like material
Do not include aluminum compounds other than aluminum compounds
Volcanic ash cohesive soil or volcanic ash soil
Fluidized landfill for soil containing 10 to 30% of dry soil based on dry weight
Solidifying material for return.
【請求項2】請求項1に記載の流動化埋戻用固化材を、
調整含水比が160〜220%である火山灰質粘性土に
添加した流動化処理土。
2. A fluidizing backfill solidifying material according to claim 1,
Fluidized soil added to volcanic ash cohesive soil with adjusted water content of 160-220%.
【請求項3】火山灰質粘性土に対する流動化埋戻用固化
材の添加量が、100〜150kg/mである、請求
項2に記載の流動化処理土。
3. The fluidized soil according to claim 2, wherein the amount of the fluidizing and backfilling solidifying material added to the volcanic ash clay soil is 100 to 150 kg / m 3 .
【請求項4】請求項1に記載の流動化埋戻用固化材を、
調整含水比が30〜80%であり、且つ火山灰質粘性土
を乾燥物基準で10〜30%含む粗粒土に添加した流動
化処理土。
4. The solidifying material for fluidized backfill according to claim 1,
Fluidized soil having an adjusted water content ratio of 30 to 80% and added to coarse-grained soil containing 10 to 30% of volcanic cohesive soil on a dry matter basis.
【請求項5】粗粒土に対する流動化埋戻用し固化材の添
加量が、70〜120kg/mである、請求項4に記
載の流動化処理土。
5. The fluidized soil according to claim 4, wherein the amount of the fluidizing and backfilling solidifying material added to the coarse-grained soil is 70 to 120 kg / m 3 .
JP34177796A 1996-12-20 1996-12-20 Solidified material for fluidized backfill and fluidized treated soil using the same Expired - Fee Related JP3438499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34177796A JP3438499B2 (en) 1996-12-20 1996-12-20 Solidified material for fluidized backfill and fluidized treated soil using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34177796A JP3438499B2 (en) 1996-12-20 1996-12-20 Solidified material for fluidized backfill and fluidized treated soil using the same

Publications (2)

Publication Number Publication Date
JPH10182212A JPH10182212A (en) 1998-07-07
JP3438499B2 true JP3438499B2 (en) 2003-08-18

Family

ID=18348692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34177796A Expired - Fee Related JP3438499B2 (en) 1996-12-20 1996-12-20 Solidified material for fluidized backfill and fluidized treated soil using the same

Country Status (1)

Country Link
JP (1) JP3438499B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5027968B2 (en) * 2001-08-23 2012-09-19 奥多摩工業株式会社 Soil improving material and method for producing the same
JP4522815B2 (en) * 2004-10-21 2010-08-11 電気化学工業株式会社 High-strength cement admixture for strength compensation and cement composition using the same
JP4883390B2 (en) * 2005-11-22 2012-02-22 三菱マテリアル株式会社 Solidifying material for ground improvement and solidified soil using the same
JP2013087201A (en) * 2011-10-18 2013-05-13 Yoshizawa Lime Industry Soil solidification material and soil solidification method
JP6322452B2 (en) * 2014-03-25 2018-05-09 太平洋マテリアル株式会社 Backfill material
CN115974515A (en) * 2023-02-09 2023-04-18 武汉工程大学 Fluid solidified soil based on cohesive soil and preparation method thereof

Also Published As

Publication number Publication date
JPH10182212A (en) 1998-07-07

Similar Documents

Publication Publication Date Title
JP2003293345A (en) Earthwork material using steel slag, and method for using the same
JP3438499B2 (en) Solidified material for fluidized backfill and fluidized treated soil using the same
JP3185460B2 (en) Solidification material composition for rapid fluidization backfill method
JPH09176639A (en) Solidifying mixture containing clay mineral
JPH0953071A (en) Treatment of surplus excavated soil
JP3498880B2 (en) Hydraulic injection material and injection method
JP3560665B2 (en) Solidification material composition for ground improvement
JP2001019956A (en) Lime-improved soil mortar, its production and fluidization treating method of construction using the same
JP3552302B2 (en) Solidified material for fluidized backfill method
JP4112666B2 (en) Solidified material
JP3407854B2 (en) Rapid hardening soil improvement material
JPWO2019138538A1 (en) Ground improvement method
JP2503771B2 (en) Solidifying material for cohesive soil of volcanic ash
CZ296804B6 (en) Self-hardening suspension for making sealing screens and method of making a sealing screen in soil
JP4112667B2 (en) Solidification material for fluidization backfill
JP4020997B2 (en) Cement admixture and soil solidifier for soil solidification
JP4743679B2 (en) Water-improving soil-improving solidified material, method for producing water-improving improved soil, and water-sealing
JP2001137894A (en) Method for solidifying mud and soil and artificially solidified ground
JP6578316B2 (en) Ground improvement method
JP2021075916A (en) Solidification method of soil slurry
JP3116766B2 (en) Fluidization method of fine particle aggregate
US20180237342A1 (en) Binder Composition For Use With Aggregates
JP7441685B2 (en) Fluidized soil and its manufacturing method
JPH10280380A (en) Fluidization treatment soil of coal ash effective utilization and utilization method of the fluidity treatment soil
JP2744578B2 (en) Fluidizing backfill solidifying agent and method of using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees