JP3436464B2 - Addition reaction-curable conductive silicone composition and method for producing cured conductive silicone - Google Patents

Addition reaction-curable conductive silicone composition and method for producing cured conductive silicone

Info

Publication number
JP3436464B2
JP3436464B2 JP30567096A JP30567096A JP3436464B2 JP 3436464 B2 JP3436464 B2 JP 3436464B2 JP 30567096 A JP30567096 A JP 30567096A JP 30567096 A JP30567096 A JP 30567096A JP 3436464 B2 JP3436464 B2 JP 3436464B2
Authority
JP
Japan
Prior art keywords
conductive silicone
component
composition
weight
addition reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30567096A
Other languages
Japanese (ja)
Other versions
JPH10130508A (en
Inventor
修 三谷
和己 中吉
里加子 田澤
勝利 峰
Original Assignee
東レ・ダウコーニング・シリコーン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17947943&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3436464(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東レ・ダウコーニング・シリコーン株式会社 filed Critical 東レ・ダウコーニング・シリコーン株式会社
Priority to JP30567096A priority Critical patent/JP3436464B2/en
Priority to DE69730572T priority patent/DE69730572T2/en
Priority to EP97118954A priority patent/EP0839870B1/en
Priority to US08/960,645 priority patent/US5932145A/en
Publication of JPH10130508A publication Critical patent/JPH10130508A/en
Application granted granted Critical
Publication of JP3436464B2 publication Critical patent/JP3436464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/28Non-macromolecular organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/54Inorganic substances

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、付加反応硬化型導
電性シリコーン組成物および導電性シリコーン硬化物の
製造方法に関し、詳しくは、付加反応により硬化して、
電気抵抗値や電気抵抗率が低く、この電気抵抗値の温度
依存性が小さく、さらに、この電気抵抗値や電気抵抗率
の経時変化が小さい導電性シリコーン硬化物を形成でき
る付加反応硬化型導電性シリコーン組成物、およびこの
ような導電性シリコーン硬化物を効率よく製造する方法
に関する。
TECHNICAL FIELD The present invention relates to an addition reaction curable conductive silicone composition and a method for producing a cured conductive silicone, and more specifically, it is cured by an addition reaction,
Addition reaction curable conductivity that has a low electric resistance value and electric resistivity, has little temperature dependence of the electric resistance value, and can form a conductive silicone cured product with little change in the electric resistance value and the electric resistance with time. The present invention relates to a silicone composition and a method for efficiently producing such a conductive silicone cured product.

【0002】[0002]

【従来の技術】付加反応により硬化して、導電性のシリ
コーン硬化物を形成する付加反応硬化型導電性シリコー
ン組成物は周知であり、例えば、一分子中に少なくとも
2個のアルケニル基を有するオルガノポリシロキサン、
一分子中に少なくとも2個のケイ素原子結合水素原子を
有するオルガノポリシロキサン、銀微粉末、および白金
系付加反応用触媒からなる導電性シリコーンゴム組成物
(特開平3−170581号公報および特開平7−13
3432号公報参照)が挙げられる。
2. Description of the Related Art Addition reaction-curable conductive silicone compositions which are cured by an addition reaction to form a conductive silicone cured product are well known. For example, an organopolymer having at least two alkenyl groups in one molecule. Polysiloxane,
A conductive silicone rubber composition comprising an organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule, a fine silver powder, and a platinum-based addition reaction catalyst (JP-A-3-170581 and JP-A-7-170581). -13
3432).

【0003】しかし、これらの付加反応硬化型導電性シ
リコーン組成物は、硬化して得られる導電性シリコーン
硬化物の電気抵抗値や電気抵抗率が高かったり、この電
気抵抗値の温度依存性が大きかったり、さらには、この
電気抵抗値や電気抵抗率の経時変化が大きかったりする
という問題があった。すなわち、硬化直後の硬化物は、
室温における電気抵抗値が低いものの、高温における電
気抵抗値が高くなったり、さらには経時変化によって、
この電気抵抗値や電気抵抗率が大きくなるという問題が
あった。このため、付加反応硬化型導電性シリコーン組
成物中の導電性金属系微粉末を増量するという方法があ
るが、得られる組成物の粘度が著しく高くなり、その取
扱作業性が極めて悪くなるという問題があった。また、
付加反応硬化型導電性シリコーン組成物中の導電性金属
系微粉末を増量して、この組成物の粘度を低下させ、そ
の取扱作業性を向上させるために揮発性溶剤を多量に配
合する方法があるが、得られる組成物が不均一となった
り、また、得られる硬化物が不均一となったりして、必
ずしもこの硬化物の電気抵抗値や電気抵抗率が低くなら
ず、この電気抵抗値や電気抵抗率の経時変化が小さい導
電性シリコーン硬化物を形成することはできないという
問題があった。
However, these addition-reaction-curable conductive silicone compositions have high electric resistance values and high electrical resistivities of the conductive silicone cured products obtained by curing, and the temperature dependence of the electric resistance values is large. In addition, there is a problem that the electric resistance value and the electric resistance change greatly with time. That is, the cured product immediately after curing is
Although the electric resistance value at room temperature is low, the electric resistance value at high temperature becomes high, and further it changes with time,
There is a problem that the electric resistance value and the electric resistivity increase. Therefore, there is a method of increasing the amount of the conductive metal-based fine powder in the addition reaction-curable conductive silicone composition, but the viscosity of the resulting composition becomes extremely high, and the handling workability thereof becomes extremely poor. was there. Also,
A method of increasing the amount of conductive metal-based fine powder in an addition reaction curable conductive silicone composition to reduce the viscosity of this composition and adding a large amount of a volatile solvent in order to improve its handling workability is known. However, the obtained composition becomes non-uniform, or the obtained cured product becomes non-uniform, so that the electric resistance value or the electric resistivity of the hardened product is not necessarily lowered. There is a problem that it is not possible to form a conductive silicone cured product having a small change in electrical resistivity with time.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは、上記の
課題を解決するために鋭意検討した結果、付加反応硬化
型導電性シリコーン組成物中の導電性金属系微粉末を増
量したり、これに多量の揮発性溶剤を配合することな
く、従来の付加反応硬化型導電性シリコーン組成物に特
定の揮発性溶剤を極少量配合して、付加反応による硬化
途上もしくは硬化後に、得られる硬化物からこの揮発性
溶剤を除去することにより、硬化物の体積収縮を起こさ
せ、この硬化物の電気抵抗値や電気抵抗率を低くし、こ
の電気抵抗値の温度依存性を小さくし、さらには、この
電気抵抗値や電気抵抗率の経時変化を小さくできること
を見いだして本発明に到達した。
DISCLOSURE OF THE INVENTION As a result of intensive studies to solve the above problems, the present inventors have increased the amount of conductive metal-based fine powder in an addition reaction curable conductive silicone composition, Without adding a large amount of volatile solvent to this, a very small amount of a specific volatile solvent is added to a conventional addition reaction curable conductive silicone composition to obtain a cured product obtained during or after curing by an addition reaction. By removing the volatile solvent from the, to cause volume shrinkage of the cured product, lower the electrical resistance value or electrical resistivity of the cured product, reduce the temperature dependence of the electrical resistance value, further, The present invention has been accomplished by finding that the change with time of the electric resistance value and the electric resistivity can be reduced.

【0005】すなわち、本発明の目的は、付加反応によ
り硬化して、電気抵抗値や電気抵抗率が低く、この電気
抵抗値の温度依存性が小さく、さらには、この電気抵抗
値や電気抵抗率の経時変化が小さい導電性シリコーン硬
化物を形成できる付加反応硬化型導電性シリコーン組成
物、およびこのような導電性シリコーン硬化物を効率よ
く製造する方法を提供することにある。
That is, the object of the present invention is to cure by an addition reaction to have a low electric resistance value or electric resistivity, the temperature dependence of this electric resistance value is small, and further, this electric resistance value or electric resistivity. It is an object of the present invention to provide an addition reaction-curable conductive silicone composition capable of forming a conductive silicone cured product whose change with time is small, and a method for efficiently producing such a conductive silicone cured product.

【0006】[0006]

【課題を解決するための手段】本発明の付加反応硬化型
導電性シリコーン組成物は、 (A)一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン 100重量部、 (B)一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノポリ シロキサン(本組成物を硬化させるに十分な量)、 (C)導電性金属系微粉末 50〜2000重量部、 (D)白金系付加反応用触媒 触媒量、 および (E)本組成物の硬化温度よりも高い沸点(但し、この沸点は400℃以下である 。)を有する揮発性溶剤{(A)成分〜(D)成分の合計量100重量部に対して0 .1〜10重量部} からなることを特徴とする。また、本発明の導電性シリ
コーン硬化物の製造方法は、上記の付加反応硬化型導電
性シリコーン組成物の硬化途上もしくは硬化後に、上記
の(E)成分を除去することを特徴とする。
The addition reaction curable conductive silicone composition of the present invention comprises (A) 100 parts by weight of an organopolysiloxane having at least two alkenyl groups in one molecule, and (B) one molecule. Organopolysiloxane having at least two silicon-bonded hydrogen atoms therein (amount sufficient to cure the composition), (C) conductive metal-based fine powder 50 to 2000 parts by weight, (D) platinum-based addition Reaction catalyst Amount of catalyst and (E) total of volatile solvent {(A) component to (D) component having a boiling point higher than the curing temperature of the present composition (however, this boiling point is 400 ° C. or lower) 0 for 100 parts by weight. 1 to 10 parts by weight}. In addition, the method for producing a cured product of the conductive silicone of the present invention is characterized in that the component (E) is removed during or after the curing of the addition reaction-curable conductive silicone composition.

【0007】[0007]

【発明の実施の形態】はじめに、本発明の付加反応硬化
型導電性シリコーン組成物を詳細に説明する。(A)成分
は本組成物の主剤であり、一分子中に少なくとも2個の
アルケニル基を有するオルガノポリシロキサンである。
(A)成分中のアルケニル基としては、ビニル基、アリル
基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテ
ニル基が例示され、特に、ビニル基であることが好まし
い。このアルケニル基の結合位置としては、分子鎖末
端、分子鎖側鎖、分子鎖末端と分子鎖側鎖が例示され
る。また、(A)成分中のアルケニル基以外のケイ素原子
に結合する有機基としては、メチル基、エチル基、プロ
ピル基、ブチル基、ペンチル基、ヘキシル基等のアルキ
ル基;フェニル基、トリル基、キシリル基等のアリール
基;ベンジル基、フェネチル基等のアラルキル基;3−
クロロプロピル基、3,3,3−トリフロロプロピル基
等のハロゲン化アルキル基等の置換もしくは非置換の一
価炭化水素基が例示され、特に、メチル基、フェニル基
であることが好ましい。このような(A)成分の分子構造
としては、直鎖状、一部分枝を有する直鎖状、分枝鎖
状、網状が例示され、(A)成分としてはこれらの分子構
造を有するオルガノポリシロキサンの二種以上の混合物
であってもよい。また、(A)成分の25℃における粘度
としては、50〜500,000mPa・sの範囲内で
あることが好ましく、特に、300〜10,000mP
a・sの範囲内であることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION First, the addition reaction curable conductive silicone composition of the present invention will be described in detail. The component (A) is the main ingredient of the present composition and is an organopolysiloxane having at least two alkenyl groups in one molecule.
Examples of the alkenyl group in the component (A) include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group and a heptenyl group, and a vinyl group is particularly preferable. Examples of the bonding position of the alkenyl group include a molecular chain terminal, a molecular chain side chain, a molecular chain terminal and a molecular chain side chain. The organic group other than the alkenyl group in the component (A) that is bonded to the silicon atom includes an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group and a hexyl group; a phenyl group, a tolyl group, Aryl group such as xylyl group; Aralkyl group such as benzyl group and phenethyl group; 3-
Examples thereof include substituted or unsubstituted monovalent hydrocarbon groups such as halogenated alkyl groups such as chloropropyl group and 3,3,3-trifluoropropyl group, and particularly preferably methyl group and phenyl group. Examples of the molecular structure of the component (A) include linear, partially branched linear, branched, and network structures. The component (A) has an organopolysiloxane having these molecular structures. It may be a mixture of two or more of The viscosity of the component (A) at 25 ° C. is preferably in the range of 50 to 500,000 mPa · s, and particularly 300 to 10,000 mP.
It is preferably within the range of a · s.

【0008】このような(A)成分のオルガノポリシロキ
サンとしては、分子鎖両末端トリメチルシロキシ基封鎖
ジメチルシロキサン・メチルビニルシロキサン共重合
体、分子鎖両末端トリメチルシロキシ基封鎖メチルビニ
ルポリシロキサン、分子鎖両末端トリメチルシロキシ基
封鎖メチルビニルシロキサン・メチルフェニルシロキサ
ン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジ
メチルシロキサン・メチルビニルシロキサン・メチルフ
ェニルシロキサン共重合体、分子鎖両末端ジメチルビニ
ルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末
端ジメチルビニルシロキシ基封鎖メチルビニルポリシロ
キサン、分子鎖両末端ジメチルビニルシロキシ基封鎖メ
チルフェニルポリシロキサン、分子鎖両末端ジメチルビ
ニルシロキシ基封鎖ジメチルシロキサン・メチルビニル
シロキサン共重合体、分子鎖両末端ジメチルビニルシロ
キシ基封鎖ジメチルシロキサン・メチルフェニルシロキ
サン共重合体、分子鎖両末端ジメチルビニルシロキシ基
封鎖ジメチルシロキサン・ジフェニルシロキサン共重合
体、R3SiO1/2単位とSiO4/2単位からなるオルガ
ノポリシロキサン、RSiO3/2単位からなるオルガノ
ポリシロキサン、R2SiO2/2単位とRSiO3/2単位
からなるオルガノポリシロキサン、R2SiO2/2単位と
RSiO3/2単位とSiO4/2単位からなるオルガノポリ
シロキサン、およびこれらのオルガノポリシロキサンの
二種以上の混合物が例示される。上記のオルガノポリシ
ロキサンの単位式中のRは置換もしくは非置換の一価炭
化水素基であり、メチル基、エチル基、プロピル基、ブ
チル基、ペンチル基、オクチル基等のアルキル基;ビニ
ル基、アリル基、ブテニル基、ペンテニル基、ヘキセニ
ル基等のアルケニル基;フェニル基、トリル基、キシリ
ル基等のアリール基;ベンジル基、フェネチル基等のア
ラルキル基;3−クロロプロピル基、3,3,3−トリ
フロロプロピル基等のハロゲン化アルキル基が例示さ
れ、但し、上記の単位式からなるオルガノポリシロキサ
ン中の少なくとも2個のRはアルケニル基であることが
必要である。
Examples of the organopolysiloxane as the component (A) include dimethylsiloxy-methylvinylsiloxane copolymers capped with trimethylsiloxy groups at both ends of the molecular chain, methylvinylpolysiloxanes capped with trimethylsiloxy groups at both ends of the molecular chain, and molecular chains. Both ends trimethylsiloxy group-blocked methyl vinyl siloxane / methylphenyl siloxane copolymer, molecular chain both ends trimethyl siloxy group blocked dimethyl siloxane / methyl vinyl siloxane / methyl phenyl siloxane copolymer, molecular chain both ends dimethyl vinyl siloxy group blocked dimethyl poly Siloxane, molecular chain both ends dimethyl vinyl siloxy group blocked methyl vinyl polysiloxane, molecular chain both ends dimethyl vinyl siloxy group blocked methyl phenyl polysiloxane, molecular chain both ends dimethyl vinyl siloxy group blocked Methyl siloxane-methyl vinyl siloxane copolymer, both molecular terminals with dimethylvinylsiloxy groups dimethylsiloxane-methylphenylsiloxane copolymers, both molecular terminals with dimethylvinylsiloxy groups dimethylsiloxane-diphenylsiloxane copolymer, R 3 SiO Organopolysiloxane composed of 1/2 unit and SiO 4/2 unit, organopolysiloxane composed of RSiO 3/2 unit, organopolysiloxane composed of R 2 SiO 2/2 unit and RSiO 3/2 unit, R 2 SiO 2 Examples thereof include organopolysiloxane composed of / 2 unit, RSiO 3/2 unit and SiO 4/2 unit, and a mixture of two or more kinds of these organopolysiloxanes. R in the unit formula of the above organopolysiloxane is a substituted or unsubstituted monovalent hydrocarbon group, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group and an octyl group; a vinyl group, Alkyl groups such as allyl group, butenyl group, pentenyl group, hexenyl group; aryl groups such as phenyl group, tolyl group, xylyl group; aralkyl groups such as benzyl group, phenethyl group; 3-chloropropyl group, 3,3,3 Examples thereof include halogenated alkyl groups such as a trifluoropropyl group, provided that at least two R's in the organopolysiloxane having the above unit formula are alkenyl groups.

【0009】(B)成分は本組成物の硬化剤であり、一分
子中に少なくとも2個のケイ素原子結合水素原子を有す
るオルガノポリシロキサンである。このケイ素原子結合
水素原子の結合位置としては、分子鎖末端、分子鎖側
鎖、分子鎖末端と分子鎖側鎖が例示される。また、(B)
成分中のケイ素原子に結合する有機基としては、メチル
基、エチル基、プロピル基、ブチル基、ペンチル基、ヘ
キシル基等のアルキル基;フェニル基、トリル基、キシ
リル基等のアリール基;ベンジル基、フェネチル基等の
アラルキル基;3−クロロプロピル基、3,3,3−ト
リフロロプロピル基等のハロゲン化アルキル基等のアル
ケニル基を除く置換もしくは非置換の一価炭化水素基が
例示され、特に、メチル基、フェニル基であることが好
ましい。このような(B)成分の分子構造としては、直鎖
状、一部分枝を有する直鎖状、分枝鎖状、環状、網状が
例示され、(B)成分としてはこれらの分子構造を有する
オルガノポリシロキサンの二種以上の混合物であっても
よい。また、(B)成分の25℃における粘度としては、
1〜50,000mPa・sの範囲内であることが好ま
しく、特に、5〜1,000mPa・sの範囲内である
ことが好ましい。
The component (B) is a curing agent for the composition and is an organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule. Examples of the bonding position of the silicon atom-bonded hydrogen atom include a molecular chain terminal, a molecular chain side chain, and a molecular chain terminal and a molecular chain side chain. Also, (B)
Examples of the organic group bonded to the silicon atom in the component include an alkyl group such as methyl group, ethyl group, propyl group, butyl group, pentyl group and hexyl group; aryl group such as phenyl group, tolyl group and xylyl group; benzyl group An aralkyl group such as a phenethyl group; a substituted or unsubstituted monovalent hydrocarbon group excluding an alkenyl group such as a halogenated alkyl group such as a 3-chloropropyl group and a 3,3,3-trifluoropropyl group. Particularly, a methyl group and a phenyl group are preferable. Examples of the molecular structure of the component (B) include linear, partially branched linear, branched, cyclic, and network structures. The component (B) has an organostructure having these molecular structures. It may be a mixture of two or more polysiloxanes. The viscosity of the component (B) at 25 ° C is
It is preferably in the range of 1 to 50,000 mPa · s, and particularly preferably in the range of 5 to 1,000 mPa · s.

【0010】このような(B)成分のオルガノポリシロキ
サンとしては、分子鎖両末端トリメチルシロキシ基封鎖
メチルハイドロジェンポリシロキサン、分子鎖両末端ト
リメチルシロキシ基封鎖ジメチルシロキサン・メチルハ
イドロジェンシロキサン共重合体、分子鎖両末端トリメ
チルシロキシ基封鎖メチルハイドロジェンシロキサン・
メチルフェニルシロキサン共重合体、分子鎖両末端トリ
メチルシロキシ基封鎖ジメチルシロキサン・メチルハイ
ドロジェンシロキサン・メチルフェニルシロキサン共重
合体、分子鎖両末端ジメチルハイドロジェンシロキシ基
封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハ
イドロジェンシロキシ基封鎖メチルハイドロジェンポリ
シロキサン、分子鎖両末端ジメチルハイドロジェンシロ
キシ基封鎖ジメチルシロキサン・メチルハイドロジェン
シロキサン共重合体、分子鎖両末端ジメチルハイドロジ
ェンシロキシ基封鎖ジメチルシロキサン・メチルフェニ
ルシロキサン共重合体、分子鎖両末端ジメチルハイドロ
ジェンシロキシ基封鎖メチルフェニルポリシロキサンが
例示される。
Examples of the organopolysiloxane of the component (B) include methyl hydrogen polysiloxane capped with trimethylsiloxy groups at both ends of the molecular chain, dimethylsiloxane / methyl hydrogen siloxane copolymer capped with trimethylsiloxy groups at both ends of the molecular chain, Methyl hydrogen siloxane with both ends of the molecular chain blocked by trimethylsiloxy groups
Methyl phenyl siloxane copolymer, dimethylsiloxy group-capped dimethylsiloxysiloxane / methylphenylsiloxane / methylphenylsiloxane copolymer, dimethylsiloxy group-capped dimethylpolysiloxane, dimethylhydroxyl group-capped dimethylhydrogen Dimethylsiloxy group-blocked methylhydrogenpolysiloxane, dimethylhydrogensiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, both molecular chain ends, dimethylhydrogensiloxy group-blocked dimethylsiloxane / methylphenylsiloxane copolymer, both molecular chain ends An example is methylphenylpolysiloxane having dimethylhydrogensiloxy groups blocked at both ends of its molecular chain.

【0011】(B)成分の配合量は本組成物を硬化させる
に十分な量であり、例えば、(A)成分中のアルケニル基
1個に対して、(B)成分中のケイ素原子結合水素原子が
0.5〜10個となるような範囲内の量であることが好
ましい。これは、(A)成分中のアルケニル基1個に対し
て、(B)成分中のケイ素原子結合水素原子が0.5個未
満となるような量である組成物は十分に硬化しなくなる
傾向があり、一方、これが10個をこえるような量であ
る組成物を硬化して得られる導電性シリコーン硬化物
は、硬化途上で気泡を生じたり、また、耐熱性が低下す
る傾向があるからである。
The amount of the component (B) blended is an amount sufficient to cure the composition. For example, one alkenyl group in the component (A) is added to the silicon atom-bonded hydrogen in the component (B). The amount is preferably in the range of 0.5 to 10 atoms. This is because the composition is such that the amount of silicon-bonded hydrogen atoms in the component (B) is less than 0.5 per 1 alkenyl group in the component (A), the composition tends not to cure sufficiently. On the other hand, on the other hand, a conductive silicone cured product obtained by curing a composition having an amount of more than 10 tends to generate bubbles during the curing process and also has a low heat resistance. is there.

【0012】(C)成分は本組成物を硬化して得られる導
電性シリコーン硬化物に導電性を付与するための導電性
金属系微粉末である。この(C)成分としては、金、銀、
ニッケル、銅等の金属微粉末;セラミック、ガラス、石
英、有機樹脂等の微粉末の表面に金、銀、ニッケル、銅
等の金属を蒸着またはメッキした微粉末が例示される。
本組成物において、体積抵抗率が0.1Ω・cm以下で
ある高導電性のシリコーン硬化物を得るためには、(C)
成分として、金微粉末または銀微粉末を用いることが好
ましく、実用的には銀微粉末を用いることが好ましい。
この銀微粉末の形状としては、球状、フレーク状、フレ
ーク樹枝状が例示され、体積抵抗率が1×10-3Ω・c
m以下である高導電性のシリコーン硬化物を得るために
は、フレーク状またはフレーク樹枝状であることが好ま
しい。このような(C)成分の平均粒子径としては、例え
ば、1〜10μmの範囲内であることが好ましい。
The component (C) is a conductive metal-based fine powder for imparting conductivity to the conductive silicone cured product obtained by curing the composition. As the component (C), gold, silver,
Examples include fine metal powders such as nickel and copper; fine powders obtained by vapor-depositing or plating metals such as gold, silver, nickel and copper on the surfaces of fine powders such as ceramics, glass, quartz and organic resins.
In order to obtain a highly conductive silicone cured product having a volume resistivity of 0.1 Ω · cm or less in this composition, (C)
As the component, it is preferable to use gold fine powder or silver fine powder, and it is preferable to practically use silver fine powder.
Examples of the shape of the fine silver powder include spherical shape, flake shape, and flake dendritic shape, and the volume resistivity is 1 × 10 −3 Ω · c.
In order to obtain a highly conductive silicone cured product having m or less, it is preferable that it is flaky or flake dendritic. The average particle size of the component (C) is preferably, for example, in the range of 1 to 10 μm.

【0013】(C)成分の配合量は、(A)成分100重量
部に対して50〜2,000重量部の範囲内であり、好
ましくは300〜1,000重量部の範囲内である。こ
れは、(A)成分100重量部に対して、(C)成分の配合
量がこの範囲未満である組成物を硬化して得られるシリ
コーン硬化物は十分な導電性を示さなくなる傾向があ
り、一方、この範囲をこえる組成物は、その取扱作業性
が悪化する傾向があるからである。
The blending amount of the component (C) is in the range of 50 to 2,000 parts by weight, preferably 300 to 1,000 parts by weight, based on 100 parts by weight of the component (A). This is because a silicone cured product obtained by curing a composition in which the amount of the component (C) is less than this range relative to 100 parts by weight of the component (A) tends not to show sufficient conductivity. On the other hand, compositions exceeding this range tend to have poor workability.

【0014】(D)成分は本組成物の付加反応による硬化
を促進するための白金系付加反応用触媒であり、一般
に、ヒドロシリル化反応用触媒として周知の白金もしく
は白金化合物を用いることができる。このような(C)成
分としては、白金黒、白金担持アルミナ粉末、白金担持
シリカ粉末、白金担持カーボン粉末、塩化白金酸、塩化
白金酸のアルコール溶液、白金のオレフィン錯体、白金
のアルケニルシロキサン錯体、これらの白金系付加反応
用触媒をメチルメタクリレート樹脂、ポリカーボネート
樹脂、ポリスチレン樹脂、シリコーン樹脂等の熱可塑性
樹脂中に分散させて微粒子化した触媒が例示される。
The component (D) is a platinum-based addition reaction catalyst for promoting the curing of the composition by an addition reaction, and generally known platinum or a platinum compound can be used as a hydrosilylation reaction catalyst. Examples of the component (C) include platinum black, platinum-supported alumina powder, platinum-supported silica powder, platinum-supported carbon powder, chloroplatinic acid, alcohol solution of chloroplatinic acid, olefin complex of platinum, alkenylsiloxane complex of platinum, Examples of the catalyst include fine particles obtained by dispersing these platinum-based addition reaction catalysts in a thermoplastic resin such as a methyl methacrylate resin, a polycarbonate resin, a polystyrene resin, or a silicone resin.

【0015】(D)成分の配合量は、この組成物を付加反
応により硬化させるに十分な触媒量であり、例えば、
(A)成分と(B)成分の合計量に対して、(D)成分中の白
金金属が重量単位で0.1〜1000ppmの範囲内と
なる量である。
The blending amount of the component (D) is a catalytic amount sufficient to cure the composition by an addition reaction, and for example,
The amount is such that the platinum metal in the component (D) is within the range of 0.1 to 1000 ppm in weight unit with respect to the total amount of the components (A) and (B).

【0016】(E)成分は、本組成物を硬化して得られる
硬化物の体積収縮を起こさせて、この硬化物の電気抵抗
値や電気抵抗率を低くし、この電気抵抗値の温度依存性
を小さくし、さらには、この電気抵抗値や電気抵抗率の
経時変化を小さくするための揮発性溶剤である。このよ
うな(E)成分は沸点が400℃以下であり、本組成物の
硬化温度より高い沸点を有するものであればよく、好ま
しくは、この沸点が20℃〜400℃の範囲内であり、
より好ましくは、100℃〜400℃の範囲内であり、
特に好ましくは、150℃〜400℃の範囲内であるも
のである。このような(E)成分は本組成物の硬化反応、
すなわち、付加反応に関与したり、阻害しないものであ
ればよく、o−キシレン(bp=144℃)、m−キシ
レン(bp=139℃)、p−キシレン(bp=138
℃)、1,2,4−トリメチルベンゼン(bp=170
℃)、1,3,5−トリメチルベンゼン(bp=165
℃)、1,2,4,5−テトラメチルベンゼン(bp=
192℃)、n−ドデシルベンゼン(bp=331
℃)、シクロヘキシルベンゼン(bp=237℃)等の
芳香族炭化水素化合物;n−デカン(bp=174
℃)、i−デカン(bp=180℃)、n−ウンデカン
(bp=195℃)、n−ドデカン(bp=216
℃)、n−トリデカン(bp=235℃)、n−テトラ
デカン(bp=253℃)、シクロオクタン(bp=1
49℃)等の鎖状もしくは環状の脂肪族炭化水素化合物
もしくはこれらの二種以上の混合物からなる沸点が40
0℃以下のパラフィン系混合溶剤やイソパラフィン系混
合溶剤;安息香酸エチル(bp=212℃)、フタル酸
ジエチル(bp=296℃)等のエステル化合物;ジブ
チルエーテル(bp=143℃)、アニソール(bp=
155℃)、フェネトール(bp=170℃)等のエー
テル化合物;テトラメトキシシラン(bp=121
℃)、テトラエトキシシラン(bp=169℃)、メチ
ルトリメトキシシラン(bp=103℃)、メチルトリ
エトキシシラン(bp=143℃)、フェニルトリメチ
ルシラン(bp=169℃)、3−グリシドキシプロピ
ルトリメトキシシラン(bp=290℃)、3−メタク
リロキシプロピルトリメトキシシラン(bp=255
℃)等の有機ケイ素化合物、およにこれらの揮発性溶剤
の二種以上の混合物が例示される。この(E)成分として
は、(D)成分として、白金系付加反応用触媒をメチルメ
タクリレート樹脂、ポリカーボネート樹脂、ポリスチレ
ン樹脂、シリコーン樹脂等の熱可塑性樹脂中に分散させ
て微粒子化した触媒を用いる場合には、これらの熱可塑
性樹脂を溶解しないような揮発性溶剤を選択することが
好ましい。
The component (E) causes volumetric shrinkage of a cured product obtained by curing the present composition, lowers the electrical resistance value or the electrical resistivity of the cured product, and the temperature dependence of the electrical resistance value. It is a volatile solvent for reducing the resistance and further reducing the change with time of the electric resistance value and the electric resistivity. The component (E) has a boiling point of 400 ° C. or lower, and may have a boiling point higher than the curing temperature of the composition, and preferably has a boiling point in the range of 20 ° C. to 400 ° C.
More preferably, it is in the range of 100 ° C to 400 ° C,
Particularly preferably, it is in the range of 150 ° C to 400 ° C. Such component (E) is a curing reaction of the composition,
That is, any substance that does not participate in or inhibits the addition reaction may be used, such as o-xylene (bp = 144 ° C.), m-xylene (bp = 139 ° C.), p-xylene (bp = 138).
C), 1,2,4-trimethylbenzene (bp = 170
° C), 1,3,5-trimethylbenzene (bp = 165
C), 1,2,4,5-tetramethylbenzene (bp =
192 ° C.), n-dodecylbenzene (bp = 331)
A), aromatic hydrocarbon compounds such as cyclohexylbenzene (bp = 237 ° C); n-decane (bp = 174)
C.), i-decane (bp = 180.degree. C.), n-undecane (bp = 195.degree. C.), n-dodecane (bp = 216).
C), n-tridecane (bp = 235 ° C.), n-tetradecane (bp = 253 ° C.), cyclooctane (bp = 1)
49 ° C.) or other chain-like or cyclic aliphatic hydrocarbon compound or a mixture of two or more thereof and having a boiling point of 40
Paraffin-based mixed solvent of 0 ° C or lower or isoparaffin-based mixed solvent; ester compounds such as ethyl benzoate (bp = 212 ° C) and diethyl phthalate (bp = 296 ° C); dibutyl ether (bp = 143 ° C), anisole (bp) =
155 ° C), ether compounds such as phenetole (bp = 170 ° C); tetramethoxysilane (bp = 121)
° C), tetraethoxysilane (bp = 169 ° C), methyltrimethoxysilane (bp = 103 ° C), methyltriethoxysilane (bp = 143 ° C), phenyltrimethylsilane (bp = 169 ° C), 3-glycidoxy Propyltrimethoxysilane (bp = 290 ° C.), 3-methacryloxypropyltrimethoxysilane (bp = 255)
And a mixture of two or more kinds of these volatile solvents. As the component (E), as the component (D), a catalyst obtained by dispersing a platinum-based addition reaction catalyst in a thermoplastic resin such as methylmethacrylate resin, polycarbonate resin, polystyrene resin, or silicone resin to form fine particles is used. It is preferable to select a volatile solvent that does not dissolve these thermoplastic resins.

【0017】(E)成分の配合量は、上記(A)成分〜(D)
成分の合計100重量部に対して0.1〜10重量部の
範囲内であり、好ましくは0.1〜7重量部の範囲内で
あり、さらに好ましくは0.1〜5重量部の範囲内であ
り、特に好ましくは0.1〜5重量部(但し、5重量部
は含まない。)の範囲内である。これは、(E)成分の配
合量が、上記(A)成分〜(D)成分の合計100重量部に
対して0.1重量部未満である組成物は、得られる硬化
物の電気抵抗値や電気抵抗率が高かったり、この電気抵
抗値の温度依存性が大きかったり、さらには、この電気
抵抗値や電気抵抗率の経時変化が大きかったりするから
であり、一方、この範囲をこえる組成物は不均一となっ
たり、また、この組成物を硬化して得られる硬化物が不
均一となる傾向が大きくなり、さらにはこの硬化物の電
気抵抗値や電気抵抗率が高くなる傾向があるからであ
る。
The blending amount of the component (E) is the above components (A) to (D).
Within the range of 0.1 to 10 parts by weight, preferably within the range of 0.1 to 7 parts by weight, and more preferably within the range of 0.1 to 5 parts by weight, based on 100 parts by weight of the total of the components. And particularly preferably in the range of 0.1 to 5 parts by weight (however, 5 parts by weight is not included). This is because the composition in which the amount of the component (E) is less than 0.1 parts by weight based on 100 parts by weight of the total of the components (A) to (D) is the electric resistance value of the cured product Or the electrical resistivity is high, the temperature dependence of the electrical resistance value is large, and further, the change with time of the electrical resistance value or the electrical resistivity is large, on the other hand, a composition exceeding this range Tends to be non-uniform, and the cured product obtained by curing this composition tends to be non-uniform, and further, the electrical resistance value and electrical resistivity of this cured product tend to increase. Is.

【0018】本組成物は、上記(A)成分〜(E)成分を均
一に配合することにより得られるが、本組成物を硬化し
て得られる導電性シリコーン硬化物に良好な接着性を付
与するための任意の成分として、一分子中にケイ素原子
結合水素原子またはケイ素原子結合アルケニル基、およ
びケイ素原子結合アルコキシ基を有する有機ケイ素化合
物を配合することができる。このような有機ケイ素化合
物としては、ビニルトリメトキシシラン、アリルトリメ
トキシシラン、アリルトリエトキシシラン、さらには、
次のような有機ケイ素化合物が例示される。
The present composition can be obtained by uniformly blending the above-mentioned components (A) to (E), and imparts good adhesion to the conductive silicone cured product obtained by curing the present composition. As an optional component for achieving this, an organosilicon compound having a silicon atom-bonded hydrogen atom or a silicon atom-bonded alkenyl group and a silicon atom-bonded alkoxy group in one molecule can be blended. Examples of such organosilicon compounds include vinyltrimethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, and
The following organosilicon compounds are exemplified.

【化1】 [Chemical 1]

【化2】 [Chemical 2]

【化3】 [Chemical 3]

【化4】 [Chemical 4]

【化5】 (式中、aは1以上の整数であり、bは1以上の整数で
ある。)
[Chemical 5] (In the formula, a is an integer of 1 or more, and b is an integer of 1 or more.)

【0019】これらの有機ケイ素化合物の配合量として
は、例えば、(A)成分100重量部に対して20重量部
以下であることが好ましく、特には、0.5〜8重量部
の範囲内であることが好ましい。これは、この有機ケイ
素化合物を配合しない場合には、得られる導電性シリコ
ーン硬化物に優れた接着性を付与することができなくな
るためであり、また、この配合量が(A)成分100重量
部に対して20重量部をこえる組成物は貯蔵安定性が低
下したり、さらにはこの組成物を硬化して得られるシリ
コーン硬化物の硬度が経時的に高くなる傾向があるから
である。
The amount of these organosilicon compounds to be compounded is, for example, preferably 20 parts by weight or less, particularly 0.5 to 8 parts by weight, relative to 100 parts by weight of the component (A). Preferably there is. This is because if the organosilicon compound is not blended, it becomes impossible to impart excellent adhesiveness to the obtained conductive silicone cured product, and the blending amount is 100 parts by weight of the component (A). On the other hand, a composition having an amount of more than 20 parts by weight tends to have poor storage stability, and further, the hardness of a silicone cured product obtained by curing this composition tends to increase with time.

【0020】また、本組成物には、その取扱作業性を向
上させるために、3−メチル−1−ブチン−3−オー
ル、3,5−ジメチル−1−ヘキシン−3−オール、3
−フェニル−1−ブチン−3−オール等のアルキンアル
コール;3−メチル−3−ペンテン−1−イン,3,5
−ジメチル−3−ヘキセン−1−イン等のエンイン化合
物;1,3,5,7−テトラメチル−1,3,5,7−
テトラビニルシクロテトラシロキサン、1,3,5,7
−テトラメチル−1,3,5,7−テトラヘキセニルシ
クロトトラシロキサン、ベンゾトリアゾール等の付加反
応抑制剤を配合することができる。この付加反応抑制剤
の配合量としては、例えば、(A)成分100重量部に対
して0.001〜5重量部の範囲内であることが好まし
い。
Further, in order to improve the workability of the composition, the present composition contains 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyne-3-ol, 3 and 3-methyl-1-butyn-3-ol.
Alkyne alcohols such as -phenyl-1-butyn-3-ol; 3-methyl-3-penten-1-yne, 3,5
-Enein compounds such as dimethyl-3-hexen-1-yne; 1,3,5,7-tetramethyl-1,3,5,7-
Tetravinylcyclotetrasiloxane, 1,3,5,7
-Addition reaction inhibitors such as tetramethyl-1,3,5,7-tetrahexenylcyclototrasiloxane and benzotriazole may be added. The addition amount of the addition reaction inhibitor is preferably in the range of 0.001 to 5 parts by weight with respect to 100 parts by weight of the component (A).

【0021】さらに、本組成物には、本組成物を硬化し
て得られる硬化物に適当な硬度や機械的強度を付与する
ために、ヒュームドシリカ、結晶性シリカ、焼成シリ
カ、湿式シリカ、フュームド酸化チタン、カーボンブラ
ック等の無機質充填剤、これらの無機質充填剤の表面を
オルガノアルコキシシラン、オルガノクロロシラン、オ
ルガノジシラザン等の有機ケイ素化合物により疎水化処
理した無機質充填剤、さらには、顔料、耐熱性付与剤等
を配合することができる。これらの無機質充填剤の配合
量としては、例えば、(A)成分100重量部に対して5
0重量部以下であることが好ましい。
Further, in order to impart appropriate hardness and mechanical strength to the cured product obtained by curing the composition, fumed silica, crystalline silica, pyrogenic silica, wet silica, Inorganic fillers such as fumed titanium oxide and carbon black, inorganic fillers whose surfaces have been hydrophobized with organosilicon compounds such as organoalkoxysilanes, organochlorosilanes and organodisilazanes, and further pigments and heat-resistant materials. A property-imparting agent or the like can be added. The blending amount of these inorganic fillers is, for example, 5 parts with respect to 100 parts by weight of the component (A).
It is preferably 0 parts by weight or less.

【0022】本組成物は、(E)成分の沸点より低い温度
で硬化させることが必要であるが、これは、本組成物の
硬化温度が、(E)成分の沸点かそれ以上の温度である場
合には、本組成物が硬化完了する前に(E)成分が完全に
除去してしまうために、得られる硬化物の電気抵抗値や
電気抵抗率を十分に低くすることができず、また、この
電気抵抗値の温度依存性を小さくしたり、さらには、こ
の電気抵抗値や電気抵抗率の経時変化を小さくすること
ができなくなるからであり、甚だしい場合には、得られ
る硬化物中に気泡を生じたりするからである。このた
め、本組成物の硬化温度は、(E)成分の沸点より低い温
度であることが必要であり、好ましくは、(E)成分の沸
点に対して少なくとも20℃低い温度であり、より好ま
しく、(E)成分の沸点に対して少なくとも50℃低い温
度であり、特に好ましくは、(E)成分の沸点に対して少
なくとも80℃低い温度である。このようにして得られ
る硬化物の形態としては、ゲル状、ゴム状、硬質レジン
状が例示され、好ましくはゴム状である。
The composition needs to be cured at a temperature lower than the boiling point of the component (E), which means that the curing temperature of the composition is at or above the boiling point of the component (E). In some cases, since the component (E) is completely removed before the composition is completely cured, the electric resistance value and electric resistivity of the obtained cured product cannot be sufficiently lowered, Moreover, it is because it becomes impossible to reduce the temperature dependence of the electric resistance value, and further, it is impossible to reduce the change with time of the electric resistance value and the electric resistivity, and in extreme cases, in the obtained cured product. This is because bubbles may occur in the. Therefore, the curing temperature of the present composition needs to be lower than the boiling point of the component (E), preferably at least 20 ° C. lower than the boiling point of the component (E), and more preferably , A temperature lower than the boiling point of the component (E) by at least 50 ° C., particularly preferably a temperature lower than the boiling point of the component (E) by at least 80 ° C. Examples of the form of the cured product thus obtained include gel, rubber and hard resin, and preferably rubber.

【0023】続いて、本発明の導電性シリコーン硬化物
の製造方法を詳細に説明する。本方法に用いる付加反応
硬化型導電性シリコーン組成物は上記の通りである。本
方法は、上記の組成物の硬化途上もしくは硬化後に、上
記の(E)成分を除去することを特徴とする。(E)成分の
除去は完全である必要はないが、得られる硬化物の電気
抵抗値や電気抵抗率が小さく、また、この電気抵抗値の
温度依存性が小さく、さらには、この電気抵抗値や電気
抵抗率の経時変化が小さいくなる程度に除去される必要
があり、特には、硬化物から(E)成分を完全に除去する
ことが好ましい。上記組成物を硬化させる条件として
は、例えば、室温で放置したり、これを加熱したりする
ことにより行われる。この組成物を加熱する場合には、
この(E)成分の沸点より低い温度まで加熱することがで
きるが、硬化途上に(E)成分が完全に除去しないような
温度で行うことが好ましく、例えば、(E)成分の沸点に
対して少なくとも20℃低い温度であり、より好ましく
は、(E)成分の沸点に対して少なくとも50℃低い温度
であり、特に好ましく、(E)成分の沸点に対して少なく
とも80℃低い温度である。そして、このようにして得
られた導電性シリコーン硬化物から、この(E)成分を除
去する方法としては、得られた硬化物を常圧下で加熱し
たり、常温下で減圧したり、加熱下で減圧したりするこ
とにより行われ、好ましくは、この硬化物を常圧下で加
熱する方法である。また、この(E)成分を多量に除去し
なければならない場合には、この硬化物をアルゴン、ヘ
リウム、窒素等の不活性ガス雰囲気中で加熱することが
好ましい。
Next, the method for producing a cured product of the conductive silicone of the present invention will be described in detail. The addition reaction curable conductive silicone composition used in this method is as described above. The method is characterized in that the component (E) is removed during or after the curing of the composition. Although it is not necessary to completely remove the component (E), the resulting cured product has a low electric resistance value or electric resistivity, and the temperature dependence of the electric resistance value is small. It is necessary to completely remove the component (E) from the cured product, and it is preferable to completely remove the component (E) from the cured product. The conditions for curing the above composition include, for example, leaving it at room temperature and heating it. When heating this composition,
It can be heated to a temperature lower than the boiling point of the component (E), but it is preferable to carry out at a temperature at which the component (E) is not completely removed during curing, for example, with respect to the boiling point of the component (E). The temperature is at least 20 ° C. lower, more preferably at least 50 ° C. lower than the boiling point of component (E), particularly preferably at least 80 ° C. lower than the boiling point of component (E). Then, as a method of removing the component (E) from the conductive silicone cured product thus obtained, the obtained cured product is heated under normal pressure, depressurized at room temperature, or heated. It is carried out by decompressing with, and preferably, the cured product is heated under normal pressure. Further, when the component (E) has to be removed in a large amount, it is preferable to heat the cured product in an atmosphere of an inert gas such as argon, helium or nitrogen.

【0024】本方法によると、得られる導電性シリコー
ン硬化物の電気抵抗率が1Ω・cm以下、好ましくは1
×10-3Ω・cm以下である高導電性のシリコーン硬化
物を形成できるので、チップ部品と回路基板の電極材の
形成方法、これらの接着方法、半導体素子と回路基板、
リードフレームの接着方法、電極材の形成方法等に使用
することができる。
According to this method, the electric resistance of the obtained conductive silicone cured product is 1 Ω · cm or less, preferably 1
Since it is possible to form a highly conductive cured silicone having a conductivity of 10 −3 Ω · cm or less, a method for forming an electrode material for a chip component and a circuit board, a method for adhering them, a semiconductor element and a circuit board
It can be used for a lead frame bonding method, an electrode material forming method, and the like.

【0025】[0025]

【実施例】本発明の付加反応硬化型導電性シリコーン組
成物および導電性シリコーン硬化物の製造方法を実施例
により詳細に説明する。なお、実施例中の粘度は25℃
における値である。また、導電性シリコーン硬化物の電
気抵抗値および電気抵抗率は、次のようにして測定し
た。付加反応硬化型導電性シリコーン組成物を減圧下で
脱泡した後、幅7mmの電極を35mm間隔で配置した
回路基板上に、これらの電極間を連結するように、この
組成物を幅5mm、厚さ0.13mmの形に塗布した。
その後、この組成物を所定の条件下で硬化させた後、必
要により揮発性溶剤を除去して回路を作成した。この回
路の25℃および150℃における電気抵抗値を測定
し、さらに、この硬化物の25℃における電気抵抗率を
4探針法により測定した。さらに、この回路を−40℃
×30分、120℃×30分を1サイクルとする熱衝撃
試験を1000サイクル行った後の25℃および150
℃における電気抵抗値を測定し、さらに、この硬化物の
25℃における電気抵抗率を4探針法により測定した。
EXAMPLES The addition reaction-curable conductive silicone composition of the present invention and the method for producing a cured conductive silicone will be described in detail with reference to Examples. The viscosity in the examples is 25 ° C.
Is the value at. Moreover, the electrical resistance value and electrical resistivity of the conductive silicone cured product were measured as follows. After defoaming the addition reaction-curable conductive silicone composition under reduced pressure, this composition was applied on a circuit board having electrodes having a width of 7 mm arranged at intervals of 35 mm so that the electrodes had a width of 5 mm and were connected to each other. It was applied in a shape having a thickness of 0.13 mm.
After that, the composition was cured under predetermined conditions, and then the volatile solvent was removed if necessary to prepare a circuit. The electrical resistance of this circuit at 25 ° C. and 150 ° C. was measured, and the electrical resistivity of this cured product at 25 ° C. was measured by the 4-probe method. Furthermore, this circuit is -40 ℃
25 ° C. and 150 after 1000 cycles of a thermal shock test in which one cycle consists of × 30 minutes and 120 ° C. × 30 minutes.
The electrical resistance value at 25 ° C. was measured, and the electrical resistivity at 25 ° C. of the cured product was measured by the 4-probe method.

【0026】[実施例1](A)成分として、粘度が50
0mPa・sであり、分子鎖両末端ジメチルビニルシロ
キシ基封鎖ジメチルポリシロキサン(ビニル基の含有量
=0.43重量%)61重量部、粘度が8,000mP
a・sであり、分子鎖両末端ジメチルビニルシロキシ基
封鎖ジメチルポリシロキサンと(CH3)3SiO1/2単位
と(CH2=CH)(CH3)2SiO1/2単位とSiO4/2
位からなるオルガノポリシロキサンとの混合物(ビニル
基の含有量=0.75重量%)25重量部、(B)成分と
して、粘度が30mPa・sであり、分子鎖両末端トリ
メチルシロキシ基封鎖メチルハイドロジェンポリシロキ
サン(ケイ素原子結合水素原子の含有量=1.5重量
%)4重量部、(C)成分として、平均粒子径が5μmで
あるフレーク状還元銀微粉末400重量部、(D)成分と
して、白金の1,3−ジビニル−1,1,3,3−テト
ラメチルジシロキサン錯体を軟化点80〜90℃の熱可
塑性シリコーン樹脂に分散してなる微粒子化した触媒
(本組成物において、触媒中の白金金属が重量単位で1
5ppmとなる量である)、その他任意の成分として、
式:
Example 1 As the component (A), a viscosity of 50 was obtained.
0 mPa · s, 61 parts by weight of dimethylpolysiloxane blocked with dimethylvinylsiloxy groups at both ends of the molecular chain (vinyl group content = 0.43% by weight), and viscosity of 8,000 mP
a · s, dimethylpolysiloxane endcapped with dimethylvinylsiloxy groups at both ends of the molecular chain, (CH 3 ) 3 SiO 1/2 units, (CH 2 ═CH) (CH 3 ) 2 SiO 1/2 units, and SiO 4 / 25 parts by weight of a mixture of 2 units with an organopolysiloxane (vinyl group content = 0.75% by weight), the component (B) has a viscosity of 30 mPa · s, and a trimethylsiloxy group-blocked methyl at both ends of the molecular chain. 4 parts by weight of hydrogen polysiloxane (content of silicon atom-bonded hydrogen atom = 1.5% by weight), 400 parts by weight of flaky reduced silver fine powder having an average particle diameter of 5 μm as the component (C), (D) As a component, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum is dispersed in a thermoplastic silicone resin having a softening point of 80 to 90 ° C. to form a finely divided catalyst (in the present composition, , Touch Platinum metal weight units in 1
5 ppm), and other optional components,
formula:

【化6】 で表されるオルガノポリシロキサン7重量部、疎水性ヒ
ュームドシリカ3重量部、フェニルブチノール(本組成
物において重量単位で200ppmとなる量)を均一に
混合した組成物に、上記(A)成分〜(D)成分の合計量1
00重量部に対して(E)成分として、イソパラフィン系
混合溶剤(日本石油株式会社製の日石アイソゾール40
0、bp=200〜250℃)2重量部を均一に混合し
て付加反応硬化型導電性シリコーンゴム組成物を調製し
た。次に、この組成物を減圧下で脱泡し、上記の電極上
に塗布し、これを120℃で30分間加熱することによ
り硬化させた。その後、この導電性シリコーンゴムを2
50℃で30分間、窒素気流中で加熱することにより、
この導電性シリコーンゴム中のイソパラフィン系混合溶
剤を除去した。このようにして得られた回路の初期およ
び熱衝撃試験後の電気抵抗値、および導電性シリコーン
ゴムの初期および熱衝撃試験後の電気抵抗率を測定し
た。これらの測定結果を表1に示した。
[Chemical 6] In the composition, 7 parts by weight of the organopolysiloxane represented by the formula, 3 parts by weight of hydrophobic fumed silica, and phenylbutynol (the amount of which is 200 ppm by weight in the present composition) are uniformly mixed, and the above component (A) is added. ~ Total amount of component (D) 1
As the component (E) with respect to 00 parts by weight, an isoparaffin-based mixed solvent (Nisseki Isosol 40 manufactured by Nippon Oil Co., Ltd.
0, bp = 200 to 250 ° C.) 2 parts by weight were uniformly mixed to prepare an addition reaction curable conductive silicone rubber composition. Next, this composition was defoamed under reduced pressure, applied on the above electrode, and cured by heating at 120 ° C. for 30 minutes. Then, add this conductive silicone rubber to 2
By heating in a nitrogen stream at 50 ° C for 30 minutes,
The isoparaffinic mixed solvent in this conductive silicone rubber was removed. The electric resistance of the circuit thus obtained was measured, and the electrical resistivity of the conductive silicone rubber was measured after the initial and thermal shock tests. The results of these measurements are shown in Table 1.

【0027】[実施例2]実施例1で調製した付加反応
硬化型導電性シリコーンゴム組成物を上記の電極上に塗
布し、これを120℃で30分間加熱することにより硬
化させた。その後、この導電性シリコーンゴムを150
℃で1時間、空気中で加熱することにより、この導電性
シリコーンゴム中のイソパラフィン系混合溶剤を除去し
た。このようにして得られた回路の初期および熱衝撃試
験後の電気抵抗値、および導電性シリコーンゴムの初期
および熱衝撃試験後の電気抵抗率を測定した。これらの
測定結果を表1に示した。
[Example 2] The addition reaction-curable conductive silicone rubber composition prepared in Example 1 was applied onto the above electrode and cured by heating at 120 ° C for 30 minutes. Then, the conductive silicone rubber is
The isoparaffinic mixed solvent in the conductive silicone rubber was removed by heating in air at 0 ° C. for 1 hour. The electric resistance of the circuit thus obtained was measured, and the electrical resistivity of the conductive silicone rubber was measured after the initial and thermal shock tests. The results of these measurements are shown in Table 1.

【0028】[実施例3]実施例1で調製した付加反応
硬化型導電性シリコーンゴム組成物において、イソパラ
フィン系混合溶剤の配合量を4重量部とした以外は実施
例1と同様にして付加反応硬化型導電性シリコーンゴム
組成物を調製した。この組成物を実施例1と同様にして
硬化させた後、実施例1と同様にしてイソパラフィン系
混合溶剤を除去して回路を作成した。このようにして得
られた回路の初期および熱衝撃試験後の電気抵抗値、お
よび導電性シリコーンゴムの初期および熱衝撃試験後の
電気抵抗率を測定した。これらの測定結果を表1に示し
た。
Example 3 Addition reaction was carried out in the same manner as in Example 1 except that the addition reaction-curable conductive silicone rubber composition prepared in Example 1 was mixed with 4 parts by weight of the isoparaffinic mixed solvent. A curable conductive silicone rubber composition was prepared. After the composition was cured in the same manner as in Example 1, the isoparaffin-based mixed solvent was removed in the same manner as in Example 1 to prepare a circuit. The electric resistance of the circuit thus obtained was measured, and the electrical resistivity of the conductive silicone rubber was measured after the initial and thermal shock tests. The results of these measurements are shown in Table 1.

【0029】[実施例4](A)成分として、粘度が50
0mPa・sであり、分子鎖両末端ジメチルビニルシロ
キシ基封鎖ジメチルポリシロキサン(ビニル基の含有量
=0.43重量%)61重量部、粘度が8,000mP
a・sであり、分子鎖両末端ジメチルビニルシロキシ基
封鎖ジメチルポリシロキサンと(CH3)3SiO1/2単位
と(CH2=CH)(CH3)2SiO1/2単位とSiO4/2
位からなるオルガノポリシロキサンとの混合物(ビニル
基の含有量=0.75重量%)25重量部、(B)成分と
して、粘度が30mPa・sであり、分子鎖両末端トリ
メチルシロキシ基封鎖メチルハイドロジェンポリシロキ
サン(ケイ素原子結合水素原子の含有量=1.5重量
%)4重量部、(C)成分として、平均粒子径が5μmで
あるフレーク状還元銀微粉末400重量部、(D)成分と
して、白金の1,3−ジビニル−1,1,3,3−テト
ラメチルジシロキサン錯体(本組成物において、触媒中
の白金金属が重量単位で10ppmとなる量である)、
その他任意の成分として、式:
[Example 4] As the component (A), a viscosity of 50 was obtained.
0 mPa · s, 61 parts by weight of dimethylpolysiloxane blocked with dimethylvinylsiloxy groups at both ends of the molecular chain (vinyl group content = 0.43% by weight), and viscosity of 8,000 mP
a · s, dimethylpolysiloxane endcapped with dimethylvinylsiloxy groups at both ends of the molecular chain, (CH 3 ) 3 SiO 1/2 units, (CH 2 ═CH) (CH 3 ) 2 SiO 1/2 units, and SiO 4 / 25 parts by weight of a mixture of 2 units with an organopolysiloxane (vinyl group content = 0.75% by weight), the component (B) has a viscosity of 30 mPa · s, and a trimethylsiloxy group-blocked methyl at both ends of the molecular chain. 4 parts by weight of hydrogen polysiloxane (content of silicon atom-bonded hydrogen atom = 1.5% by weight), 400 parts by weight of flaky reduced silver fine powder having an average particle diameter of 5 μm as the component (C), (D) As a component, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum (the amount of platinum metal in the catalyst in the composition is 10 ppm by weight),
As other optional components, the formula:

【化7】 で表されるオルガノポリシロキサン7重量部、疎水性ヒ
ュームドシリカ3重量部、フェニルブチノール(本組成
物において重量単位で800ppmとなる量)を均一に
混合した組成物に、上記(A)成分〜(D)成分の合計量1
00重量部に対して(E)成分として、シクロヘキシルベ
ンゼン(bp=237℃)2重量部を均一に混合して付
加反応硬化型導電性シリコーンゴム組成物を調製した。
この組成物を実施例1と同様にして硬化させた後、実施
例1と同様にしてシクロヘキシルベンゼンを除去して回
路を作成した。このようにして得られた回路の初期およ
び熱衝撃試験後の電気抵抗値、および導電性シリコーン
ゴムの初期および熱衝撃試験後の電気抵抗率を測定し
た。これらの測定結果を表1に示した。
[Chemical 7] Of the organopolysiloxane represented by the formula (3), hydrophobic fumed silica (3 parts by weight), and phenylbutynol (in the composition, an amount of 800 ppm by weight) are uniformly mixed, and the component (A) is added. ~ Total amount of component (D) 1
As the component (E), 2 parts by weight of cyclohexylbenzene (bp = 237 ° C.) was uniformly mixed with 00 parts by weight to prepare an addition reaction curable conductive silicone rubber composition.
After curing this composition in the same manner as in Example 1, cyclohexylbenzene was removed in the same manner as in Example 1 to prepare a circuit. The electric resistance of the circuit thus obtained was measured, and the electrical resistivity of the conductive silicone rubber was measured after the initial and thermal shock tests. The results of these measurements are shown in Table 1.

【0030】[比較例1]実施例1で調製した付加反応
硬化型導電性シリコーンゴム組成物において、イソパラ
フィン系混合溶剤を配合しない以外は実施例1と同様に
して付加反応硬化型導電性シリコーンゴム組成物を調製
した。この組成物を実施例1と同様にして硬化させて回
路を作成した。このようにして得られた回路の初期およ
び熱衝撃試験後の電気抵抗値、および導電性シリコーン
ゴムの初期および熱衝撃試験後の電気抵抗率を測定し
た。これらの測定結果を表1に示した。
[Comparative Example 1] An addition reaction-curable conductive silicone rubber was prepared in the same manner as in Example 1 except that the isoparaffin-based mixed solvent was not added to the addition reaction-curable conductive silicone rubber composition prepared in Example 1. A composition was prepared. A circuit was prepared by curing this composition in the same manner as in Example 1. The electric resistance of the circuit thus obtained was measured, and the electrical resistivity of the conductive silicone rubber was measured after the initial and thermal shock tests. The results of these measurements are shown in Table 1.

【0031】[比較例2]実施例1で調製した付加反応
硬化型導電性シリコーンゴム組成物において、イソパラ
フィン系混合溶剤の配合量を(A)成分〜(D)成分の合計
量100重量部に対して15重量部とした以外は実施例
1と同様にして付加反応硬化型導電性シリコーンゴム組
成物を調製した。この組成物はかろうじて均一であった
が、この組成物を実施例1と同様にして硬化させた後、
実施例1と同様にしてイソパラフィン系混合溶剤を除去
して得られた回路は、銀微粉末の層分離が観察され、均
一ではなかった。このようにして得られた回路の初期の
電気抵抗値を測定した。これらの測定結果を表1に示し
た。
[Comparative Example 2] In the addition reaction-curable conductive silicone rubber composition prepared in Example 1, the amount of the isoparaffinic mixed solvent was adjusted to 100 parts by weight of the total amount of the components (A) to (D). On the other hand, an addition reaction-curable conductive silicone rubber composition was prepared in the same manner as in Example 1 except that the amount was 15 parts by weight. The composition was barely homogeneous, but after curing the composition as in Example 1,
The circuit obtained by removing the isoparaffinic mixed solvent in the same manner as in Example 1 was not uniform because the layer separation of the silver fine powder was observed. The initial electrical resistance value of the circuit thus obtained was measured. The results of these measurements are shown in Table 1.

【0032】[比較例3]実施例1で調製した付加反応
硬化型導電性シリコーンゴム組成物において、イソパラ
フィン系混合溶剤の配合量を(A)成分〜(D)成分の合計
量100重量部に対して30重量部とした以外は実施例
1と同様にして付加反応硬化型導電性シリコーンゴム組
成物を調製した。この組成物は直ちに層分離を生じて不
均一であった。この組成物を実施例1と同様にして硬化
させた後、実施例1と同様にしてイソパラフィン系混合
溶剤を除去して得られた回路は、銀微粉末の層分離が観
察され、均一ではなかった。このようにして得られた回
路の初期の電気抵抗値を測定した。これらの測定結果を
表1に示した。
[Comparative Example 3] In the addition reaction-curable conductive silicone rubber composition prepared in Example 1, the amount of the isoparaffin-based mixed solvent was adjusted to 100 parts by weight of the total amount of the components (A) to (D). On the other hand, an addition reaction-curable conductive silicone rubber composition was prepared in the same manner as in Example 1 except that the amount was 30 parts by weight. This composition was immediately non-uniform due to layer separation. The circuit obtained by curing this composition in the same manner as in Example 1 and then removing the isoparaffinic mixed solvent in the same manner as in Example 1 was not uniform because the layer separation of silver fine powder was observed. It was The initial electrical resistance value of the circuit thus obtained was measured. The results of these measurements are shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明の付加反応硬化型導電性シリコー
ン組成物は、付加反応により硬化して、電気抵抗値や電
気抵抗率が低く、この電気抵抗値の温度依存性が小さ
く、さらに、この電気抵抗値や電気抵抗率の経時変化が
小さい導電性シリコーン硬化物を形成できるという特徴
があり、また、本発明の導電性シリコーン硬化物の製造
方法は、このような導電性シリコーン硬化物を効率よく
製造できるという特徴がある。
EFFECT OF THE INVENTION The addition reaction-curable conductive silicone composition of the present invention is cured by an addition reaction to have a low electric resistance value or electric resistivity, and the temperature dependence of the electric resistance value is small. It is characterized in that a conductive silicone cured product having a small change in electrical resistance value or electric resistance with time can be formed. Further, the method for producing a conductive silicone cured product of the present invention is characterized by efficiently producing such a conductive silicone cured product. It has the characteristic of being well manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田澤 里加子 千葉県市原市千種海岸2番2 東レ・ダ ウコーニング・シリコーン株式会社 研 究開発本部内 (72)発明者 峰 勝利 千葉県市原市千種海岸2番2 東レ・ダ ウコーニング・シリコーン株式会社 研 究開発本部内 (56)参考文献 特開 平1−213362(JP,A) 特開 平4−300965(JP,A) 特開 平7−133432(JP,A) 特開 平7−150048(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08L 83/00 - 83/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Rikako Tazawa 2-2 Chikusaigan, Ichihara-shi, Chiba Toray Dow Corning Silicone Co., Ltd. 2-2 Toray Dow Corning Silicone Co., Ltd. Research and Development Division (56) Reference JP-A-1-213362 (JP, A) JP-A-4-300965 (JP, A) JP-A-7-133432 (JP, A) JP-A-7-150048 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C08L 83/00-83/16

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (A)一分子中に少なくとも2個のアルケニル基を有するオル ガノポリシロキサン 100重量部、 (B)一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノポリ シロキサン(本組成物を硬化させるに十分な量)、 (C)導電性金属系微粉末 50〜2000重量部、 (D)白金系付加反応用触媒 触媒量、 および (E)本組成物の硬化温度よりも高い沸点(但し、この沸点は400℃以下である 。)を有する揮発性溶剤{(A)成分〜(D)成分の合計量100重量部に対して0 .1〜10重量部} からなる付加反応硬化型導電性シリコーン組成物。1. An ortho having (A) at least two alkenyl groups in one molecule. 100 parts by weight of ganopolysiloxane, (B) Organopoly having at least two silicon-bonded hydrogen atoms in one molecule Siloxane (sufficient to cure the composition), (C) 50 to 2000 parts by weight of conductive metal-based fine powder, (D) Platinum-based addition reaction catalyst, catalytic amount, and (E) Boiling point higher than the curing temperature of the composition (however, this boiling point is 400 ° C. or lower) . ) Having a volatile solvent (0) per 100 parts by weight of the total amount of the components (A) to (D). . 1 to 10 parts by weight} An addition reaction curable conductive silicone composition comprising: 【請求項2】 (C)成分が銀微粉末であることを特徴と
する、請求項1記載の付加反応硬化型導電性シリコーン
組成物。
2. The addition reaction curable conductive silicone composition according to claim 1, wherein the component (C) is fine silver powder.
【請求項3】 (E)成分の配合量が、(A)成分〜(D)成
分の合計量100重量部に対して0.1〜5重量部であ
ることを特徴とする、請求項1記載の付加反応硬化型導
電性シリコーン組成物。
3. The compounding amount of the component (E) is 0.1 to 5 parts by weight based on 100 parts by weight of the total amount of the components (A) to (D). The addition reaction-curable conductive silicone composition described.
【請求項4】 請求項1記載の付加反応硬化型導電性シ
リコーン組成物を硬化させることにより導電性シリコー
ン硬化物を製造する方法において、この組成物の硬化途
上もしくは硬化後に、(E)成分を除去することを特徴と
する導電性シリコーン硬化物の製造方法。
4. A method for producing a conductive silicone cured product by curing the addition reaction curable conductive silicone composition according to claim 1, wherein the component (E) is added during or after curing of the composition. A method for producing a cured product of a conductive silicone, which comprises removing the cured product.
【請求項5】 (E)成分の沸点より低い硬化温度で付加
反応硬化型導電性シリコーン組成物を硬化させた後、常
圧下で加熱することにより(E)成分を除去することを特
徴とする、請求項4記載の導電性シリコーン硬化物の製
造方法。
5. The component (E) is removed by curing the addition reaction-curable conductive silicone composition at a curing temperature lower than the boiling point of the component (E) and then heating it under normal pressure. The method for producing a cured product of conductive silicone according to claim 4.
JP30567096A 1996-10-31 1996-10-31 Addition reaction-curable conductive silicone composition and method for producing cured conductive silicone Expired - Lifetime JP3436464B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP30567096A JP3436464B2 (en) 1996-10-31 1996-10-31 Addition reaction-curable conductive silicone composition and method for producing cured conductive silicone
DE69730572T DE69730572T2 (en) 1996-10-31 1997-10-30 Addition-crosslinking electrically conductive silicone composition and process for its preparation
EP97118954A EP0839870B1 (en) 1996-10-31 1997-10-30 Addition reaction-curing electrically conductive silicone composition and method for the preparation thereof
US08/960,645 US5932145A (en) 1996-10-31 1997-10-30 Addition reaction-curing electrically conductive silicone composition and method for the preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30567096A JP3436464B2 (en) 1996-10-31 1996-10-31 Addition reaction-curable conductive silicone composition and method for producing cured conductive silicone

Publications (2)

Publication Number Publication Date
JPH10130508A JPH10130508A (en) 1998-05-19
JP3436464B2 true JP3436464B2 (en) 2003-08-11

Family

ID=17947943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30567096A Expired - Lifetime JP3436464B2 (en) 1996-10-31 1996-10-31 Addition reaction-curable conductive silicone composition and method for producing cured conductive silicone

Country Status (4)

Country Link
US (1) US5932145A (en)
EP (1) EP0839870B1 (en)
JP (1) JP3436464B2 (en)
DE (1) DE69730572T2 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017587A (en) * 1998-07-09 2000-01-25 Dow Corning Corporation Electrically conductive silicone compositions
DE19851166C2 (en) * 1998-11-06 2000-11-30 Hermann Otto Gmbh Foamable, electrically and thermally conductive sealants and adhesives, processes for production and their use
JP3603945B2 (en) * 1999-10-06 2004-12-22 信越化学工業株式会社 Conductive silicone rubber composition
JP5242874B2 (en) * 2000-01-19 2013-07-24 モーメンティブ・パフォーマンス・マテリアルズ・インク Room temperature curable silicone sealant
US6433057B1 (en) 2000-03-28 2002-08-13 Dow Corning Corporation Silicone composition and electrically conductive silicone adhesive formed therefrom
US6361716B1 (en) 2000-07-20 2002-03-26 Dow Corning Corporation Silicone composition and electrically conductive silicone adhesive formed therefrom
JP3705344B2 (en) * 2000-08-17 2005-10-12 信越化学工業株式会社 Conductive silicone rubber composition
JP4857441B2 (en) * 2000-11-14 2012-01-18 藤倉化成株式会社 Conductive paste and manufacturing method thereof
EP1399928B1 (en) * 2001-04-06 2012-06-13 World Properties, Inc. Electrically conductive silicone gaskets and method of manufacture thereof
EP1256601B1 (en) * 2001-04-12 2006-08-23 Dow Corning Corporation Silicone composition and electrically conductive silicone adhesive formed therefrom
KR100713570B1 (en) * 2001-04-20 2007-05-02 다우 코닝 코포레이션 Silicone composition and electrically conductive silicone adhesive formed therefrom
JP2003031028A (en) * 2001-07-17 2003-01-31 Shin Etsu Chem Co Ltd Conductive composition
JP4365067B2 (en) * 2002-05-14 2009-11-18 東レ・ダウコーニング株式会社 Curable silicone composition for forming composite soft magnetic material and composite soft magnetic material
JP4587636B2 (en) * 2002-11-08 2010-11-24 東レ・ダウコーニング株式会社 Thermally conductive silicone composition
WO2005012435A1 (en) * 2003-07-31 2005-02-10 World Properties, Inc. Electrically conductive, flame retardant fillers, method of manufacture, and use thereof
US20050062024A1 (en) * 2003-08-06 2005-03-24 Bessette Michael D. Electrically conductive pressure sensitive adhesives, method of manufacture, and use thereof
US20060094809A1 (en) * 2004-11-02 2006-05-04 Simone Davide L Electrically and thermally conductive silicone adhesive compositions
JP4395753B2 (en) * 2004-12-27 2010-01-13 信越化学工業株式会社 Method of manufacturing heat conductive member, method of using the same, and heat dissipation structure
CN101278011B (en) * 2005-08-02 2012-10-24 环球产权公司 Silicone compositions, methods of manufacture, and articles formed therefrom
US20100183814A1 (en) * 2005-08-02 2010-07-22 Victor Rios Silicone compositions, methods of manufacture, and articles formed therefrom
US20090162596A1 (en) * 2005-08-02 2009-06-25 World Properties, Inc. Silicone compositions, methods of manufacture, and articles formed therefrom
US20090162651A1 (en) * 2005-08-02 2009-06-25 World Properties, Inc. Silicone compositions, methods of manufacture, and articles formed therefrom
JP5233325B2 (en) * 2008-02-29 2013-07-10 信越化学工業株式会社 Thermally conductive cured product and method for producing the same
JP2010070599A (en) * 2008-09-17 2010-04-02 Dow Corning Toray Co Ltd Liquid die bonding agent
JP5748512B2 (en) * 2011-03-07 2015-07-15 信越化学工業株式会社 Addition-curing self-adhesive silicone rubber composition
JP5565758B2 (en) * 2011-06-29 2014-08-06 信越化学工業株式会社 Curable, grease-like thermally conductive silicone composition and semiconductor device
JP5621819B2 (en) * 2011-12-20 2014-11-12 Jsr株式会社 Curable composition, cured product, and optical semiconductor device
KR101594343B1 (en) * 2011-12-20 2016-02-16 제이에스알 가부시끼가이샤 Curable composition and method for producing thereof, cured product, and optical semiconductor device
JP5978912B2 (en) * 2012-10-18 2016-08-24 旭硝子株式会社 Manufacturing method of glass laminate and manufacturing method of electronic device
DE102012220700A1 (en) * 2012-11-13 2014-05-15 Wacker Chemie Ag Filler-containing silicone compositions
US9441086B2 (en) * 2012-12-20 2016-09-13 Dow Corning Corporation Curable silicone compositions, electrically conductive silicone adhesives, methods of making and using same, and electrical devices containing same
JP2014201627A (en) * 2013-04-02 2014-10-27 三菱化学株式会社 Thermosetting silicone resin composition, production method of silicone resin molded article, and silicone resin molded article
JP6121804B2 (en) * 2013-06-04 2017-04-26 Dowaエレクトロニクス株式会社 Bonding material and method of bonding electronic components using the bonding material
JP6001523B2 (en) * 2013-11-14 2016-10-05 信越化学工業株式会社 Silicone adhesive
US20160214165A1 (en) * 2015-01-26 2016-07-28 General Electric Company Porous ceramic materials for investment casting
JP6772448B2 (en) * 2015-10-29 2020-10-21 住友ベークライト株式会社 Conductive resin compositions, wiring, wiring boards and electronics
JP7018295B2 (en) * 2017-03-31 2022-02-10 住友ベークライト株式会社 Conductive paste

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD244284A3 (en) * 1984-04-30 1987-04-01 Univ Dresden Tech METHOD OF MAKING AN ELASTIC LEAD ADHESIVE
US4545914A (en) * 1984-08-31 1985-10-08 Dow Corning Corporation Conductive elastomers from electrically conductive fibers in silicone emulsion
US4547312A (en) * 1984-08-31 1985-10-15 Dow Corning Corporation Electrically conductive elastomers from emulsions
US4904414A (en) * 1986-09-25 1990-02-27 Siemens Aktiengesellschaft Electrically conductive adhesive for a broad range of temperatures
US4777205A (en) * 1987-07-22 1988-10-11 Wacker Silicones Corporation Electrically conductive compositions
JPH0297559A (en) * 1988-10-03 1990-04-10 Toshiba Silicone Co Ltd Heat-conductive silicone composition
JP2974700B2 (en) * 1989-11-30 1999-11-10 東レ・ダウコーニング・シリコーン株式会社 Conductive adhesive
JPH0721308Y2 (en) * 1990-10-30 1995-05-17 信越化学工業株式会社 Thermal conductive sheet
TW221837B (en) * 1990-12-28 1994-03-21 Shinetsu Chem Ind Co
JPH05271548A (en) * 1992-03-27 1993-10-19 Shin Etsu Chem Co Ltd Organopolysiloxane composition and formation of cured product therefrom
JP2713093B2 (en) * 1993-04-13 1998-02-16 信越化学工業株式会社 Conductive silicone rubber composition
JP2819444B2 (en) * 1993-11-08 1998-10-30 東レ・ダウコーニング・シリコーン株式会社 Conductive silicone rubber composition
WO1995020019A1 (en) * 1994-01-21 1995-07-27 Toshiba Silicone Co., Ltd. Adhesive composition and method of curing the same

Also Published As

Publication number Publication date
EP0839870A3 (en) 1998-06-03
EP0839870B1 (en) 2004-09-08
DE69730572D1 (en) 2004-10-14
EP0839870A2 (en) 1998-05-06
JPH10130508A (en) 1998-05-19
DE69730572T2 (en) 2005-09-15
US5932145A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP3436464B2 (en) Addition reaction-curable conductive silicone composition and method for producing cured conductive silicone
US5075038A (en) Electrically conductive silicone compositions
JP3999994B2 (en) Conductive silicone rubber composition
CN109890900B (en) One-component curable heat-conductive silicone grease composition and electronic/electrical component
JP2974700B2 (en) Conductive adhesive
JP4015722B2 (en) Thermally conductive polymer composition
KR102542894B1 (en) Thermally conductive polyorganosiloxane composition
JP3482115B2 (en) Curable silicone composition and electronic component
JP7222983B2 (en) Silicone composition containing filler
WO2002082468A1 (en) Electrically conductive silicones and method of manufacture thereof
JP3544092B2 (en) Liquid silicone rubber composition for high voltage electrical insulation parts and method for producing the same
JP5704049B2 (en) Method for forming conductive circuit
KR0175947B1 (en) Curable silicone composition and cured product thereof
JPH0112785B2 (en)
KR20140029281A (en) Conductive ink composition, formation of conductive circuit, and conductive circuit
JP2002322364A (en) Silicone gel composition
CN114641538B (en) Thermally conductive silicone composition and method for producing same
JP2691823B2 (en) Curable silicone composition and cured product thereof
EP0367562B1 (en) Electrically conductive silicone compositions
JP2015005564A (en) Method for forming conducting circuit, conducting circuit, and ink composition for conducting circuit drawing
JP4897149B2 (en) Silicone composition and silicone adhesive produced therefrom
JPH10212414A (en) Liquid silicone rubber composition for high-voltage insulation part and its production
CN112041411A (en) Thermally conductive composition and thermally conductive sheet using same
JPH08302196A (en) Conductive filler and conductive silicone composition
CN114729194B (en) Thermally conductive addition-curable silicone composition and method for producing same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term