JP3436467B2 - Starting the melting furnace - Google Patents

Starting the melting furnace

Info

Publication number
JP3436467B2
JP3436467B2 JP35238596A JP35238596A JP3436467B2 JP 3436467 B2 JP3436467 B2 JP 3436467B2 JP 35238596 A JP35238596 A JP 35238596A JP 35238596 A JP35238596 A JP 35238596A JP 3436467 B2 JP3436467 B2 JP 3436467B2
Authority
JP
Japan
Prior art keywords
furnace
slag
molten
melting furnace
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35238596A
Other languages
Japanese (ja)
Other versions
JPH10176820A (en
Inventor
哲夫 明石
太郎 井口
正夫 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP35238596A priority Critical patent/JP3436467B2/en
Publication of JPH10176820A publication Critical patent/JPH10176820A/en
Application granted granted Critical
Publication of JP3436467B2 publication Critical patent/JP3436467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)
  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、焼却炉で発生した
焼却灰を溶融処理する溶融炉における操業再開始時の立
ち上げ方法に関する。 【0002】 【従来の技術】焼却炉で発生した焼却灰を図2に示した
構造の溶融炉により溶融処理することが行われている
(図2には、操業再開始時の立ち上げ状態が示されてい
る。)。 【0003】この溶融炉は、いわゆる電気抵抗式のもの
である。電極2は、複数本設けられ、炉内に上下動可能
に駆動され且つ炉外から電力が供給されるようになって
いる。降下した複数本の電極2が溶融物を介して通電
し、ジュール熱が発生し、投入口3から投入された焼却
灰を溶融する。溶融物は、比重差により、下層の溶融金
属と、上層の溶融スラグとに分離される。 【0004】この溶融炉の操業を停止するときには、ス
ラグ排出口5と金属排出口6とを開放し、溶融スラグと
溶融金属とを別途炉外に排出する。このとき、溶融スラ
グおよび溶融金属を極力全量、炉外に排出するようにす
る。ところが、溶融スラグは、温度が下がると粘性が高
まるため、全量を排出し切ることができない。そのた
め、溶融スラグは、排出し切れずに、結果的に炉底に残
留してしまうことになる。この溶融スラグと共に、溶融
金属も、若干量だが、炉底に残留する。このような金属
が混入したスラグのことを、ここでは、金属混入スラグ
と称するものとする。この金属混入スラグは、時間の経
過とともに凝固する。 【0005】操業再開時には、図2に示すように、炉底
に凝固した金属混入スラグS2の層の上面をわずかに掘
って平面を形成し、その平面に導電性素材からなる通電
材8を敷いて、次いで電極2を降下させて通電材8に当
接させ、次いで炉内に焼却灰Aを投入して通電材8を覆
うようにする。 【0006】炉の立ち上げは、炉の熱容量を所定以上に
達するようにする必要がある。つまり、炉内を所定量以
上の溶融物で満たさなければ、焼却灰を連続して投入し
て溶融する通常操業することができない。したがって、
炉立ち上げ時には、この溶融物をつくり得る量の焼却灰
Aを投入する。 【0007】電極2が当接した通電材8は、通電されて
通電材粒子間に微小アークを発生し、通電材8に接した
焼却灰Aを溶融させる。次いで、溶融スラグに通電され
てジュール熱を発生しその熱で焼却灰Aを順次溶融させ
る。加熱された焼却灰Aから発生したガス(一酸化炭素
COなど)は、排ガス口4から排出された後、排ガス処
理設備(図示省略)で燃焼されて無害化される。 【0008】 【発明が解決しようとする課題】しかしながら、上述し
た従来例にあっては、炉の操業再開始時の炉立ち上げに
次のような問題がある。 【0009】炉底に、凝固した金属混入スラグS2の比
較的浅い層が形成される。そして、通電材8を敷く平面
を形成するため、この金属混入スラグS2を掘る必要が
ある。ところが、この金属混入スラグS2は、金属を含
有しているので、硬度が高く、掘る作業が比較的難しい
ものとなる。また、金属混入スラグS2は、炉底に形成
された浅い層なので、掘るとき、誤って炉本体1を傷つ
けてしまうおそれがある。 【0010】また、炉立ち上げ時には、炉底に凝固した
金属混入スラグS2の浅い層が形成されているだけであ
るので、通常操業に必要な量の溶融物をつくるために
は、多量の焼却灰Aを炉内に投入する必要がある。とこ
ろが、このように多量の焼却灰Aを加熱すると、発生す
るガスの量が通常操業時に比べて多くなり、炉外でこの
ガスを燃焼処理する排ガス処理設備にとって負荷が大き
くなる。それに応じて、立ち上げ時のみのために排ガス
処理設備の処理能力を高めなければならず、コスト高に
つながる。 【0011】本発明は、このような従来例の問題点を解
消するため創案されたものである。 【0012】本発明の目的は、炉内に凝固した物を掘る
作業負担の軽減、この凝固した物を掘る作業のときの炉
本体の保護、発生ガス量を低減することにより排ガス処
理設備の負荷を軽減することを図った溶融炉立ち上げ方
法を提供することにある。 【0013】 【課題を解決するための手段】この目的を達成するた
め、本発明は、溶融炉内に配された電極により炉内の溶
融物に通電することにより投入された焼却灰を溶融して
下層をなす溶融金属及び上層をなす溶融スラグを別途炉
外に取り出すこととする溶融炉の立ち上げ方法におい
て、溶融炉の操業停止時に溶融スラグを適宜深さだけ炉
内に残しておき、操業再開始時には、凝固しているスラ
グの上面を若干掘って凹部を形成し、該凹部内に通電材
を配し、電極を該通電材に当接するまで降下せしめ、上
記凹部に焼却灰もしくは粉砕スラグを供給して通電材を
覆った後に電極により該通電材に通電するものである。 【0014】この溶融炉の立ち上げ方法にあっては、硬
度の低いスラグを掘るので、硬度の高い金属混入スラグ
を掘る従来例に比べて掘る作業の負担が少なてすむ。ま
た、そのスラグは炉内に適宜深さ残っているので、凹部
を掘る作業のとき、炉本体を傷つけるおそれがない。 【0015】また、スラグに形成された凹部に配された
粉砕スラグまたは焼却灰が加熱されて溶融し、その後、
その溶融物の熱によって、炉内に適宜深さ残されたスラ
グと金属とが溶融される。炉内に残されたスラグおよび
金属から得られる溶融物の量が多いので、最初に加熱、
溶融される粉砕スラグまたは焼却灰の量は少なくてす
む。その結果、最初の加熱により発生するガス量が少な
いものとなる。凝固したスラグは、前に溶融されたとき
中のガスが既に放出されているので、立ち上げ時、溶融
したときに発生するガスはほとんどない。 【0016】 【発明の実施の形態】以下に、本発明の好適な実施形態
を図1を参照して説明する。 【0017】図1に、本発明の溶融炉立ち上げ方法を説
明するための溶融炉が示されている(図1には操業再開
始時の立ち上げ状態が示されている)。 【0018】この溶融炉は、炉本体1と、この炉本体1
の内部に上下動可能に駆動され且つ炉外から電力が供給
される複数本の電極2と、炉本体1の上部に開口して設
けられた焼却灰の投入口3と、同じく炉本体1の上部に
開口して設けられた排ガス口4と、炉本体1の側壁の中
間部を貫通して設けられたスラグ排出口5と、炉底レベ
ルで側壁を貫通して設けられた金属排出口6とを備えて
いる。 【0019】排ガス口4は、下流側に排ガス処理設備
(図示省略)が接続されている。この排ガス処理設備
は、一酸化炭素COなどのガスを燃焼させて無害化する
ものである。 【0020】この溶融炉の操業、操業停止、操業再開始
時の立ち上げは、それぞれ次のように行われる。 【0021】まず、溶融炉の通常操業時について述べる
と、降下した電極2が溶融物を介して通電し、ジュール
熱を発生させ、投入された焼却灰を溶融させる。溶融物
は、比重差により、下層の溶融金属と、上層の溶融スラ
グとに分離される。溶融スラグは、オーバーフロー口
(図示省略)からオーバーフローすることにより、上面
レベルが定格レベルLに保持される。 【0022】この操業を停止する時には、スラグ排出口
5を開放して溶融スラグを排出し、溶融金属については
排出せずに炉内にそのまま残すものとする。しかしなが
ら、溶融スラグは、温度が下がると、粘性が高くなるの
で、ある程度排出されたところで、排出が止む。結局、
溶融スラグは、適宜深さだけ炉内に残るものとなる。 【0023】この炉内に残留した溶融スラグおよび溶融
金属は、時間の経過とともに、凝固する。ここでは、こ
れを凝固スラグ、凝固金属と称するものとする。 【0024】次に、操業を再開始するときには、図1に
示したようにして溶融炉を立ち上げる。まず、凝固スラ
グSの上面を、電極2の下方位置にあたるところだけを
部分的に若干掘って凹部7を形成する。この凹部7内
に、例えばカーボン粒からなる通電材8を配する。次い
で、電極2を通電材8に当接するまで降下させる。そし
て、凹部7にスラグS1を供給して通電材8を覆うよう
にする。つまり、凹部7を形成するとき掘り出したスラ
グS1を凹部7に戻すようにする。 【0025】本実施形態では、凹部7に粉砕スラグを配
したが、これと共に、またはこれとは別に単独に、焼却
灰を配するようにしてもよい。 【0026】電極2が通電材8に当接し、通電材8が通
電されて、微小アークがが発生する。この通電材8の熱
により、粉砕スラグS1が溶融し、次いで溶融スタグに
通電されて、ジュール熱を発生しその熱により凝固スラ
グSが溶融し、更にその溶融したスラグの熱により凝固
した金属Mが溶融する。 【0027】このように炉内に大量に残された凝固した
スラグおよび金属が溶融物となるので、立ち上げ最初の
段階における電極2により加熱される粉砕スラグS1、
焼却灰が少量で足りる。その結果、粉砕スラグS1、焼
却灰が加熱されたとき発生するガス量が少量となる。凝
固したスラグは、前に溶融されたとき中のガスが既に放
出されているので、立ち上げ時、溶融したときに発生す
るガスはほとんどない。これにより、排ガス処理設備に
かける負荷が軽減されることになる。 【0028】 【発明の効果】以上説明した本発明の溶融炉立ち上げ方
法によると、スラグを掘るので、金属混入スラグを掘る
従来例に比べて掘る作業の負担が少なてすむ。また、炉
内に適宜深さ残っているスラグを掘るので、炉本体を傷
つけるおそれがなく、炉本体の保護を全うできる。 【0029】また、炉内に残されたスラグおよび金属か
ら得られる溶融物の量が多いので、最初に加熱、溶融す
る粉砕スラグまたは焼却灰の量は少なくてすみ、その結
果、最初の加熱により発生するガス量が少ないものとな
る。したがって、排ガス処理設備の負荷を軽減でき、そ
れにより排ガス処理能力を軽減でき、もってコストダウ
ンを実現できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a start-up method for restarting operation in a melting furnace for melting and processing incinerated ash generated in an incinerator. 2. Description of the Related Art Incineration ash generated in an incinerator is melted by a melting furnace having a structure shown in FIG. 2 (FIG. 2 shows a startup state at the time of restarting operation). It is shown.). This melting furnace is of a so-called electric resistance type. A plurality of electrodes 2 are provided, are driven up and down in the furnace, and are supplied with electric power from outside the furnace. The plurality of lowered electrodes 2 conduct electricity through the melt, generate Joule heat, and melt the incineration ash supplied from the inlet 3. The molten material is separated into a lower molten metal and an upper molten slag due to a difference in specific gravity. When the operation of the melting furnace is stopped, the slag discharge port 5 and the metal discharge port 6 are opened, and the molten slag and the molten metal are separately discharged outside the furnace. At this time, all the molten slag and molten metal are discharged outside the furnace as much as possible. However, since the viscosity of the molten slag increases as the temperature decreases, the molten slag cannot be completely discharged. For this reason, the molten slag is not completely discharged, and as a result, remains at the furnace bottom. Along with this molten slag, a small amount of molten metal also remains at the furnace bottom. The slag mixed with such a metal is herein referred to as a metal mixed slag. This metal-mixed slag solidifies over time. When the operation is resumed, as shown in FIG. 2, a flat surface is formed by slightly digging the upper surface of the layer of the solidified metal-mixed slag S2 on the furnace bottom, and a conductive material 8 made of a conductive material is laid on the flat surface. Then, the electrode 2 is lowered and brought into contact with the current-carrying material 8, and then the incineration ash A is charged into the furnace so as to cover the current-carrying material 8. [0006] When the furnace is started, it is necessary to make the heat capacity of the furnace reach a predetermined value or more. That is, unless the inside of the furnace is filled with a predetermined amount or more of the molten material, it is not possible to perform a normal operation of continuously injecting and melting the incinerated ash. Therefore,
When the furnace is started, incineration ash A in an amount capable of producing the melt is charged. The current-carrying material 8 in contact with the electrode 2 is energized to generate a minute arc between the current-carrying material particles, thereby melting the incinerated ash A in contact with the current-carrying material 8. Next, the molten slag is energized to generate Joule heat, and the incinerated ash A is sequentially melted by the heat. The gas (e.g., carbon monoxide CO) generated from the heated incineration ash A is discharged from the exhaust gas port 4 and then burned in an exhaust gas treatment facility (not shown) to be rendered harmless. However, in the above-mentioned conventional example, there are the following problems in starting up the furnace when restarting the operation of the furnace. At the furnace bottom, a relatively shallow layer of solidified metal-mixed slag S2 is formed. Then, in order to form a plane on which the conductive material 8 is laid, it is necessary to dig this metal-mixed slag S2. However, since the metal-mixed slag S2 contains a metal, the slag S2 has a high hardness and is relatively difficult to dig. Further, since the metal-mixed slag S2 is a shallow layer formed on the furnace bottom, there is a possibility that the furnace main body 1 may be erroneously damaged when digging. Further, when the furnace is started, only a shallow layer of solidified metal-mixed slag S2 is formed on the bottom of the furnace. Ash A needs to be charged into the furnace. However, when such a large amount of incineration ash A is heated, the amount of generated gas is larger than that during normal operation, and the load on the exhaust gas treatment equipment for burning this gas outside the furnace increases. Correspondingly, the processing capacity of the exhaust gas treatment equipment must be increased only at the time of startup, which leads to an increase in cost. The present invention has been made to solve such a problem of the conventional example. An object of the present invention is to reduce the work load for digging solidified material in a furnace, to protect the furnace body when digging this solidified material, and to reduce the amount of generated gas to reduce the load on exhaust gas treatment equipment. It is an object of the present invention to provide a method for setting up a melting furnace which aims to reduce the temperature. In order to achieve this object, the present invention melts incinerated ash by supplying electricity to the melt in the furnace by means of electrodes arranged in the furnace. In the method of starting up the melting furnace, in which the molten metal forming the lower layer and the molten slag forming the upper layer are separately taken out of the furnace, the molten slag is left at an appropriate depth in the furnace when the operation of the melting furnace is stopped, and the operation starts. At the time of re-starting, the upper surface of the solidified slag is slightly dug to form a concave portion, a current-carrying material is arranged in the concave portion, and the electrode is lowered until it comes into contact with the current-carrying material. Is supplied to cover the current-carrying material, and then the current-carrying material is energized by electrodes. In this method of starting the melting furnace, slag having a low hardness is dug, so that the burden of the digging operation is reduced as compared with a conventional example of digging a slag mixed with a metal having high hardness. In addition, since the slag remains in the furnace at an appropriate depth, there is no risk of damaging the furnace body when digging a concave portion. [0015] Further, the pulverized slag or incinerated ash arranged in the concave portion formed in the slag is heated and melted, and thereafter,
By the heat of the melt, the slag and metal left in the furnace at an appropriate depth are melted. Due to the large amount of melt obtained from slag and metal left in the furnace, first heating,
The amount of ground slag or incinerated ash to be melted is small. As a result, the amount of gas generated by the first heating is small. Since the gas in the solidified slag that has been previously melted has already been released, almost no gas is generated when the solidified slag is melted. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows a melting furnace for explaining the melting furnace starting method of the present invention (FIG. 1 shows a starting state at the time of restarting operation). This melting furnace comprises a furnace body 1 and a furnace body 1
A plurality of electrodes 2 driven up and down and supplied with power from outside the furnace, an incineration ash inlet 3 provided at the top of the furnace body 1, and Exhaust gas port 4 provided at the top, slag discharge port 5 provided through the middle part of the side wall of furnace body 1, and metal discharge port 6 provided through the side wall at the furnace bottom level. And The exhaust gas port 4 is connected to an exhaust gas treatment facility (not shown) on the downstream side. This exhaust gas treatment facility burns a gas such as carbon monoxide CO to render it harmless. The operation of the melting furnace, the stoppage of the operation, and the start-up when restarting the operation are performed as follows. First, in the normal operation of the melting furnace, the lowered electrode 2 is energized through the melt, generates Joule heat, and melts the incinerated ash. The molten material is separated into a lower molten metal and an upper molten slag due to a difference in specific gravity. The molten slag overflows from an overflow port (not shown), so that the upper surface level is maintained at the rated level L. When the operation is stopped, the slag discharge port 5 is opened to discharge the molten slag, and the molten metal is left in the furnace without being discharged. However, as the temperature of the molten slag decreases, the viscosity of the molten slag increases. After all,
The molten slag will remain in the furnace to an appropriate depth. The molten slag and molten metal remaining in the furnace solidify over time. Here, these are referred to as solidified slag and solidified metal. Next, when restarting the operation, the melting furnace is started up as shown in FIG. First, a recess 7 is formed by partially dug a part of the upper surface of the solidified slag S only at a position below the electrode 2. In the recess 7, a conductive material 8 made of, for example, carbon particles is arranged. Next, the electrode 2 is lowered until it comes into contact with the conductive material 8. Then, the slag S <b> 1 is supplied to the concave portion 7 so as to cover the conductive material 8. That is, the slag S1 dug out when forming the concave portion 7 is returned to the concave portion 7. In the present embodiment, the crushed slag is provided in the concave portion 7. However, incineration ash may be provided together with or separately from the slag. The electrode 2 comes into contact with the current-carrying material 8, and the current-carrying material 8 is energized to generate a minute arc. By the heat of the conductive material 8, the crushed slag S1 is melted, and then the molten stag is energized to generate Joule heat, the solidified slag S is melted by the heat, and the metal M solidified by the heat of the melted slag. Melts. Since a large amount of solidified slag and metal left in the furnace become a molten material, the crushed slag S1, which is heated by the electrode 2 in the initial stage of startup,
A small amount of incineration ash is sufficient. As a result, the amount of gas generated when the crushed slag S1 and the incinerated ash are heated is small. Since the gas in the solidified slag that has been previously melted has already been released, little gas is generated when the solidified slag is melted during startup. As a result, the load on the exhaust gas treatment equipment is reduced. According to the method for starting a melting furnace of the present invention described above, slag is dug, so that the burden of digging work is smaller than in the conventional example of digging slag mixed with metal. In addition, since the slag remaining in the furnace at an appropriate depth is dug, there is no risk of damaging the furnace main body, and the furnace main body can be protected. Further, since the amount of the slag and the melt obtained from the metal remaining in the furnace is large, the amount of the pulverized slag or incinerated ash to be heated and melted at first is small, and as a result, The amount of generated gas is small. Therefore, the load on the exhaust gas treatment equipment can be reduced, thereby reducing the exhaust gas treatment capacity, and thereby reducing the cost.

【図面の簡単な説明】 【図1】本発明の溶融炉立ち上げ方法を説明するための
溶融炉の縦断面図である。 【図2】従来例の溶融炉立ち上げ方法を説明するための
溶融炉の縦断面図である。 【符号の説明】 1 炉本体 2 電極 3 投入口 4 排ガス口 5 スラグ排出口 6 金属排出口 7 凹部 8 通電材 S 凝固スラグ S1 粉砕スラグ S2 金属混入スラグ M 凝固金属 L 定格レベル A 焼却灰
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view of a melting furnace for explaining a melting furnace starting method of the present invention. FIG. 2 is a longitudinal sectional view of a melting furnace for explaining a conventional melting furnace startup method. [Description of Signs] 1 Furnace main body 2 Electrode 3 Input port 4 Exhaust gas port 5 Slag discharge port 6 Metal discharge port 7 Concave portion 8 Electrically conductive material S Solidified slag S1 Crushed slag S2 Metal mixed slag M Solidified metal L Rated level A Incinerated ash

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−61626(JP,A) 特開 昭60−263007(JP,A) 特開 昭56−80613(JP,A) 特開 平5−172472(JP,A) 特開 昭59−102229(JP,A) (58)調査した分野(Int.Cl.7,DB名) F23J 1/00 F23G 5/50 F23G 5/00 F27B 3/08 F27D 11/08 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-8-61626 (JP, A) JP-A-60-263007 (JP, A) JP-A-56-80613 (JP, A) 172472 (JP, A) JP-A-59-102229 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F23J 1/00 F23G 5/50 F23G 5/00 F27B 3/08 F27D 11/08

Claims (1)

(57)【特許請求の範囲】 【請求項1】 溶融炉内に配された電極により炉内の溶
融物に通電することにより投入された焼却灰を溶融して
下層をなす溶融金属及び上層をなす溶融スラグを別途炉
外に取り出すこととする溶融炉の立ち上げ方法におい
て、溶融炉の操業停止時に溶融スラグを適宜深さだけ炉
内に残しておき、操業再開始時には、凝固しているスラ
グの上面を若干掘って凹部を形成し、該凹部内に通電材
を配し、電極を該通電材に当接するまで降下せしめ、上
記凹部に焼却灰もしくは粉砕スラグを供給して通電材を
覆った後に電極により該通電材に通電することを特徴と
する溶融炉立ち上げ方法。
(57) [Claims 1] The molten metal forming the lower layer by melting the incinerated ash supplied by energizing the molten material in the furnace by the electrodes arranged in the melting furnace to form the lower layer and the upper layer. In the method for starting a melting furnace, in which the molten slag to be formed is separately taken out of the furnace, the molten slag is left in the furnace at an appropriate depth when the operation of the melting furnace is stopped, and the solidified slag is restarted when the operation is restarted. A recess was formed by dug a little on the upper surface of the electrode, and a current-carrying material was arranged in the recess, the electrode was lowered until it came into contact with the current-carrying material, and incineration ash or crushed slag was supplied to the recess to cover the current-carrying material. A method for starting up a melting furnace, characterized in that the current-carrying material is energized later by an electrode.
JP35238596A 1996-12-13 1996-12-13 Starting the melting furnace Expired - Fee Related JP3436467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35238596A JP3436467B2 (en) 1996-12-13 1996-12-13 Starting the melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35238596A JP3436467B2 (en) 1996-12-13 1996-12-13 Starting the melting furnace

Publications (2)

Publication Number Publication Date
JPH10176820A JPH10176820A (en) 1998-06-30
JP3436467B2 true JP3436467B2 (en) 2003-08-11

Family

ID=18423719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35238596A Expired - Fee Related JP3436467B2 (en) 1996-12-13 1996-12-13 Starting the melting furnace

Country Status (1)

Country Link
JP (1) JP3436467B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105344695B (en) * 2015-10-28 2017-07-28 长安大学 A kind of flyash treatment method for waste incineration and device

Also Published As

Publication number Publication date
JPH10176820A (en) 1998-06-30

Similar Documents

Publication Publication Date Title
JP3284606B2 (en) Ash melting furnace
JP3436467B2 (en) Starting the melting furnace
JP3377906B2 (en) Method for preventing decrease in fluidity of molten slag in plasma melting furnace
JPH0857441A (en) Plasma type ash melting furnace and restarting thereof
JP3827508B2 (en) Starting method of plasma melting furnace
JP3534679B2 (en) Plasma arc ash melting furnace
JP2945615B2 (en) Reignition method for plasma melting furnace
JP3576468B2 (en) Electric ash melting furnace and method for removing solids from electric ash melting furnace
JP3364034B2 (en) Starting the plasma furnace
JP4667665B2 (en) Plasma ash melting furnace and operating method thereof
JP3149726B2 (en) Electric resistance type incineration ash melting furnace and its operation method
JP3977164B2 (en) Plasma melting apparatus and plasma melting method
JP3575570B2 (en) Ash melting furnace
JPH03180407A (en) Method for starting operation in dc arc furnace
JP4467769B2 (en) Electric resistance melting furnace
JPH10253266A (en) Method for re-starting plasma melting furnace and plasma melting furnace
JPH09280534A (en) Melting furnace for refuse incineration ash
JPH11207288A (en) Melting treatment of waste
JPH11230518A (en) Plasma arc melting furnace and melting treatment method of material to be melted using the same
JPH05172472A (en) Method for electrical fusing incineration ash and electrical fusion furnace
JPH0519277B2 (en)
JPH0777318A (en) Method and device for waste melting treatment
JP2001336726A (en) Method for operating ash melting furnace
JPH1019230A (en) Method for melting treatment of refuse inclineration ash and melting furnace therefor
JPH0526092B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees