JP3438362B2 - Control device for internal combustion engine - Google Patents
Control device for internal combustion engineInfo
- Publication number
- JP3438362B2 JP3438362B2 JP30749694A JP30749694A JP3438362B2 JP 3438362 B2 JP3438362 B2 JP 3438362B2 JP 30749694 A JP30749694 A JP 30749694A JP 30749694 A JP30749694 A JP 30749694A JP 3438362 B2 JP3438362 B2 JP 3438362B2
- Authority
- JP
- Japan
- Prior art keywords
- acceleration
- ignition timing
- change amount
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 29
- 230000001133 acceleration Effects 0.000 claims description 103
- 238000000034 method Methods 0.000 description 8
- 230000010349 pulsation Effects 0.000 description 6
- 230000010354 integration Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B61/00—Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
- F02B61/04—Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers
- F02B61/045—Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers for marine engines
Landscapes
- Engineering & Computer Science (AREA)
- Ocean & Marine Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Ignition Timing (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、内燃機関の定常状態と
加速状態とを判別してそれに応じた内燃機関の制御を行
うようにした内燃機関用制御装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an internal combustion engine which discriminates between a steady state and an accelerated state of the internal combustion engine and controls the internal combustion engine accordingly.
【0002】[0002]
【従来の技術】例えば、船外機エンジンでは、極低速域
から大きなトルクが要求されるため、加速に際してはス
ロットル操作に連動して点火時期を進角させないと十分
なトルクを得ることができない。そこで、従来より、ス
ロットルに連動して点火時期を進角させるリンク機構を
設けたり、或は、スロットルにスロットル開度を検出す
るスロットルセンサを設け、そのセンサ信号をマイクロ
コンピュータで処理して点火時期を制御するようにして
いる。2. Description of the Related Art For example, in an outboard motor engine, a large torque is required from an extremely low speed range, and therefore sufficient torque cannot be obtained unless the ignition timing is advanced in conjunction with throttle operation during acceleration. Therefore, conventionally, a link mechanism for advancing the ignition timing in conjunction with the throttle is provided, or a throttle sensor for detecting the throttle opening is provided for the throttle, and the sensor signal is processed by a microcomputer to obtain the ignition timing. Are trying to control.
【0003】しかしながら、スロットル操作に連動して
点火時期を進角させる複雑なリンク機構やスロットルセ
ンサを設けると、構成が複雑化してコスト高となり、特
に、リンク機構の場合には複雑な調整機能が必要とな
り、整備性を悪化させる等の欠点がある。However, if a complicated link mechanism or throttle sensor for advancing the ignition timing in conjunction with the throttle operation is provided, the structure becomes complicated and the cost becomes high. Particularly, in the case of the link mechanism, a complicated adjusting function is required. It is necessary and has the drawback of degrading maintainability.
【0004】また、スロットル開度のみに連動して点火
時期を制御した場合、エンジンの定常状態と加速状態で
要求される点火時期が異なるにも拘らず、上記従来構成
のものでは、定常状態と加速状態の区別なく、同じ点火
時期制御が行われるので、例えば加速状態を基準にして
点火時期制御を行えば、定常状態では最適な点火時期を
得ることができない。Further, when the ignition timing is controlled only by controlling the throttle opening, the ignition timing required in the steady state of the engine is different from the required ignition timing in the accelerated state, but in the conventional configuration described above, the steady state is set. Since the same ignition timing control is performed regardless of the acceleration state, for example, if the ignition timing control is performed with reference to the acceleration state, the optimum ignition timing cannot be obtained in the steady state.
【0005】そこで、特開昭63−205462公報に
示すように、基準クランク角毎のエンジン回転数の変化
量を単位時間当たりの回転数変化量に換算して、エンジ
ンの加減速を判定し、その判定結果に応じて点火時期を
補正するようにしたものがある。Therefore, as shown in Japanese Patent Laid-Open No. 63-205462, the amount of change in the engine speed for each reference crank angle is converted into the amount of change in the number of revolutions per unit time to determine the acceleration / deceleration of the engine. There is one in which the ignition timing is corrected according to the determination result.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記公
報記載の構成では、単位時間当たりの瞬間的な回転数変
化量によりエンジンの加減速を判定するので、瞬時の回
転変動や車両振動を抑える場合には有効であるが、アイ
ドル等の回転数変動の大きな領域では、誤って加速の判
定をしてしまう欠点がある。また、連続して加速が継続
している場合でもその回転は僅かな脈動を含んでおり、
加速中に回転の脈動を減速と誤って判定してしまうこと
があり、加速が継続している状態を連続的に検出するこ
とは困難である。However, in the structure described in the above publication, the acceleration / deceleration of the engine is determined by the instantaneous amount of change in the number of revolutions per unit time. Is effective, but there is a disadvantage that acceleration is erroneously determined in a region where the rotation speed fluctuation is large such as idle. Also, even when the acceleration continues continuously, its rotation contains a slight pulsation,
The pulsation of rotation may be erroneously determined as deceleration during acceleration, and it is difficult to continuously detect the state in which acceleration continues.
【0007】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、内燃機関の回転数変
化量から正確な加速判定を行うことができて、その判定
結果を内燃機関の制御に反映させることができる内燃機
関用制御装置を提供することにある。The present invention has been made in consideration of such circumstances, and therefore an object thereof is to make accurate acceleration determination from the amount of change in the rotational speed of the internal combustion engine, and to use the determination result as the internal combustion engine. An object of the present invention is to provide a control device for an internal combustion engine, which can be reflected in the control of.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の内燃機関用制御装置は、内燃機
関の回転数変化量を周期的に検出する変化量検出手段
と、前記回転数変化量を積分する積分手段と、前記回転
数変化量の積分値に基づいて加速状態にあるか否かを判
定する加速判定手段と、この加速判定手段の判定結果に
応じて前記内燃機関の運転状態を変化させる制御手段と
を備えた構成としたものである。In order to achieve the above object, a control device for an internal combustion engine according to claim 1 of the present invention comprises a change amount detecting means for periodically detecting a change amount of the rotational speed of the internal combustion engine, Integrating means for integrating the rotational speed change amount, acceleration determining means for determining whether or not the vehicle is in an acceleration state based on the integrated value of the rotational speed change amount, and the internal combustion engine according to the determination result of the acceleration determining means. And a control means for changing the operating state of the engine.
【0009】この構成において、請求項2のように、前
記積分手段は、前記回転数変化量が減速を示したときに
積分値をリセットするリセット手段を備えた構成とする
ことが好ましい。In this structure, it is preferable that the integrating means includes a reset means for resetting the integrated value when the rotational speed change amount indicates deceleration.
【0010】この場合、請求項3のように、前記リセッ
ト手段は、減速状態が所定時間継続したときに積分値を
リセットするようにしても良い。また、請求項4のよう
に、前記制御手段は、前記内燃機関の点火時期を制御す
るようにしても良い。In this case, the reset means may reset the integral value when the deceleration state continues for a predetermined time. Further, as in claim 4, the control means may control the ignition timing of the internal combustion engine.
【0011】或は、請求項5のように、前記制御手段
は、前記加速判定手段の判定結果に応じて前記内燃機関
の点火時期を加速時点火時期と定常時点火時期とに切り
替え、前記加速時点火時期を低回転領域において前記定
常時点火時期より進角させるようにしても良い。Alternatively, as in claim 5, the control means switches the ignition timing of the internal combustion engine between an acceleration ignition timing and a steady ignition timing in accordance with the determination result of the acceleration determination means, and the acceleration is performed. The ignition timing may be advanced from the steady-state ignition timing in the low rotation speed region.
【0012】[0012]
【作用】本発明の請求項1によれば、内燃機関の回転数
変化量を周期的に変化量検出手段により検出し、その回
転数変化量を積分手段により積分する。そして、この回
転数変化量の積分値に基づいて加速状態にあるか否かを
加速判定手段により判定する。例えば、回転数変化量の
積分値が所定値を越えたか否かによって、加速状態にあ
るか否かを判定し、その判定結果に応じて内燃機関の運
転状態を制御手段により変化させる。この場合、回転数
変化量の積分値により加速判定を行うので、前述した公
知例とは異なり、内燃機関の瞬時の回転変動(脈動)の
影響を受けずに済み、正確な加速判定が可能となる。According to the first aspect of the present invention, the rotational speed change amount of the internal combustion engine is periodically detected by the change amount detection means, and the rotational speed change amount is integrated by the integration means. Then, the acceleration determining means determines whether or not the vehicle is in an accelerating state based on the integrated value of the rotational speed change amount. For example, it is determined whether or not the vehicle is in an accelerating state depending on whether or not the integrated value of the rotational speed change amount exceeds a predetermined value, and the operating means of the internal combustion engine is changed by the control means according to the determination result. In this case, since the acceleration determination is performed by the integrated value of the rotational speed change amount, unlike the above-described known example, it is not affected by the instantaneous rotation fluctuation (pulsation) of the internal combustion engine, and accurate acceleration determination can be performed. Become.
【0013】更に、請求項2では、回転数変化量が減速
を示したときに回転数変化量の積分値をリセット手段に
よりリセットする。これにより、減速終了時を起点にし
て回転数変化量の積分を開始することができ、減速方向
の回転数変化の影響を排除することができる。Further, according to a second aspect of the present invention, the integrated value of the rotational speed change amount is reset by the reset means when the rotational speed change amount indicates deceleration. As a result, the integration of the rotational speed change amount can be started from the end of deceleration as the starting point, and the influence of the rotational speed change in the deceleration direction can be eliminated.
【0014】また、請求項3では、回転数変化量の積分
値をリセットする条件として、減速状態が所定時間継続
することを条件とする。従って、減速状態が所定時間以
内で終われば、回転数変化量の積分値をリセットせずに
積分を続行する。これにより、瞬時の回転変動(脈動)
の影響を受けずに回転数変化量の積分を続行することが
できる。In the third aspect, the condition for resetting the integrated value of the rotational speed change amount is that the deceleration state continues for a predetermined time. Therefore, if the deceleration state ends within a predetermined time, the integral is continued without resetting the integral value of the rotational speed change amount. As a result, instantaneous rotation fluctuation (pulsation)
It is possible to continue the integration of the rotational speed change amount without being affected by.
【0015】一方、請求項4では、加速判定手段の判定
結果に応じて内燃機関の点火時期を制御するが、燃料噴
射制御、吸気量制御等、内燃機関の他の制御にも加速判
定手段の判定結果を反映させるようにしても良い。加速
判定手段の判定結果を点火時期制御に利用することで、
定常状態と加速状態とを区別した点火時期制御が可能と
なる。On the other hand, in claim 4, the ignition timing of the internal combustion engine is controlled according to the determination result of the acceleration determination means, but the acceleration determination means is also used for other control of the internal combustion engine such as fuel injection control and intake air amount control. The determination result may be reflected. By using the determination result of the acceleration determination means for ignition timing control,
It is possible to control the ignition timing by distinguishing between the steady state and the accelerated state.
【0016】更に、請求項5では、加速判定手段の判定
結果に応じて点火時期を加速時点火時期と定常時点火時
期とに切り替える。この場合、加速時点火時期を低回転
領域において定常時点火時期より進角させることで、加
速時にはトルクを増加させて加速性能を向上する。Further, in claim 5, the ignition timing is switched between the ignition timing for acceleration and the ignition timing for steady state according to the determination result of the acceleration determining means. In this case, by advancing the ignition timing at the time of acceleration from the ignition timing at the steady time in the low rotation speed region, the torque is increased during acceleration to improve the acceleration performance.
【0017】[0017]
【実施例】以下、本発明を点火時期制御装置に適用した
一実施例を図面に基づいて説明する。図1に示すよう
に、制御装置11は、ROM・RAM(図示せず)を内
蔵したワンチップのマイクロコンピュータ12と、この
マイクロコンピュータ12から出力される点火信号によ
り点火コイル13を駆動する駆動回路14と、クランク
角センサ15から出力されるパルス信号を波形整形して
マイクロコンピュータ12に入力する波形整形回路16
とから構成されている。クランク角センサ15は、図示
しないエンジン(内燃機関)のクランクシャフト等に取
り付けられ、エンジンの回転に同期して一定の角度周期
(例えば15℃A周期)のパルス信号を出力すると共
に、特定のクランク位置でパルス信号をカットしてそれ
を気筒判別に使用する。尚、本実施例は、3気筒のエン
ジンの点火時期を制御する実施例であり、従って、制御
装置11内の駆動回路14と点火コイル13は3気筒分
設けられている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to an ignition timing control device will be described below with reference to the drawings. As shown in FIG. 1, the control device 11 includes a one-chip microcomputer 12 having a built-in ROM / RAM (not shown), and a drive circuit for driving an ignition coil 13 by an ignition signal output from the microcomputer 12. 14 and a waveform shaping circuit 16 for shaping the pulse signal output from the crank angle sensor 15 and inputting it to the microcomputer 12.
It consists of and. The crank angle sensor 15 is attached to a crankshaft or the like of an engine (internal combustion engine) (not shown), outputs a pulse signal of a constant angular cycle (for example, 15 ° C cycle) in synchronization with the rotation of the engine, and outputs a specific crank signal. The pulse signal is cut at the position and used for cylinder discrimination. The present embodiment is an embodiment for controlling the ignition timing of a three-cylinder engine. Therefore, the drive circuit 14 and the ignition coil 13 in the control device 11 are provided for three cylinders.
【0018】上述したマイクロコンピュータ12のRO
Mには、点火制御等のエンジン制御の各種プログラム
や、図2に示す点火周期起動ルーチン,図3に示す加速
判定ルーチンが記憶されている。図2の点火周期起動ル
ーチンは、点火の周期で繰り返し実行され、例えば3気
筒エンジンであれば120℃A周期で実行される。この
ルーチンでは、まず、ステップ101で、エンジン回転
数演算サブルーチンがコールされ、クランク角センサ1
5の信号発生周期よりエンジン回転数NEを演算する。
この演算には点火周期の角度に相当した角度周期を計測
して用いる。例えば3気筒の場合は120℃Aの回転時
間を用いてエンジン回転数を演算する。このエンジン回
転数の演算は点火周期で行うことが最適であり、この周
期より短い周期(例えば15℃Aや60℃A)で行う
と、サイクル内回転変動の影響を受けてしまい、エンジ
ン回転数の変化量を求める際に実際とは異なった変化量
となってしまい、正常な変化量の判定ができなくなる。RO of the microcomputer 12 described above
M stores various programs for engine control such as ignition control, an ignition cycle start routine shown in FIG. 2, and an acceleration determination routine shown in FIG. The ignition cycle starting routine of FIG. 2 is repeatedly executed in an ignition cycle, and for example, in the case of a three-cylinder engine, it is executed in a 120 ° C. cycle. In this routine, first, at step 101, the engine speed calculation subroutine is called, and the crank angle sensor 1
The engine speed NE is calculated from the signal generation cycle of No. 5.
For this calculation, an angular cycle corresponding to the angle of the ignition cycle is measured and used. For example, in the case of three cylinders, the engine speed is calculated using the rotation time of 120 ° C. It is optimum that the calculation of the engine speed is performed in the ignition cycle, and if it is performed in a cycle shorter than this cycle (for example, 15 ° C. or 60 ° C. A), it is affected by the intra-cycle rotation fluctuation, and the engine speed When calculating the change amount, the change amount is different from the actual change amount, and the normal change amount cannot be determined.
【0019】エンジン回転数NEの演算後、ステップ1
02へ移行し、エンジンの加速状態を判定するために、
後述する第3図の加速判定処理ルーチンにてエンジンの
運転状態を加速状態か定常状態かを判定し、エンジンの
運転状態に応じて加速判定フラグXACCFを1又は0
にセットする。その後、ステップ103へ移行し、予め
マイクロコンピュータ12のROMに記憶されている加
速時点火時期テーブルから、その時のエンジン回転数に
応じた加速時の基準点火時期AACCBを演算する。次
に、ステップ104へ移行し、予めROMに記憶されて
いる定常時点火時期テーブルから、その時のエンジン回
転数に対応した定常時の基準点火時期ABSEを演算す
る。この加速時点火時期と定常時点火時期は第4図に示
すような点火時期特性に設定され、加速時点火時期が低
回転領域(例えば2300rpm以下の領域)において
定常時点火時期より進角され、ノッキングの許容限界内
において最も高いトルクが得られるように設定されてい
る。After calculating the engine speed NE, step 1
02, in order to determine the acceleration state of the engine,
In an acceleration determination processing routine shown in FIG. 3, which will be described later, it is determined whether the operating state of the engine is an accelerating state or a steady state, and the acceleration determination flag XACCF is set to 1 or 0 depending on the operating state of the engine.
Set to. After that, the routine proceeds to step 103, and the reference ignition timing AACCB at the time of acceleration corresponding to the engine speed at that time is calculated from the acceleration time ignition timing table stored in advance in the ROM of the microcomputer 12. Next, the routine proceeds to step 104, where the steady-state reference ignition timing ABSE corresponding to the engine speed at that time is calculated from the steady-state ignition timing table stored in advance in the ROM. The ignition timing for acceleration and the ignition timing for steady state are set to have an ignition timing characteristic as shown in FIG. 4, and the ignition timing for acceleration is advanced from the ignition timing for steady state in a low rotation region (for example, a region of 2300 rpm or less). It is set to obtain the highest torque within the allowable limit of knocking.
【0020】次に、ステップ105へ移行し、エンジン
の運転状態が加速状態か定常状態かを加速判定フラグX
ACCFが1であるか否かによって判定し、この加速判
定フラグXACCFが0(定常)の時はステップ106
へ移行し、点火時期AESAに定常時の基準点火時期A
BSEをセットする。一方、加速判定フラグXACCF
が1(加速)の時はステップ107へ移行し、点火時期
AESAに加速時の基準点火時期AACCBをセットす
る。上記ステップ106,107の処理は、加速判定
(ステップ105)の判定結果に応じてエンジンの運転
状態(本実施例では点火時期)を変化させる制御手段と
して機能する。Next, the routine proceeds to step 105, where it is determined whether the operating condition of the engine is the accelerating condition or the steady condition.
It is determined whether or not the ACCF is 1, and if the acceleration determination flag XACCF is 0 (steady), step 106
And the ignition timing AESA is changed to the reference ignition timing A in the steady state.
Set BSE. On the other hand, the acceleration determination flag XACCF
Is 1 (acceleration), the routine proceeds to step 107, where the ignition timing AESA is set to the reference ignition timing AACCB during acceleration. The processing of steps 106 and 107 functions as control means for changing the operating state of the engine (ignition timing in this embodiment) according to the result of the acceleration determination (step 105).
【0021】点火時期AESAの設定後、ステップ10
8へ移行し、各種の点火時期補正制御(例えばノッキン
グ制御や基準となるクランク角センサ15の角度の補正
等)を行い、ステップ109へ移行し、所定の角度で点
火信号を発生させるために、角度を時間に換算する処理
を行い、点火タイミングをタイマにセットして本ルーチ
ンを終了する。After setting the ignition timing AESA, step 10
8 to perform various ignition timing correction control (for example, knocking control and correction of the angle of the crank angle sensor 15 serving as a reference), and then to step 109, in order to generate an ignition signal at a predetermined angle, The process of converting the angle into time is performed, the ignition timing is set in the timer, and this routine is ended.
【0022】次に、前記ステップ102で実行される加
速判定処理ルーチンの処理内容を図3のフローチャート
を用いて説明する。まず、ステップ201で、エンジン
回転数の変化量DELNEを次式により演算する。Next, the processing contents of the acceleration determination processing routine executed in step 102 will be described with reference to the flowchart of FIG. First, in step 201, the engine speed change amount DELNE is calculated by the following equation.
【0023】DELNE=NE−NEOLD
NE:最新のエンジン回転数
NEOLD:前回のエンジン回転数
このステップ201の処理が特許請求の範囲でいう変化
量検出手段として機能する。変化量演算後、最新のエン
ジン回転数NEを次回の変化量演算のために、NEOL
Dとして記憶保持する。その後、ステップ202へ移行
し、エンジンの回転数変化が減速方向か加速方向かを変
化量DELNEが0より小さいか否かによって判定す
る。もし、変化量DELNEが0以上(加速方向の変
化)であれば、ステップ203へ移行して、変化量DR
LNEを積算(積分)し、変化量積分値DNEINTを
次式により演算する。DELNE = NE-NEOLD NE: latest engine speed NEOLD: previous engine speed The process of step 201 functions as a change amount detecting means in the claims. After the change amount calculation, the latest engine speed NE is set to NEOL for the next change amount calculation.
Store and hold as D. After that, the routine proceeds to step 202, where it is determined whether the change in the engine speed is in the deceleration direction or the acceleration direction, based on whether the change amount DELNE is smaller than 0 or not. If the change amount DELNE is 0 or more (change in the acceleration direction), the process proceeds to step 203 and the change amount DR
LNE is integrated (integrated), and the change amount integrated value DNEINT is calculated by the following equation.
【0024】DNEINT=DNEINT+DRLNE
このステップ203の処理が特許請求の範囲でいう回転
数変化量を積分する積分手段として機能する。回転数変
化量DNEINTの演算後、減速発生カウンタCACC
Dをクリアして、ステップ208へ移行する。ここで、
減速発生カウンタCACCDは、減速方向の回転数変化
(回転数変化量DELNEH<0)が連続する回数をカ
ウントするカウンタである。DNEINT = DNEINT + DRLNE The processing of step 203 functions as an integrating means for integrating the rotational speed change amount in the claims. Deceleration generation counter CACC after calculation of rotation speed change amount DNEINT
After clearing D, the process proceeds to step 208. here,
The deceleration generation counter CACCD is a counter that counts the number of continuous rotation speed changes in the deceleration direction (rotation speed change amount DELNEH <0).
【0025】一方、ステップ202で変化量DELNE
が0より小さい場合(つまり減速の場合)には、ステッ
プ204へ移行して加速判定フラグXACCFの状態を
チェックする。もし、加速判定フラグXACCFCFが
1、つまり前回が加速状態で今回が減速状態の場合に
は、ステップ205へ移行し、減速発生カウンタCAC
CDをカウントアップして、ステップ206へ移行す
る。このステップ206では、減速発生カウンタCAC
CD(減速方向の回転数変化が連続する回数)が予め設
定した回数KCACCDより大きいか否かを判定し、減
速発生カウンタCACCDがKCACCD以下の場合は
ステップ208へ移行し、減速発生カウンタCACCD
がKCACCDより大きい場合はステップ207へ移行
して、減速発生カウンタCACCDをクリアし、変化量
の積分値DNEINTをリセットしてステップ208に
移行する。On the other hand, in step 202, the change amount DELNE
When is smaller than 0 (that is, when decelerating), the routine proceeds to step 204, where the state of the acceleration determination flag XACCF is checked. If the acceleration determination flag XACCFCF is 1, that is, if the previous time is the acceleration state and the current time is the deceleration state, the process proceeds to step 205 and the deceleration occurrence counter CAC
The CD is counted up, and the process proceeds to step 206. In this step 206, the deceleration occurrence counter CAC
It is determined whether or not CD (the number of continuous changes in the number of revolutions in the deceleration direction) is greater than a preset number of times KCACD.
Is larger than KCACCD, the routine proceeds to step 207, where the deceleration generation counter CACCD is cleared, the integral value DNEINT of the change amount is reset, and the routine proceeds to step 208.
【0026】一方、ステップ204で、加速判定フラグ
XACCFが0の場合、つまり前回も減速状態と判定さ
れた場合も、ステップ207に移行し、減速発生カウン
タCACCDと変化量の積分値DNEINTをリセット
してステップ208に移行する。以上説明したステップ
202〜207の処理は、回転数変化量DELNEが負
の状態(つまり減速状態)が所定時間継続したときに変
化量の積分値DNEINTをリセットするリセット手段
として機能する。On the other hand, when the acceleration determination flag XACCF is 0 in step 204, that is, when the previous deceleration state is also determined, the process proceeds to step 207 and the deceleration occurrence counter CACCD and the integral value DNEINT of the change amount are reset. Then, the process proceeds to step 208. The processing of steps 202 to 207 described above functions as a reset unit that resets the integrated value DNEINT of the change amount when the rotational speed change amount DELNE is in the negative state (that is, the deceleration state) for a predetermined time.
【0027】一方、ステップ208では、変化量積分値
DNEINTを、予め設定された判定値KDNEINT
と比較して加速の判定を行い、変化量積分値DNEIN
Tが判定値KDNEINTより大きい場合には、加速状
態と判定して、ステップ210で、加速判定フラグXA
CCFを1にセットする。これに対し、変化量積分値D
NEINTが判定値KDNEINT以下の場合は、定常
状態と判定して、ステップ209で、加速判定フラグX
ACCFをクリア(XACCF=0)する。これらステ
ップ208〜210の処理が特許請求の範囲でいう加速
判定手段として機能する。以上の処理により加速判定ル
ーチンを終了する。On the other hand, in step 208, the change amount integrated value DNEINT is set to the preset determination value KDNEINT.
Acceleration judgment is performed by comparing with the change amount integrated value DNEIN
If T is larger than the determination value KDNEINT, it is determined that the vehicle is in an accelerated state, and the acceleration determination flag XA is determined in step 210.
Set CCF to 1. On the other hand, the change amount integrated value D
If NEINT is less than or equal to the determination value KDNEINT, it is determined to be in a steady state, and the acceleration determination flag X is determined in step 209.
Clear the ACCF (XACCF = 0). The processing of these steps 208 to 210 functions as the acceleration determination means in the claims. With the above processing, the acceleration determination routine ends.
【0028】この加速判定ルーチンで使用する設定値と
して、減速発生カウンタ判定値KCACCDと、変化量
積分値の加速判定値KDNEINTの2種類があるが、
これらはエンジン毎に設定すべき値であり、本実施例に
おいては以下のように設定した。
KCACCD=1
KDNEINT=300rpm
この設定により、本実施例では、変化量積分値DNEI
NTが300rpmを越えると、加速状態と判定され、
また、回転数変化量DELNEが負の状態(つまり減速
状態)の判定が2回(クランク角で240℃A)連続し
たときに変化量積分値DNEINTがリセットされる。There are two kinds of set values used in this acceleration judgment routine, namely, a deceleration occurrence counter judgment value KCACCD and an acceleration judgment value KDNEINT of the change amount integrated value.
These are values to be set for each engine, and in this embodiment, they are set as follows. KCACCD = 1 KDNEINT = 300 rpm With this setting, in this embodiment, the change amount integrated value DNEI
When NT exceeds 300 rpm, it is determined to be in an accelerated state,
Further, the change amount integrated value DNEINT is reset when the determination that the rotation speed change amount DELNE is in the negative state (that is, the deceleration state) continues twice (240 ° C. in crank angle).
【0029】以上説明した点火時期制御を行った場合の
一例を第5図及び第6図に示すタイムチャートを用いて
説明する。第5図及び第6図において、(a)は加速判
定フラグXACCF、(b)は回転数変化量積分値DN
EINT、(c)はエンジン回転数NE、(d)は点火
時期AESA、(e)は回転数変化量DELNEを示
す。An example of the case where the ignition timing control described above is performed will be described with reference to the time charts shown in FIGS. 5 and 6. In FIGS. 5 and 6, (a) is the acceleration determination flag XACCF, and (b) is the rotational speed variation integrated value DN.
EINT, (c) shows the engine rotational speed NE, (d) shows the ignition timing AESA, and (e) shows the rotational speed change amount DELNE.
【0030】まず、第5図において、スロットルが開か
れ、エンジンの運転状態が加速状態になると、エンジン
回転数NEが上昇を始める。これにより、エンジン回転
数の加速方向の変化量DELNEが検出され、変化量積
分値DNEINTが増加する。この変化量積分値DNE
INTが加速判定値KDEINTより大きくなったと
き、加速が発生したと判断して加速判定フラグXACC
Fを1にセットする。これに伴って、点火時期AESA
は、定常時の点火時期設定から加速時の点火時期設定に
切り替えられ、点火時期が大きく進角する。加速が継続
している間は、加速判定フラグが1にセットされた状態
に維持され、加速時の点火時期設定値により点火時期が
制御される。加速が終了して定常状態に移行すると、加
速判定フラグXACCFはクリアされ、点火時期は定常
時の点火時期設定に切り替えられる。First, in FIG. 5, when the throttle is opened and the operating state of the engine becomes the accelerating state, the engine speed NE starts to increase. As a result, the change amount DELNE of the engine speed in the acceleration direction is detected, and the change amount integrated value DNEINT increases. This change amount integrated value DNE
When INT becomes larger than the acceleration determination value KDEINT, it is determined that acceleration has occurred, and the acceleration determination flag XACC
Set F to 1. Along with this, ignition timing AESA
Is switched from the ignition timing setting during steady state to the ignition timing setting during acceleration, and the ignition timing is greatly advanced. While the acceleration continues, the acceleration determination flag is maintained at 1 and the ignition timing is controlled by the ignition timing set value at the time of acceleration. When the acceleration is completed and the engine shifts to the steady state, the acceleration determination flag XACCF is cleared and the ignition timing is switched to the ignition timing setting for the steady state.
【0031】第6図は定常状態(アイドル)から加速が
発生した時の変化を詳細に示したタイムチャートであ
る。定常状態(アイドル)はエンジン回転数が比較的不
安定であり、加速方向の変化が複数回連続発生する場合
がある。しかし、減速方向の変化が所定回数KCACC
D(例えば2回)連続して発生した時に、変化量積分値
DNEINTをリセットするので、第6図(b)に示す
ように、定常状態(アイドル)の間は変化量積分値DN
EINTが加速判定値KDNEINTを越えることはな
い。FIG. 6 is a time chart showing in detail the change when acceleration occurs from the steady state (idle). In the steady state (idle), the engine speed is relatively unstable, and changes in the acceleration direction may occur multiple times in succession. However, the change in the deceleration direction has been repeated a predetermined number of times
Since the change amount integrated value DNEINT is reset when D (for example, twice) continuously occurs, the change amount integrated value DN is maintained during the steady state (idle) as shown in FIG. 6B.
EINT never exceeds the acceleration judgment value KDNEINT.
【0032】この後、加速が発生した時は、一回の回転
数変化量DELNEが大きく、また連続的に増加方向の
変化が発生する。それにより、変化量積分値DNEIN
Tは、急速に増加して加速判定値KDNEINTを越
え、その時点で、加速状態にあると判定して加速判定フ
ラグXACCFを1にセットする。加速の後半では平均
的に加速方向の変化を示すが、周期ごとで見ると、減速
方向の変化が発生する場合がある。しかし、減速方向の
変化が所定回数KCACCD(例えば2)連続して発生
しないと、変化量積分値DNEINTをリセットしない
ので、加速判定は継続する。これにより、加速発生を速
やかに判定でき、且つ、加速が終了するまで判定状態を
持続することが可能となる。Thereafter, when acceleration occurs, the amount of change in the number of revolutions DELNE per one time is large, and the change in the increasing direction continuously occurs. As a result, the change amount integrated value DNEIN
T rapidly increases and exceeds the acceleration determination value KDNEINT, at which point it is determined that the vehicle is in an accelerating state and the acceleration determination flag XACCF is set to 1. In the latter half of acceleration, changes in the acceleration direction are shown on average, but changes in the deceleration direction may occur in each cycle. However, if the change in the deceleration direction does not occur continuously for a predetermined number of times KCACC D (for example, 2), the change amount integrated value DNEINT is not reset, and the acceleration determination continues. As a result, it is possible to quickly determine the occurrence of acceleration, and it is possible to maintain the determination state until the acceleration ends.
【0033】この様にして、本実施例では、エンジンの
回転に周期してクランク角センサ15から出力される一
定の角度周期のパルス信号のみで、加速状態と定常状態
とを判別することができるので、加速時に点火時期を進
角させるための複雑なリンク機構やスロットルセンサを
設ける必要が無くなり、構成を簡略化できて、コストダ
ウンを図ることができる。しかも、加速状態と定常状態
とに応じて点火時期設定値を切り替えて点火時期を制御
するので、加速状態と定常状態に最適な点火時期で制御
することが可能となり、エンジンの運転状態に関係なく
常に最適点火時期制御することができて、エンジン性能
を向上することができる。In this way, in the present embodiment, the acceleration state and the steady state can be discriminated only by the pulse signal having a constant angular period output from the crank angle sensor 15 in a cycle of the engine rotation. Therefore, it is not necessary to provide a complicated link mechanism or a throttle sensor for advancing the ignition timing at the time of acceleration, so that the configuration can be simplified and the cost can be reduced. Moreover, since the ignition timing control value is switched by switching the ignition timing setting value according to the acceleration state and the steady state, it is possible to control the ignition timing optimal for the acceleration state and the steady state, regardless of the operating state of the engine. The optimum ignition timing control can always be performed, and engine performance can be improved.
【0034】尚、本実施例においては、ステップ10
3,104で、加速時と定常時の点火時期テーブルから
点火時期を演算した後に、ステップ105,107で、
加速判定フラグXACCFの状態より加速時点火時期と
定常時点火時期のどちらを用いるかを決めるようにした
が、加速判定フラグXACCFの状態を判定してからそ
れぞれの点火時期演算サブルーチンをコールするように
しても良い。In this embodiment, step 10
After calculating the ignition timing from the ignition timing table at the time of acceleration and at the time of steady state at 3 and 104, at steps 105 and 107,
The acceleration timing ignition timing or the steady time ignition timing is used depending on the state of the acceleration determination flag XACCF. However, each ignition timing calculation subroutine is called after determining the state of the acceleration determination flag XACCF. May be.
【0035】また、本実施例においては、クランク角セ
ンサ15から出力される15℃A周期のパルス信号を用
いるようにしたが、気筒数のパルス信号(点火周期)と
気筒判別信号を用いるようにしても良い。Further, in this embodiment, the pulse signal of the 15 ° C. cycle outputted from the crank angle sensor 15 is used, but the pulse signal of the number of cylinders (ignition cycle) and the cylinder discrimination signal are used. May be.
【0036】その他、本発明は、点火時期制御に限定さ
れず、燃料噴射制御、吸気量制御等、他のエンジン制御
にも加速判定の判定結果を反映させるようにしても良
く、また、船外機用エンジンに限らず、自動車,二輪
車,船内機等のあらゆるエンジンの制御に本発明を適用
して実施でき、勿論、2サイクルエンジン,4サイクル
エンジン,気筒数を問わず、本発明を適用可能であるこ
とは言うまでもない。In addition, the present invention is not limited to the ignition timing control, but the determination result of the acceleration determination may be reflected in other engine control such as fuel injection control and intake air amount control. The present invention can be applied to the control of any engine such as an automobile, a two-wheeled vehicle, an inboard motor, etc., as well as an engine for a machine, and of course, the present invention can be applied to any two-cycle engine, four-cycle engine, and the number of cylinders Needless to say.
【0037】[0037]
【発明の効果】以上の説明から明らかなように、本発明
の請求項1の内燃機関用制御装置によれば、内燃機関の
回転数変化量の積分値により加速判定を行うので、内燃
機関の瞬時の回転変動(脈動)の影響を受けずに加速判
定を行うことができて、正確な加速判定が可能となると
共に、複雑なリンク機構やスロットルセンサを設ける必
要が無くなり、構成を簡略化できて、コストダウンを図
ることができる。As is apparent from the above description, according to the control device for an internal combustion engine of claim 1 of the present invention, the acceleration determination is performed by the integrated value of the rotational speed change amount of the internal combustion engine. Acceleration judgment can be performed without being affected by instantaneous rotation fluctuation (pulsation), accurate acceleration judgment can be performed, and it is not necessary to provide a complicated link mechanism or throttle sensor, and the configuration can be simplified. Therefore, the cost can be reduced.
【0038】更に、請求項2では、回転数変化量が減速
を示したときに回転数変化量の積分値をリセットするよ
うにしたので、減速終了時を起点にして回転数変化量の
積分を開始することができ、減速方向の回転数変化の影
響を排除することができる。Further, in claim 2, since the integrated value of the rotational speed change amount is reset when the rotational speed change amount indicates deceleration, the integral of the rotational speed change amount is started from the end of deceleration. It is possible to start, and it is possible to eliminate the influence of the change in the rotation speed in the deceleration direction.
【0039】また、請求項3では、減速状態が所定時間
以内で終われば、回転数変化量の積分値をリセットせず
に積分を続行するので、瞬時の回転変動(脈動)の影響
を受けずに回転数変化量の積分を続行することができ
る。一方、請求項4では、加速判定に応じて内燃機関の
点火時期を制御するので、定常状態と加速状態とを区別
した点火時期制御を行うことができる。In the third aspect, if the deceleration state ends within a predetermined time, the integral is continued without resetting the integral value of the rotational speed change amount, so that there is no influence of the instantaneous rotational fluctuation (pulsation). It is possible to continue the integration of the rotational speed change amount. On the other hand, according to the fourth aspect, since the ignition timing of the internal combustion engine is controlled according to the acceleration determination, it is possible to perform the ignition timing control that distinguishes between the steady state and the accelerated state.
【0040】更に、請求項5では、加速判定に応じて点
火時期を加速時点火時期と定常時点火時期とに切り替
え、加速時点火時期を低回転領域において定常時点火時
期より進角させるようにしたので、加速状態と定常状態
に最適な点火時期で制御することができて、加速時には
点火時期を進角させてトルクを増加させることができ、
加速性能を向上させることができる。Further, according to claim 5, the ignition timing is switched between the ignition timing for acceleration and the ignition timing for steady state according to the acceleration determination, and the ignition timing for acceleration is advanced from the ignition timing for steady state in the low rotation speed region. Therefore, it is possible to control the ignition timing optimal for the acceleration state and the steady state, and to advance the ignition timing during acceleration to increase the torque.
The acceleration performance can be improved.
【図1】本発明の一実施例を示す制御系のブロック図FIG. 1 is a block diagram of a control system showing an embodiment of the present invention.
【図2】点火周期起動ルーチンの処理の流れを示すフロ
ーチャートFIG. 2 is a flowchart showing a processing flow of an ignition cycle starting routine.
【図3】加速判定ルーチンの処理の流れを示すフローチ
ャートFIG. 3 is a flowchart showing a processing flow of an acceleration determination routine.
【図4】定常時点火時期と加速時点火時期の特性を示す
図FIG. 4 is a diagram showing characteristics of steady-state ignition timing and acceleration-timing ignition timing.
【図5】本発明による制御の一例を示すタイムチャート
(その1)FIG. 5 is a time chart (1) showing an example of control according to the present invention.
【図6】本発明による制御の一例を示すタイムチャート
(その2)FIG. 6 is a time chart showing an example of control according to the present invention (part 2).
11…制御装置、12…マイクロコンピュータ(変化量
検出手段,積分手段,加速判定手段,制御手段,リセッ
ト手段)、13…点火コイル、15…クランク角セン
サ。11 ... Control device, 12 ... Micro computer (change amount detection means, integration means, acceleration determination means, control means, reset means), 13 ... Ignition coil, 15 ... Crank angle sensor.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F02D 45/00 362 F02D 45/00 312 F02D 45/00 358 F02P 5/15 ─────────────────────────────────────────────────── ─── Continued Front Page (58) Fields surveyed (Int.Cl. 7 , DB name) F02D 45/00 362 F02D 45/00 312 F02D 45/00 358 F02P 5/15
Claims (5)
する変化量検出手段と、 前記回転数変化量を積分する積分手段と、 前記回転数変化量の積分値に基づいて加速状態にあるか
否かを判定する加速判定手段と、 この加速判定手段の判定結果に応じて前記内燃機関の運
転状態を変化させる制御手段とを備えた内燃機関用制御
装置。1. A change amount detecting means for periodically detecting a rotational speed change amount of an internal combustion engine, an integrating means for integrating the rotational speed change amount, and an acceleration state based on an integrated value of the rotational speed change amount. An internal-combustion-engine control device comprising: acceleration determining means for determining whether or not there is any; and control means for changing an operating state of the internal combustion engine according to a determination result of the acceleration determining means.
速を示したときに積分値をリセットするリセット手段を
有していることを特徴とする請求項1に記載の内燃機関
用制御装置。2. The control device for an internal combustion engine according to claim 1, wherein the integrating means has a reset means for resetting the integrated value when the rotational speed change amount indicates deceleration. .
間継続したときに積分値をリセットすることを特徴とす
る請求項2に記載の内燃機関用制御装置。3. The control device for an internal combustion engine according to claim 2, wherein the reset means resets the integrated value when the deceleration state continues for a predetermined time.
期を制御することを特徴とする請求項1乃至3のいずれ
かに記載の内燃機関用制御装置。4. The control device for an internal combustion engine according to claim 1, wherein the control means controls an ignition timing of the internal combustion engine.
定結果に応じて前記内燃機関の点火時期を加速時点火時
期と定常時点火時期とに切り替え、前記加速時点火時期
を低回転領域において前記定常時点火時期より進角させ
たことを特徴とする請求項4に記載の内燃機関用制御装
置。5. The control means switches the ignition timing of the internal combustion engine between an acceleration ignition timing and a steady ignition timing in accordance with a determination result of the acceleration determination means, and sets the acceleration ignition timing in a low rotation speed region. The control device for an internal combustion engine according to claim 4, wherein the ignition timing is advanced from the steady-state ignition timing.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30749694A JP3438362B2 (en) | 1994-12-12 | 1994-12-12 | Control device for internal combustion engine |
US08/569,607 US5566657A (en) | 1994-12-12 | 1995-12-08 | Acceleration responsive control system and method for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30749694A JP3438362B2 (en) | 1994-12-12 | 1994-12-12 | Control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08159000A JPH08159000A (en) | 1996-06-18 |
JP3438362B2 true JP3438362B2 (en) | 2003-08-18 |
Family
ID=17969790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30749694A Expired - Fee Related JP3438362B2 (en) | 1994-12-12 | 1994-12-12 | Control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3438362B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009115013A (en) * | 2007-11-08 | 2009-05-28 | Oppama Kogyo Kk | Ignition control device of internal combustion engine |
-
1994
- 1994-12-12 JP JP30749694A patent/JP3438362B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08159000A (en) | 1996-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4437442A (en) | Automotive vehicle engine control system | |
US4924832A (en) | System and method for controlling ignition timing for internal combustion engine | |
US7886584B2 (en) | Method and apparatus for detecting a stroke of a 4-cycle internal combustion engine, based on changes in rotary engine speed | |
JP2000337206A (en) | Stroke discriminating device for four-cycle engine | |
EP1143142A2 (en) | Ignition timing control device for internal combustion engine | |
US5411000A (en) | Ignition timing control system for internal combustion engine | |
EP0456392B1 (en) | Control method for an internal combustion engine and electronic control apparatus therefor | |
JP3438362B2 (en) | Control device for internal combustion engine | |
US5566657A (en) | Acceleration responsive control system and method for internal combustion engine | |
US5027770A (en) | Ignition controller | |
US5161503A (en) | Ignition controller | |
US5571958A (en) | Apparatus and method for detecting misfire in an internal combustion engine | |
JP3401911B2 (en) | Control device for transient knock suppression of internal combustion engine | |
EP0962652B1 (en) | Ignition timing control apparatus of on-vehicle internal combustion engine | |
JP3361533B2 (en) | Electronic control unit for internal combustion engine | |
JPS60138245A (en) | Fuel injection control device of engine | |
JP3756570B2 (en) | Control device and control device for vehicle engine | |
JP2930256B2 (en) | Engine throttle valve controller | |
JP2517332Y2 (en) | Ignition timing control device for internal combustion engine | |
JP2956216B2 (en) | Idle rotation speed control device | |
JP2679243B2 (en) | Vehicle surging prevention device | |
JP3859809B2 (en) | Intake air amount control device for internal combustion engine | |
JP3480145B2 (en) | Control device for internal combustion engine | |
EP0420445A2 (en) | A system and method for controlling ignition timing in combustion chamber of an internal combustion engine | |
JP2710533B2 (en) | Ignition timing control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090613 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100613 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100613 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |