JP3437905B2 - Seismic isolation method for existing buildings - Google Patents
Seismic isolation method for existing buildingsInfo
- Publication number
- JP3437905B2 JP3437905B2 JP34399696A JP34399696A JP3437905B2 JP 3437905 B2 JP3437905 B2 JP 3437905B2 JP 34399696 A JP34399696 A JP 34399696A JP 34399696 A JP34399696 A JP 34399696A JP 3437905 B2 JP3437905 B2 JP 3437905B2
- Authority
- JP
- Japan
- Prior art keywords
- steel plate
- seismic isolation
- installation area
- isolation method
- column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Working Measures On Existing Buildindgs (AREA)
- Vibration Prevention Devices (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は既存建築物の免震工
法に関するものであり、特に、既存の柱の中間部に免震
装置を設置する免震工法に関するものである。
【0002】
【従来の技術】既存の建築物を耐震改修するためには、
建築物の強度を損なわずに安全性を確保するとともに、
建築物の使用をできる限り停止することなく改修工事を
施工する必要がある。建築物の一階や地下階は利用者の
出入りが多いため、二階より上の中間階に於いて既存の
柱の中間部に免震装置を設ける中間免震工法が開発され
つつある。
【0003】従来の中間免震工法の一例を説明すれば、
図18に示すように、先ず中間免震するRC構造の既存
の柱1に鋼管2を取り付ける。該鋼管2は柱1の外周面
から間隙を有して配設され、図19に示すように、柱1
と鋼管2の間隙へコンクリート3を充填して補強部4を
構築する。充填したコンクリート3が硬化した後は、既
存の柱1と補強部4とが一体的に接合される。
【0004】次に、図20に示すように、免震装置の設
置位置に該当する部位を補強部4の外側からワイヤソー
等により切断し、補強部4の中間部位を取り除きなが
ら、切断部分にジャッキ5を介装する。続いて、図21
に示すように、既存の柱1の中間部分を取り除き、図2
2に示すように、積層ゴム式の免震装置6を挿入して固
定する。
【0005】該免震装置6は複数の鋼板とゴム板を交互
に積層してあり、建築物等重量物の鉛直方向の荷重を安
定性良く支承しながら、地震時には震動の周期よりも長
周期で重量物を水平方向に低速で揺動させ、地震の入力
加速度を低減して耐震性を向上させるものである。
【0006】建築物の同一階の各柱に上記施工を行った
後に、前記ジャッキ5を緩めて取り外せば、図23に示
すように、中間免震施工が完了する。
【0007】
【発明が解決しようとする課題】従来の中間免震工法
は、既存の柱の外周部分にコンクリートを打設して補強
部を構築するため、柱が太くなって居住空間が狭められ
るという不具合があった。
【0008】そこで、既存建築物に免震施工を行うに際
して、柱の断面積を大きくすることなく免震装置を取り
付けるために解決すべき技術的課題が生じてくるのであ
り、本発明はこの課題を解決することを目的とする。
【0009】
【課題を解決するための手段】本発明は上記目的を達成
するために提案されたものであり、既存の柱の中間部に
免震装置の設置領域を定め、該設置領域の上部及び下部
の四側面に柱の幅より狭小の中間部鋼板を接着し、一
方、該中間部鋼板の両側の柱の角部には、床面或いは天
井面に近い位置に該中間部鋼板に隣接してコーナー部鋼
板を接着するとともに、前記設置領域を挟んで上下に対
峙した位置に中間部鋼板に隣接して接続部鋼板を接着
し、続いて、該中間部鋼板とコーナー部鋼板と接続部鋼
板の各隣接縁部を溶接して三者を一体化し、更に、前記
設置領域の側方に上下方向へ4本の補強金具を配設し、
夫々の補強金具の上下端部を上下の接続部鋼板の側面に
連結し、然る後に、前記設置領域の柱を取り除いて免震
装置を設置し、続いて、前記補強金具を切断して取り外
す既存建築物の免震工法を提供するものである。
【0010】
【発明の実施の形態】以下、本発明の実施の形態を図面
に従って詳述する。先ず、図1の二点鎖線で示すよう
に、RC構造の既存の柱1の中間部に免震装置の設置領
域SE を定める。例えば、室内に露出している柱の高さ
が3m程度である場合は、床面10からの高さが約1m
の位置乃至2mの位置までの範囲(上下約1mの範囲)
を設置領域SE にする。
【0011】次に、図2及び図3に示すように、該設置
領域SE の上部及び下部の四側面に、中間部鋼板11を
アンカーボルトで仮止めする。この中間部鋼板11の全
長は設置領域SE の境界から床面10或いは天井面12
に達する長さにし、柱1の幅より狭小に形成されてい
る。また、予め中間部鋼板11の下部位置に注入孔13
を開穿しておく。
【0012】中間部鋼板11の両側の柱の角部には、該
中間部鋼板11に隣接してコーナー部鋼板14と接続部
鋼板15を仮止めする。コーナー部鋼板14及び接続部
鋼板15はL形鋼で形成され、コーナー部鋼板14は中
間部鋼板11と同程度の厚さとし、接続部鋼板15は中
間部鋼板11より厚い鋼材を使用する。前記コーナー部
鋼板14は床面10或いは天井面12に近い側に取り付
けられ、接続部鋼板15は前記設置領域SE を挟んで上
下に対峙した位置に取り付けられる。また、コーナー部
鋼板14の両側面下部位置に予め注入孔16を開穿して
おくとともに、接続部鋼板15の両側面にも注入孔17
を開穿しておく。尚、符号18は既存の柱1内の主鉄筋
である。
【0013】そして、前記中間部鋼板11の注入孔1
3、並びにコーナー部鋼板14及び接続部鋼板15の注
入孔16,17からエポキシ樹脂系の接着剤を圧入す
る。図4に示すように、各注入孔13,16,17から
圧入された接着剤により、中間部鋼板11と既存の柱1
との間、並びにコーナー部鋼板14及び接続部鋼板15
と既存の柱1との間に接着層19が形成され、余った接
着剤は中間部鋼板11の上部から漏出する。
【0014】尚、図示は省略するが、該接着層19を十
分に厚くするためには、中間部鋼板11、コーナー部鋼
板14、接続部鋼板15と前記柱1との間に数mmのスペ
ーサを介装してもよい。この接着剤が硬化すれば、中間
部鋼板11、コーナー部鋼板14並びに接続部鋼板15
の各鋼板が前記柱1へ極めて強固に接着される。続い
て、中間部鋼板11、コーナー部鋼板14、接続部鋼板
15の各隣接縁部を溶接し、三者を一体的に接続する。
【0015】更に、図5及び図6に示すように、前記設
置領域SE の側方に上下方向へ4本の補強金具20を配
設し、夫々の補強金具20の上下端部を前記上下の接続
部鋼板15の側面に連結する。該補強金具20はL形鋼
で形成され、前記接続部鋼板15の厚さ及び幅寸法と同
程度か或いはそれ以上のものを使用する。
【0016】然る後に、図7及び図8に示すように、前
記設置領域SE の柱1をワイヤソー等により切断して取
り除き、柱1の切断面に露出した上下の主鉄筋18をは
つり出す。そして、ベースプレート21に植え付けたア
ンカー筋(図示せず)と前記主鉄筋18が平面視重なり
合わないように配置し、柱1の上下の切断面にベースプ
レート21を水平に取り付けてコンクリートを打設す
る。該ベースプレート21には袋ナット22が埋設され
ている。この状態では、柱1の上部荷重は前記補強金具
20を介して柱1の下部へ伝達される。
【0017】而して、図9及び図10に示すように、柱
1が取り除かれた前記設置領域SEに積層ゴム式の免震
装置23を挿入して下部ベースプレート21aの上に載
置し、免震装置23の下部フランジ23aから下部ベー
スプレート21aの袋ナット22へボルト24を螺着す
るとともに、上部フランジ23bから上部ベースプレー
ト21bの袋ナット22へボルト24を螺着して、設置
領域SE に免震装置23を固定する。
【0018】設置領域SE に免震装置23が設置された
後は、前記補強金具20の中間部を切断して取り除く。
斯くして、図11に示すように、既存の柱1に掛かる荷
重はすべて免震装置23が受けることになる。そして、
建築物の同一階の各柱に対して順次上記施工を行えば、
柱を太くすることなく既存建築物の中間免震施工が完了
する。
【0019】次に、本発明の他の実施の形態を説明す
る。図12及び図13に示すように、前記設置領域SE
の上部及び下部の四側面に中間部鋼板11を仮止めし、
該中間部鋼板11の両側の柱の角部に、L形鋼のコーナ
ー部鋼板14を隣接して仮止めするまでの工程は、前述
した免震工法と同じである。
【0020】ここで、予めH形鋼のウェブ中央を長手方
向に切断し、T形断面の接続部鋼板25を形成してお
き、該接続部鋼板25のウェブ同士を向き合わせて中間
部鋼板11の両側の柱1の角部に仮止めする。また、他
の鋼板と同様に該接続部鋼板25にも注入孔26を開穿
しておく。
【0021】そして、前記注入孔13,16,26から
エポキシ樹脂系の接着剤を圧入して中間部鋼板11、コ
ーナー部鋼板14並びに接続部鋼板25を柱1へ接着
し、中間部鋼板11、コーナー部鋼板14、接続部鋼板
25の隣接縁部を溶接して、三者を一体的に接続する。
【0022】更に、図14及び図15に示すように、設
置領域SE の側方にL形鋼の補強金具20を配設し、夫
々の補強金具20の上下端部を前記上下の接続部鋼板2
5の側面に連結する。これ以降の工程は前述した免震工
法と同じであるので説明を省略する。
【0023】上記他の実施の形態では、前記接続部鋼板
25にはH形鋼を2分割してT形断面にしたものを使用
しており、H形鋼のフランジの肉厚はウェブの約2倍に
規格されているので、安価に接続部鋼板を形成できる。
【0024】図16及び図17は、本発明の更に他の実
施の形態を示し、前記中間部鋼板11とコーナー部鋼板
14を同一長さ寸法に形成し、前記設置領域SE を挟ん
で上下に対峙した位置に、H形断面の接続部鋼板35を
既存の柱1の両側から夫々のフランジの縁部同士を突き
合わせて取り付ける。この場合、フランジの片側内寸法
Fを柱1の幅寸法の1/2とし、且つウェブの内寸法W
が柱1の幅寸法に等しい(W=2×F)H形鋼を接続部
鋼板35として使用する。
【0025】そして、注入孔13,16,36からエポ
キシ樹脂系の接着剤を圧入して中間部鋼板11、コーナ
ー部鋼板14並びに接続部鋼板35を柱1へ接着し、補
強金具20の上下端部を上下の接続部鋼板35の側面に
連結する。これ以降の工程は前述した免震工法と同じで
あるので説明を省略する。
【0026】而して、本発明は、本発明の精神を逸脱し
ない限り種々の改変を為すことができ、そして、本発明
が該改変されたものに及ぶことは当然である。
【0027】
【発明の効果】以上説明したように、本発明では既存の
柱の中間部に免震装置の設置領域を定め、その上部及び
下部の柱に中間部鋼板、コーナー部鋼板、接続部鋼板を
接着した後に各部鋼板の隣接縁部を溶接し、設置領域の
側方に配設した補強金具の上下端部を上下の接続部鋼板
に連結する。この状態で設置領域の柱を切断して取り除
いたときは、前記各部鋼板と補強金具により柱の荷重を
支持するので、従来の免震工法のように、柱の外周部分
にコンクリートを打設して柱の断面積を大きくする必要
がなく、居住空間が狭められるという不具合を解消でき
る。
【0028】斯くして、既存建築物に免震施工を行うに
際して、居住性を損なうことなく耐震性を向上させるこ
とが可能となった。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation method for an existing building, and more particularly to a seismic isolation method for installing a seismic isolation device in the middle of an existing pillar. It is about. 2. Description of the Related Art In order to retrofit an existing building with earthquake resistance,
While ensuring safety without compromising the strength of the building,
It is necessary to carry out renovation work without stopping the use of buildings as much as possible. Since the first floor and the basement floor of the building have many users, the middle seismic isolation method is being developed to install a seismic isolation device in the middle of the existing pillars on the middle floor above the second floor. [0003] An example of a conventional intermediate seismic isolation method is as follows.
As shown in FIG. 18, first, a steel pipe 2 is attached to an existing column 1 having an RC structure to be subjected to intermediate isolation. The steel pipe 2 is disposed with a gap from the outer peripheral surface of the column 1, and as shown in FIG.
The concrete 3 is filled into the gap between the steel pipe 2 and the steel pipe 2 to form the reinforcing part 4. After the filled concrete 3 hardens, the existing columns 1 and the reinforcing portions 4 are integrally joined. [0004] Next, as shown in FIG. 20, a portion corresponding to the installation position of the seismic isolation device is cut from the outside of the reinforcing portion 4 with a wire saw or the like, and while the intermediate portion of the reinforcing portion 4 is removed, the cut portion is jacked. 5 is interposed. Subsequently, FIG.
As shown in Fig. 2, the middle part of the existing pillar 1 was removed and
As shown in FIG. 2, the laminated rubber type seismic isolation device 6 is inserted and fixed. The seismic isolation device 6 is formed by alternately laminating a plurality of steel plates and rubber plates. The seismic isolation device 6 supports a vertical load of a heavy object such as a building with good stability, and has a longer period than an oscillation period during an earthquake. It swings a heavy object at low speed in the horizontal direction, reduces the input acceleration of the earthquake and improves the earthquake resistance. After the above-mentioned construction has been performed on each pillar on the same floor of the building, if the jack 5 is loosened and removed, the intermediate seismic isolation construction is completed as shown in FIG. [0007] In the conventional middle seismic isolation method, concrete is cast on the outer peripheral portion of an existing column to construct a reinforcing portion, so that the column becomes thick and the living space is narrowed. There was a problem. Therefore, when performing seismic isolation work on an existing building, there arises a technical problem to be solved in order to attach the seismic isolation device without increasing the cross-sectional area of the pillar. The purpose is to solve. SUMMARY OF THE INVENTION The present invention has been proposed to achieve the above-mentioned object, and an installation area of a seismic isolation device is defined at an intermediate portion of an existing pillar, and an upper area of the installation area is provided. And an intermediate steel plate narrower than the width of the column is bonded to the four side surfaces of the lower part, while the corners of the columns on both sides of the intermediate steel plate are adjacent to the intermediate steel plate at a position close to the floor or ceiling surface. And bonding the connecting part steel sheet adjacent to the intermediate part steel sheet at a position facing vertically above and below the installation area, and then connecting the intermediate steel sheet, the corner steel sheet and the connecting part. Each adjacent edge of the steel plate is welded to integrate the three members, and further, four reinforcing brackets are arranged vertically in the side of the installation area,
The upper and lower ends of each reinforcing bracket are connected to the side surfaces of the upper and lower connecting steel plates, and thereafter, the seismic isolation device is installed by removing the pillar in the installation area, and subsequently, the reinforcing bracket is cut and removed. It provides seismic isolation method for existing buildings. Embodiments of the present invention will be described below in detail with reference to the drawings. First, as shown by a two-dot chain line in FIG. 1, defines a placement area S E of the seismic isolation device in the middle of an existing column 1 of RC structures. For example, when the height of the pillar exposed in the room is about 3 m, the height from the floor 10 is about 1 m.
Range from position to 2m (range of about 1m up and down)
The to the installation area S E. [0011] Next, as shown in FIGS. 2 and 3, the four sides of the top and bottom of the installation area S E, is temporarily fixed intermediate portion steel 11 with anchor bolts. The intermediate section total length installation area S floor 10 or ceiling surface from the boundary of E 12 of the steel sheet 11
, And is formed to be narrower than the width of the column 1. In addition, the injection hole 13 is previously set at a lower position of the intermediate steel plate 11.
Keep drilling. At the corners of the columns on both sides of the intermediate steel plate 11, a corner steel plate 14 and a connecting steel plate 15 are temporarily fixed adjacent to the intermediate steel plate 11. The corner portion steel plate 14 and the connection portion steel plate 15 are formed of L-shaped steel. The corner portion steel plate 14 has a thickness approximately equal to that of the intermediate portion steel plate 11, and the connection portion steel plate 15 uses a steel material thicker than the intermediate portion steel plate 11. The corner steel sheet 14 is attached on the side closer to the floor surface 10 or ceiling surface 12, connecting section steel 15 is attached at a position opposite to the upper and lower positions across the installation area S E. In addition, injection holes 16 are formed in advance at lower positions on both sides of the corner steel plate 14, and injection holes 17 are formed on both sides of the connection steel plate 15.
Keep drilling. Reference numeral 18 denotes a main reinforcing bar in the existing column 1. The injection hole 1 of the intermediate steel plate 11
3, and an epoxy resin adhesive is press-fitted from the injection holes 16 and 17 of the corner portion steel plate 14 and the connection portion steel plate 15. As shown in FIG. 4, the intermediate steel sheet 11 and the existing column 1 are pressed by the adhesive press-fitted from the injection holes 13, 16, 17.
And the corner portion steel plate 14 and the connection portion steel plate 15
An adhesive layer 19 is formed between the column 1 and the existing column 1, and the excess adhesive leaks from the upper part of the intermediate steel plate 11. Although not shown, in order to make the adhesive layer 19 sufficiently thick, a spacer of several mm is provided between the intermediate steel plate 11, the corner steel plate 14, the connecting steel plate 15 and the column 1. May be interposed. When this adhesive is cured, the intermediate steel plate 11, the corner steel plate 14, and the connection steel plate 15
Are bonded very firmly to the column 1. Subsequently, the adjacent edges of the intermediate steel plate 11, the corner steel plate 14, and the connection steel plate 15 are welded, and the three members are integrally connected. Furthermore, as shown in FIGS. 5 and 6, the installation area S is disposed lateral to the vertical direction to four reinforcing brackets 20 of E, the lower the upper and lower ends of the respective reinforcing bracket 20 Is connected to the side surface of the connection steel plate 15. The reinforcing bracket 20 is formed of an L-shaped steel, and has a thickness equal to or greater than the thickness and the width of the connecting portion steel plate 15. [0016] Then, as shown in FIGS. 7 and 8, the installation pillars 1 area S E removed by cutting by a wire saw or the like, out chipping the main reinforcement 18 of the upper and lower exposed on the cut surface of the column 1 . An anchor bar (not shown) planted on the base plate 21 and the main reinforcing bar 18 are arranged so as not to overlap in a plan view, and the base plate 21 is horizontally mounted on the upper and lower cut surfaces of the column 1 and concrete is poured. . A cap nut 22 is embedded in the base plate 21. In this state, the upper load of the column 1 is transmitted to the lower portion of the column 1 via the reinforcing bracket 20. [0017] In Thus, as shown in FIGS. 9 and 10, is placed on the lower base plate 21a by inserting the isolator 23 of the laminated rubber type to the installation area S E of the pillar 1 is removed , with screwing bolt 24 into the cap nut 22 of the lower base plate 21a from the lower flange 23a of the isolator 23, and screwed the bolts 24 from the upper flange 23b to the cap nut 22 of the upper base plate 21b, installation area S E The seismic isolation device 23 is fixed to. After the seismic isolation device 23 is installed in the installation area S E , the middle part of the reinforcing bracket 20 is cut and removed.
In this way, as shown in FIG. 11, all the loads applied to the existing column 1 are received by the seismic isolation device 23. And
If the above construction is performed sequentially for each pillar on the same floor of the building,
Intermediate seismic isolation construction of existing buildings is completed without thickening columns. Next, another embodiment of the present invention will be described. As shown in FIGS. 12 and 13, the installation area S E
Temporarily fix the intermediate steel plate 11 on the upper and lower four sides of the
The process of temporarily fixing the corner steel plate 14 of the L-shaped steel adjacent to the corners of the columns on both sides of the intermediate steel plate 11 is the same as the above-described seismic isolation method. Here, the center of the web of the H-section steel is cut in advance in the longitudinal direction to form a connection section steel plate 25 having a T-shaped cross section. Temporarily fix to the corners of pillar 1 on both sides of In addition, an injection hole 26 is formed in the connection portion steel plate 25 in the same manner as other steel plates. The intermediate steel plate 11, the corner steel plate 14, and the connecting steel plate 25 are bonded to the column 1 by press-fitting an epoxy resin adhesive from the injection holes 13, 16, 26, and the intermediate steel plate 11, Adjacent edges of the corner steel plate 14 and the connection steel plate 25 are welded to integrally connect the three members. Furthermore, as shown in FIGS. 14 and 15, installation area S provided with reinforcing brackets 20 of L-shaped steel on the side of E, connecting portions of the upper and lower the upper and lower ends of the respective reinforcing bracket 20 Steel plate 2
5 side. Subsequent steps are the same as those in the above-described seismic isolation method, and thus description thereof is omitted. In the above other embodiment, the connecting portion steel plate 25 is formed by dividing an H-shaped steel into two and forming a T-shaped cross section, and the thickness of the flange of the H-shaped steel is approximately equal to that of the web. Since the standard is doubled, the connecting portion steel plate can be formed at low cost. [0024] FIGS. 16 and 17 show a further embodiment of the present invention, the intermediate portion steel sheet 11 and the corner portion steel 14 is formed in the same length, upper and lower positions across the installation area S E At the position facing the above, the connecting portion steel plate 35 having the H-shaped cross section is attached by abutting the edges of the respective flanges from both sides of the existing column 1. In this case, the inner dimension F on one side of the flange is set to 1/2 of the width dimension of the column 1 and the inner dimension W of the web is set.
The H-section steel (W = 2 × F) equal to the width dimension of the column 1 is used as the connection part steel plate 35. Then, an epoxy resin-based adhesive is press-fitted from the injection holes 13, 16, and 36, and the intermediate steel plate 11, the corner steel plate 14, and the connection steel plate 35 are bonded to the column 1, and the upper and lower ends of the reinforcing bracket 20 are formed. The portions are connected to the side surfaces of the upper and lower connecting portion steel plates 35. Subsequent steps are the same as those in the above-described seismic isolation method, and thus description thereof is omitted. Thus, the present invention can be variously modified without departing from the spirit of the present invention, and it goes without saying that the present invention extends to the modified ones. As described above, according to the present invention, the installation area of the seismic isolation device is defined in the middle part of the existing column, and the middle part steel plate, the corner part steel plate, and the connection part are formed in the upper and lower pillars. After bonding the steel plates, the adjacent edges of the steel plates are welded, and the upper and lower ends of the reinforcing brackets arranged on the side of the installation area are connected to the upper and lower connection steel plates. When the column in the installation area is cut and removed in this state, the load on the column is supported by the steel plates and the reinforcing brackets, and concrete is cast on the outer periphery of the column as in the conventional seismic isolation method. Therefore, it is not necessary to increase the cross-sectional area of the pillar, and the disadvantage that the living space is narrowed can be solved. Thus, it is possible to improve the seismic resistance without impairing the livability when performing seismic isolation work on an existing building.
【図面の簡単な説明】
【図1】本発明の実施の形態を示し、免震工法の第1工
程の正面図。
【図2】本発明の実施の形態を示し、免震工法の第2工
程の正面図。
【図3】本発明の実施の形態を示し、接着剤圧入前の図
2のA−A線断面図。
【図4】本発明の実施の形態を示し、接着剤圧入後の図
2のB−B線断面図。
【図5】本発明の実施の形態を示し、免震工法の第3工
程の正面図。
【図6】本発明の実施の形態を示し、図5のC−C線断
面図。
【図7】本発明の実施の形態を示し、免震工法の第4工
程の正面図。
【図8】本発明の実施の形態を示し、図7のD−D線断
面図。
【図9】本発明の実施の形態を示し、免震工法の第5工
程の正面図、
【図10】本発明の実施の形態を示し、図9のE−E線
断面図。
【図11】本発明の実施の形態を示し、免震工法が完了
した状態の正面図。
【図12】本発明の他の実施の形態を示し、免震工法の
第2工程の正面図。
【図13】本発明の他の実施の形態を示し、図12のF
−F線断面図。
【図14】本発明の他の実施の形態を示し、免震工法の
第3工程の正面図。
【図15】本発明の他の実施の形態を示し、図14のG
−G線断面図。
【図16】本発明の更に他の実施の形態を示し、免震工
法の第2〜3工程の正面図。
【図17】本発明の更に他の実施の形態を示し、図16
のH−H線断面図。
【図18】従来技術を示し、免震工法の第1工程の正面
図。
【図19】従来技術を示し、免震工法の第2工程の正面
図。
【図20】従来技術を示し、免震工法の第3工程の正面
図。
【図21】従来技術を示し、免震工法の第4工程の正面
図。
【図22】従来技術を示し、免震工法の第5工程の正面
図。
【図23】従来技術を示し、免震工法の第6工程の正面
図。
【符号の説明】
1 既存の柱
10 床面
11 中間部鋼板
12 天井面
14 コーナー部鋼板
15 接続部鋼板
19 接着層
20 補強金具
23 免震装置
25 接続部鋼板
35 接続部鋼板BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of the present invention and is a front view of a first step of a seismic isolation method. FIG. 2 shows the embodiment of the present invention and is a front view of a second step of the seismic isolation method. FIG. 3 shows the embodiment of the present invention and is a cross-sectional view taken along the line AA of FIG. 2 before an adhesive is press-fitted. FIG. 4 shows the embodiment of the present invention and is a cross-sectional view taken along line BB of FIG. 2 after press-fitting of an adhesive. FIG. 5 shows the embodiment of the present invention and is a front view of a third step of the seismic isolation method. 6 shows the embodiment of the present invention, and is a cross-sectional view taken along line CC of FIG. FIG. 7 shows the embodiment of the present invention and is a front view of a fourth step of the seismic isolation method. 8 shows the embodiment of the present invention and is a cross-sectional view taken along line DD of FIG. 9 shows an embodiment of the present invention, and is a front view of a fifth step of the seismic isolation method. FIG. 10 is a sectional view taken along line EE of FIG. 9, showing the embodiment of the present invention. FIG. 11 shows the embodiment of the present invention and is a front view of a state in which the seismic isolation method has been completed. FIG. 12 shows another embodiment of the present invention, and is a front view of a second step of the seismic isolation method. FIG. 13 shows another embodiment of the present invention,
-F line sectional drawing. FIG. 14 shows another embodiment of the present invention, and is a front view of a third step of the seismic isolation method. FIG. 15 shows another embodiment of the present invention,
-G line sectional drawing. FIG. 16 is a front view of a second to third steps of the seismic isolation method, showing still another embodiment of the present invention. FIG. 17 shows still another embodiment of the present invention, and FIG.
Sectional view taken along line HH of FIG. FIG. 18 is a front view of the first step of the seismic isolation method, showing the prior art. FIG. 19 is a front view of a second step of the seismic isolation method, showing a conventional technique. FIG. 20 is a front view of a third step of the seismic isolation method, showing the prior art. FIG. 21 is a front view of the fourth step of the seismic isolation method, showing the prior art. FIG. 22 is a front view of the fifth step of the seismic isolation method, showing the prior art. FIG. 23 is a front view of a sixth step of the seismic isolation method, showing a conventional technique. [Description of Signs] 1 Existing pillar 10 Floor 11 Intermediate steel plate 12 Ceiling surface 14 Corner steel plate 15 Connection steel plate 19 Adhesive layer 20 Reinforcement bracket 23 Seismic isolation device 25 Connection steel plate 35 Connection steel plate
Claims (1)
を定め、該設置領域の上部及び下部の四側面に柱の幅よ
り狭小の中間部鋼板を接着し、一方、該中間部鋼板の両
側の柱の角部には、床面或いは天井面に近い位置に該中
間部鋼板に隣接してコーナー部鋼板を接着するととも
に、前記設置領域を挟んで上下に対峙した位置に中間部
鋼板に隣接して接続部鋼板を接着し、続いて、該中間部
鋼板とコーナー部鋼板と接続部鋼板の各隣接縁部を溶接
して三者を一体化し、更に、前記設置領域の側方に上下
方向へ4本の補強金具を配設し、夫々の補強金具の上下
端部を上下の接続部鋼板の側面に連結し、然る後に、前
記設置領域の柱を取り除いて免震装置を設置し、続い
て、前記補強金具を切断して取り外すことを特徴とする
既存建築物の免震工法。(57) [Claims] [Claim 1] An installation area of a seismic isolation device is defined in the middle of an existing pillar, and an intermediate steel plate having a width smaller than the width of the pillar is provided on the upper and lower four sides of the installation area. On the other hand, at the corners of the columns on both sides of the intermediate steel plate, a corner steel plate is bonded adjacent to the intermediate steel plate at a position close to the floor or ceiling surface, and the installation region is sandwiched. Attach the connecting part steel plate adjacent to the middle part steel plate at the position facing up and down, and then weld the adjacent edges of the middle part steel plate, the corner part steel plate and the connecting part steel plate to integrate the three parts Further, four reinforcing brackets are arranged vertically in the side of the installation area, and the upper and lower ends of each reinforcing hardware are connected to the side surfaces of the upper and lower connecting part steel plates. The seismic isolation device is installed by removing the pillars, and then the reinforcing bracket is cut and removed. Seismic isolation of the presence building.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34399696A JP3437905B2 (en) | 1996-12-24 | 1996-12-24 | Seismic isolation method for existing buildings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34399696A JP3437905B2 (en) | 1996-12-24 | 1996-12-24 | Seismic isolation method for existing buildings |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10184033A JPH10184033A (en) | 1998-07-14 |
JP3437905B2 true JP3437905B2 (en) | 2003-08-18 |
Family
ID=18365856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34399696A Expired - Fee Related JP3437905B2 (en) | 1996-12-24 | 1996-12-24 | Seismic isolation method for existing buildings |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3437905B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010037800A (en) * | 2008-08-05 | 2010-02-18 | Dai Nippon Construction | Base isolating method for existing building |
-
1996
- 1996-12-24 JP JP34399696A patent/JP3437905B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10184033A (en) | 1998-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101880494B1 (en) | Core wall seismic reinforcement structure and construction method of the same | |
KR101030419B1 (en) | Joint structure of vertical member and horizontal member | |
JP5314356B2 (en) | Composite beam, composite beam construction method, and fireproof building | |
US5634315A (en) | Buildings method of construction | |
JPH08338153A (en) | Fitting method of vibration damping device | |
JP6053485B2 (en) | Installation structure of studs in existing building | |
JP3486866B2 (en) | Framed wall construction incorporating a wooden ramen frame | |
JP2007197936A (en) | Wall unit, aseismatic wall and its construction method | |
JP3703204B2 (en) | Seismic reinforcement method for existing buildings | |
JP3289710B2 (en) | Seismic retrofitting method and seismic retrofitting structure for existing structures | |
JP3437905B2 (en) | Seismic isolation method for existing buildings | |
JP2869005B2 (en) | Manufacturing method of glass fiber reinforced cement wall panel | |
JP3849447B2 (en) | High-rise building frame structure | |
KR101190547B1 (en) | Earthquake-resistant frame and seismic retrofit method for rahmen building using the same | |
JP3725818B2 (en) | How to install seismic isolation devices on existing pillars | |
JPH10331436A (en) | Earthquake-resisting reinforcing structure for beam-column in existing structure | |
JP2860699B2 (en) | Prefabricated damping wall | |
JP4405879B2 (en) | Steel girder bridge reinforcement method | |
JP3418681B2 (en) | Installation method of ultra mild steel panel damper in precast RC building structure | |
JP6293207B2 (en) | Installation structure of studs in existing building | |
JP4746784B2 (en) | Outside insulation construction method | |
JPH1025832A (en) | Base-isolated wooden building | |
JPH07238610A (en) | Connection method of precast concrete member | |
JP7470243B1 (en) | Composite beams and methods for constructing composite beams | |
JP4038184B2 (en) | Seismic reinforcement structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030527 |
|
LAPS | Cancellation because of no payment of annual fees |