JP3435495B2 - First magnesium phosphate crystal and method for producing the same - Google Patents

First magnesium phosphate crystal and method for producing the same

Info

Publication number
JP3435495B2
JP3435495B2 JP22253791A JP22253791A JP3435495B2 JP 3435495 B2 JP3435495 B2 JP 3435495B2 JP 22253791 A JP22253791 A JP 22253791A JP 22253791 A JP22253791 A JP 22253791A JP 3435495 B2 JP3435495 B2 JP 3435495B2
Authority
JP
Japan
Prior art keywords
magnesium
crystal
crystals
bis
dihydrogen orthophosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22253791A
Other languages
Japanese (ja)
Other versions
JPH04349112A (en
Inventor
信之 松田
穣 若菜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taihei Chemical Industrial Co Ltd
Original Assignee
Taihei Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taihei Chemical Industrial Co Ltd filed Critical Taihei Chemical Industrial Co Ltd
Priority to JP22253791A priority Critical patent/JP3435495B2/en
Publication of JPH04349112A publication Critical patent/JPH04349112A/en
Application granted granted Critical
Publication of JP3435495B2 publication Critical patent/JP3435495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • C01B25/34Magnesium phosphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fertilizers (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、肥料、耐火物用バイン
ダー、難燃材、窯業原料等に使用される新規なビス(オ
ルトリン酸二水素)マグネシウム(Mg(HPO
4HO)の結晶、及び、新規なビス(オルトリン酸
二水素)マグネシウム結晶の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to a novel magnesium bis (dihydrogen orthophosphate) (Mg (H 2 PO 4 )) used for fertilizers, binders for refractories, flame retardants, raw materials for ceramics, etc.
2 4H 2 O) crystals, and to a novel process for producing bis (dihydrogen orthophosphate) crystalline magnesium.

【0002】[0002]

【従来の技術】従来、第1リン酸マグネシウム即ちビス
(オルトリン酸二水素)マグネシウムの結晶を、水酸化
マグネシウム等のマグネシウム化合物にリン酸等のリン
酸化合物を直接反応させて製造することはできなかっ
た。溶液中のP濃度を、ビス(オルトリン酸二水
素)マグネシウム4水塩結晶中の濃度と同じ49%まで
上げ、更に、MgO濃度を、ビス(オルトリン酸二水
素)マグネシウム四水塩結晶中の濃度の約80%に当た
る11%にまで上げても、ビス(オルトリン酸二水素)
マグネシウムの溶解度が高いためか、結晶は全く沈澱し
てこない。また、MgO濃度を更に上げて、MgO/P
モル比が0.95を超えると、第2リン酸マグネ
シウム即ちオルトリン酸一水素マグネシウムが析出して
くる。
2. Description of the Related Art Conventionally, crystals of primary magnesium phosphate, that is, magnesium bis (dihydrogen orthophosphate) cannot be produced by directly reacting a magnesium compound such as magnesium hydroxide with a phosphoric acid compound such as phosphoric acid. There wasn't. The P 2 O 5 concentration in the solution was raised to 49%, which is the same as the concentration in the bis (dihydrogen orthophosphate) magnesium tetrahydrate crystal, and the MgO concentration was further increased to bis (dihydrogen orthophosphate) magnesium tetrahydrate crystal. Even if it is raised to 11%, which is about 80% of the medium concentration, bis (dihydrogen orthophosphate)
The crystals did not precipitate at all, probably because of the high solubility of magnesium. In addition, the MgO concentration is further increased to increase the MgO / P
When the 2 O 5 molar ratio exceeds 0.95, dibasic magnesium phosphate, that is, magnesium monohydrogen orthophosphate is precipitated.

【0003】そこで、従来から、ビス(オルトリン酸二
水素)マグネシウムの結晶は、80〜90℃に加熱した
比重1.6のリン酸中に、炭酸マグネシウム又は酸化マ
グネシウムを少量づつ添加し、冷却後、酢酸エチルを加
えて12〜15時間静置し、生成した沈澱を濾過すると
いう複雑な方法によって製造されてきた。そして、この
ような方法によって得られたビス(オルトリン酸二水
素)マグネシウム四水塩結晶は、平均直径が30μm程
度の非常に細かいものであった。
Therefore, conventionally, for crystals of magnesium bis (dihydrogen orthophosphate), magnesium carbonate or magnesium oxide was added little by little to phosphoric acid having a specific gravity of 1.6 heated to 80 to 90 ° C., and after cooling. It was produced by a complicated method in which ethyl acetate was added, the mixture was allowed to stand for 12 to 15 hours, and the formed precipitate was filtered. The bis (dihydrogen orthophosphate) magnesium tetrahydrate crystals obtained by such a method were very fine with an average diameter of about 30 μm.

【0004】また、結晶を析出させる際、媒晶剤と呼ば
れる第三物質を共存させると、種々の結晶面の成長速度
に差が生じて、特定の形状の結晶が得られることは、よ
く知られている。しかしながら、結晶が全く析出しない
条件下で、第三物質を共存させることによって結晶を析
出させることは、知られていなかった。
It is also well known that when a crystal is deposited, if a third substance called a habit modifier is coexistent, the growth rate of various crystal planes is different, and a crystal having a specific shape can be obtained. Has been. However, it has not been known to precipitate crystals by coexisting a third substance under the condition that crystals do not precipitate at all.

【0005】[0005]

【発明が解決しようとする課題】前述のように、従来の
方法で製造されたビス(オルトリン酸二水素)マグネシ
ウム結晶が非常に細かいので、肥料等に使用すれば、す
ぐに溶けて流失するし、また、耐火物用バインダー等と
して他の粒度の異なる材料と混合すれば、底部に溜まっ
て均一に混合することが困難になる等の問題があった。
また、前述のような従来のビス(オルトリン酸二水素)
マグネシウム結晶の製造方法は、有機溶剤を使用する複
雑な操作と長時間の結晶生成時間とを必要とする方法で
あるので、製造コストが非常に高額になり、工業的生産
にそのまま使用することは非常に困難であった。
As described above, since the bis (dihydrogen orthophosphate) magnesium crystals produced by the conventional method are very fine, if they are used as fertilizers, they will be immediately melted and washed away. In addition, when mixed with other materials having different particle sizes such as a binder for refractory, there is a problem that it becomes difficult to uniformly mix them by accumulating at the bottom.
Also, conventional bis (dihydrogen orthophosphate) as described above
The manufacturing method of magnesium crystals is a method that requires a complicated operation using an organic solvent and a long crystal formation time, so that the manufacturing cost becomes very high and it is not possible to use it for industrial production as it is. It was very difficult.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前述の課
題を解決するため、鋭意研究の結果、新規な製造方法を
開発して、これまで存在しなかった結晶の平均直径が1
00μmないし200μmにも達するビス(オルトリン
酸二水素)マグネシウム結晶の製造に初めて成功したも
のである。そして、本願に係わる発明は、新規な物質と
して、結晶の平均直径が100μmないし200μmで
あるビス(オルトリン酸二水素)マグネシウム結晶(以
下「第1発明」という)、及び、リン酸水溶液と、Mg
O/Pモル比が0.95以下であって、酸化マグ
ネシウムに換算して8〜11重量%のマグネシウム化合
物とを、酸化物に換算して0.05〜2.0重量%の1
種以上のアルカリ土類金属化合物の共存下で、反応させ
ることを特徴とするビス(オルトリン酸二水素)マグネ
シウム結晶の製造方法(以下「第2発明」という)から
なる。
In order to solve the above-mentioned problems, the inventors of the present invention have conducted extensive research and as a result, have developed a novel manufacturing method, and the average diameter of a crystal which has never existed until now is 1.
It was the first successful production of magnesium bis (dihydrogen orthophosphate) magnesium crystals as large as 00 μm to 200 μm. The invention according to the present application includes, as novel substances, bis (dihydrogen orthophosphate) magnesium crystals (hereinafter referred to as “first invention”) having an average crystal diameter of 100 μm to 200 μm, a phosphoric acid aqueous solution, and Mg.
O / P 2 0 5 molar ratio is not more than 0.95, and a magnesium compound 8-11 wt% in terms of magnesium oxide, 0.05 to 2.0 wt% in terms of oxide 1
It comprises a method for producing magnesium bis (dihydrogen orthophosphate) crystals (hereinafter referred to as the "second invention"), which comprises reacting in the presence of one or more alkaline earth metal compounds.

【0007】第1発明に係わるビス(オルトリン酸二水
素)マグネシウム結晶は、第2発明に係わるビス(オル
トリン酸二水素)マグネシウム結晶の製造方法によっ
て、容易に製造することができる。なお、この製造方法
において、使用されるマグネシウム化合物は、リン酸と
反応するものであれば、どのにうな化合物でもよいが、
生成物中に不必要な酸根等の異物が残らないようにする
ために、水酸化マグネシウムや酸化マグネシウム等を使
用することが好ましい。また、使用されるアルカリ土類
金属化合物も、リン酸と反応して生成物中に不必要な酸
根等の異物が残らないようにするために、カルシウム、
ストロンチウム、バリウム等の水酸化物や酸化物を使用
することが好ましい。
The bis (dihydrogen orthophosphate) magnesium crystal according to the first aspect of the invention can be easily produced by the method for producing bis (dihydrogen orthophosphate) magnesium crystal according to the second aspect. In this production method, the magnesium compound used may be any compound as long as it reacts with phosphoric acid.
In order to prevent unnecessary foreign substances such as acid radicals from remaining in the product, it is preferable to use magnesium hydroxide, magnesium oxide or the like. Also, the alkaline earth metal compound used is calcium, in order to react with phosphoric acid and to prevent foreign substances such as unnecessary acid radicals from remaining in the product,
It is preferable to use a hydroxide or oxide such as strontium or barium.

【0008】本発明に係わるビス(オルトリン酸二水
素)マグネシウム結晶の製造方法において、マグネシウ
ム化合物の濃度を、MgO/Pモル比が0.95
以下にするのは、オルトリン酸一水素マグネシウムの生
成を防止するためであって、また、それと同時に、マグ
ネシウム化合物の濃度を、酸化マグネシウムに換算して
8〜11重量%にするのは、8重量%未満であれば、ア
ルカリ土類金属化合物を加えてもビス(オルトリン酸二
水素)マグネシウムの結晶が析出しないからであり、一
方、11重量%を超えると反応が困難になるからであ
る。また、アルカリ土類金属化合物の濃度を、0.05
〜2.0重量%にするのは、0.05重量%未満であれ
ば、マグネシウム化合物の濃度が11重量%であって
も、結晶が析出しないからであり、一方、2.0重量%
を超えるとアルカリ土類金属のリン酸塩の結晶も析出す
るからである。
In the method for producing bis (dihydrogen orthophosphate) magnesium crystals according to the present invention, the concentration of the magnesium compound is set to a MgO / P 2 O 5 molar ratio of 0.95.
The following is to prevent the production of magnesium monohydrogen orthophosphate, and at the same time, the concentration of the magnesium compound is 8 to 11% by weight in terms of magnesium oxide. This is because if it is less than 10% by weight, crystals of magnesium bis (dihydrogen orthophosphate) do not precipitate even if an alkaline earth metal compound is added, while if it exceeds 11% by weight, the reaction becomes difficult. In addition, the concentration of the alkaline earth metal compound is 0.05
The reason why the content is made to be 2.0% by weight is that if it is less than 0.05% by weight, crystals do not precipitate even if the concentration of the magnesium compound is 11% by weight.
This is because crystals of a phosphate of an alkaline earth metal will also be precipitated if it exceeds.

【0009】[0009]

【作用】本発明に係わる製造方法において、どのような
作用によって、ビス(オルトリン酸二水素)マグネシウ
ムの大きい結晶が生成するか詳細は不明であるが、一応
次のような作用が関与するものと考えられる。即ち、リ
ン酸に、MgO/Pモル比が0.95以下であっ
て、酸化マグネシウムに換算して8〜11重量%のマグ
ネシウム化合物を添加すると、ビス(オルトリン酸二水
素)マグネシウム四水塩としての濃度は、57〜80%
という高濃度になっている。従って、何か機会があれば
結晶を生成しうる状態にあるといえる。そのような状態
のところに、アルカリ金属化合物が、媒晶剤として働
き、特定の結晶面の成長を促進する結果、全体として、
ビス(オルトリン酸二水素)マグネシウム結晶が、成長
するものと考えられる。
In the production method according to the present invention, it is unclear in what kind of action the large crystals of bis (dihydrogen orthophosphate) magnesium are formed, but the following actions are considered to be involved. Conceivable. That is, the phosphoric acid, there is 0.95 or less MgO / P 2 O 5 molar ratio, the addition of converted to 8-11% by weight of the magnesium compound to the magnesium oxide, bis (dihydrogen orthophosphate) Magnesium four Concentration as water salt is 57-80%
That is a high concentration. Therefore, it can be said that crystals can be generated if there is any opportunity. In such a state, the alkali metal compound acts as a habit modifier and promotes the growth of specific crystal planes, and as a result,
It is believed that magnesium bis (dihydrogen orthophosphate) crystals grow.

【0010】[0010]

【実施例】【Example】

〔実施例1〕85%リン酸664.4g、イオン交換水
204.4gを入れた1lのガラスビーカーを80℃に
設定した恒温槽に設置し、攪拌しながら酸化カルシウム
1.0g、水酸化マグネシウム130.2gを2時間か
けて少量づつ添加した。ビーカーを室温で徐冷しなが
ら、攪拌を続け、16時間後にヌッチェフィルターを用
いて濾過し、結晶(以下「結晶I」という)を得た。収
率は62.8%であった。
[Example 1] A 1 L glass beaker containing 85% phosphoric acid 664.4 g and ion-exchanged water 204.4 g was placed in a constant temperature bath set at 80 ° C, and 1.0 g of calcium oxide and magnesium hydroxide with stirring. 130.2 g was added portionwise over 2 hours. While the beaker was gradually cooled at room temperature, stirring was continued, and after 16 hours, filtration was performed using a Nutsche filter to obtain crystals (hereinafter referred to as “crystal I”). The yield was 62.8%.

【0011】〔実施例2〕85%リン酸584.8g、
イオン交換水289.4gを入れた1lのガラスビーカ
ーを80℃に設定した恒温槽に設置し、攪拌しながら酸
化カルシウム10.0g、水酸化マグネシウム115.
8gを2時間かけて少量づつ添加した。ビーカーを室温
で徐冷しながら、撹拌を続け、16時間後にヌッチェフ
ィルターを用いて濾過し、結晶(以下「結晶II」とい
う)を得た。収率は27.5%であった。
[Example 2] 584.8 g of 85% phosphoric acid,
A 1 liter glass beaker containing 289.4 g of ion-exchanged water was placed in a constant temperature bath set at 80 ° C., while stirring, 10.0 g of calcium oxide and 115.
8 g was added portionwise over 2 hours. While the beaker was gradually cooled at room temperature, stirring was continued, and after 16 hours, filtration was performed using a Nutsche filter to obtain crystals (hereinafter referred to as “crystal II”). The yield was 27.5%.

【0012】〔実施例3〕85%リン酸726.2g、
イオン交換水125.7gを入れた1lのガラスビーカ
ーを80℃に設定した恒温槽に設置し、攪拌しながら水
酸化バリウム3.4g、水酸化マグネシウム144.7
gを2時間かけて少量づつ添加した。ビーカーを室温で
徐冷しながら、攪拌を続け、16時間後にヌッチェフィ
ルターを用いて濾過し、結晶(以下「結晶IIIとい
う)を得た。収率は36.6%であった。
[Example 3] 726.2 g of 85% phosphoric acid,
A 1-liter glass beaker containing 125.7 g of ion-exchanged water was placed in a constant temperature bath set at 80 ° C., and while stirring, barium hydroxide 3.4 g and magnesium hydroxide 144.7.
g was added portionwise over 2 hours. While the beaker was gradually cooled at room temperature, stirring was continued, and after 16 hours, filtration was performed using a Nutsche filter to obtain crystals (hereinafter, referred to as “crystal III”. The yield was 36.6%.

【0013】〔比較例1〕85%リン酸649.8g、
イオン交換水220.1gを入れた1lのガラスビーカ
ーを80℃に設定した恒温槽に設置し、攪拌しながら酸
化カルシウム0.4g、水酸化マグネシウム129.7
gを2時間かけて少量づつ添加した。ビーカーを室温で
徐冷しながら、攪拌を続けたが、16時間経過しても結
晶の沈澱は認められなかった。
Comparative Example 1 85% phosphoric acid 649.8 g,
A 1-liter glass beaker containing 220.1 g of ion-exchanged water was placed in a thermostat set at 80 ° C., and 0.4 g of calcium oxide and 129.7 of magnesium hydroxide with stirring.
g was added portionwise over 2 hours. Stirring was continued while gradually cooling the beaker at room temperature, but no crystal precipitation was observed even after 16 hours.

【0014】〔比較例2〕85%リン酸659.6g、
イオン交換水185.3gを入れた1lのガラスビーカ
ーを80℃に設定した恒温槽に設置し、攪拌しながら酸
化カルシウム22.0g、水酸化マグネシウム133.
1gを2時間かけて少量づつ添加した。ビーカーを室温
で徐冷しながら、攪拌を続けたところ、溶液全体が結晶
化した。それを取り出して結晶(以下「結晶IV」とい
う)を得た。
[Comparative Example 2] 659.6 g of 85% phosphoric acid,
A 1 liter glass beaker containing 185.3 g of ion-exchanged water was placed in a constant temperature bath set at 80 ° C., with stirring, 22.0 g of calcium oxide and 133.
1 g was added portionwise over 2 hours. When the beaker was gradually cooled at room temperature and stirring was continued, the entire solution was crystallized. The crystals were taken out to obtain crystals (hereinafter referred to as “crystal IV”).

【0015】〔比較例3〕85%リン酸487.4g、
イオン交換水399.1gを入れた1lのガラスビーカ
ーを80℃に設定した恒温槽に設置し、攪拌しながら酸
化カルシウム5.0g、水酸化マグネシウム108.5
gを2時間かけて少量づつ添加した。ビーカーを室温で
徐冷しながら、攪拌を続けたが、16時間経過しても結
晶の沈澱は認められなかった。
[Comparative Example 3] 487.4 g of 85% phosphoric acid,
A 1-liter glass beaker containing 399.1 g of ion-exchanged water was placed in a constant temperature bath set at 80 ° C., 5.0 g of calcium oxide and 108.5 of magnesium hydroxide with stirring.
g was added portionwise over 2 hours. Stirring was continued while gradually cooling the beaker at room temperature, but no crystal precipitation was observed even after 16 hours.

【0016】〔比較例4〕85%リン酸450.0g、
イオン交換水50.0gを入れた1lのガラスビーカー
を80℃に設定した恒温槽に設置し、攪拌しながら酸化
マグネシウム72.0gを2時間かけて少量づつ添加し
た後、イオン交換水100.0gを添加し、ついで酢酸
エチル50.0gを加え、ビーカーを室温で徐冷しなが
ら、攪拌を続けた。一昼夜経過後濾過し、アセトンで洗
浄し、風乾し、結晶(以下「結晶V」という)を得た。
収率は32.1%であった。
[Comparative Example 4] 450.0 g of 85% phosphoric acid,
A 1 liter glass beaker containing 50.0 g of ion-exchanged water was placed in a constant temperature bath set at 80 ° C., and 72.0 g of magnesium oxide was added little by little over 2 hours while stirring, and then 100.0 g of ion-exchanged water was added. Was added, and then 50.0 g of ethyl acetate was added, and stirring was continued while gradually cooling the beaker at room temperature. After one day and one night, it was filtered, washed with acetone, and air-dried to obtain crystals (hereinafter referred to as "crystal V").
The yield was 32.1%.

【0017】前述の実施例1〜3及び比較例1〜4の実
験条件及び結晶の生成状況は表1の通りである。
Table 1 shows the experimental conditions and crystal formation conditions of Examples 1 to 3 and Comparative Examples 1 to 4 described above.

【表1】 [Table 1]

【0018】前述の実施例1〜3、比較例2、及び、比
較例4で得られた結晶1〜VのX線回折図は、図1〜5
の通りであった。これらのX線回折は、Cu管球及びN
iフィルターを用い、起電力35KV及び管電流15m
Aで、8000cpsで測定した。これらのX線回折図
を、ビス(オルトリン酸二水素)マグネシウム無水物、
ビス(オルトリン酸二水素)マグネシウム二水塩、及
び、マグネシウムのポリリン酸塩等のX線回折図と比較
し、石膏石灰誌第205号380頁記載のビス(オルト
リン酸二水素)マグネシウム四水塩のX線回折図と照合
すると、図1〜3、及び、5から、結晶I〜III、及
び、Vは、何れもビス(オルトリン酸二水素)マグネシ
ウム四水塩と推定される。一方、図4には、○印で示し
たビス(オルトリン酸二水素)マグネシウム四水塩特有
のピークと、▽印で示したビス(オルトリン酸二水素)
カルシウム−水塩特有ピークとが見られることから、結
晶IVは、これらの塩の混合物であると推定される。ま
た、図1〜3と図5とを比較すると、図1〜3の方がピ
ークがシャープに出ていることから、結晶I〜IIIの
方が、結晶Vより結晶性が良くなっているのが認められ
る。更に、図1〜3において、15.3°、23.3
°、28.6°、35.1°、35.6°、36.6°
のピークが特に高くなっていることから、結晶I〜II
Iでは、特定の結晶面が特に成長しているものと推定さ
れる。
The X-ray diffraction patterns of the crystals 1 to V obtained in the above Examples 1 to 3, Comparative Example 2 and Comparative Example 4 are shown in FIGS.
It was the street. These X-ray diffractions are based on Cu tube and N
Using i-filter, electromotive force 35KV and tube current 15m
A was measured at 8000 cps. These X-ray diffractograms were obtained from bis (dihydrogen orthophosphate) magnesium anhydride,
Compared with X-ray diffractograms of magnesium bis (dihydrogen orthophosphate) dihydrate and magnesium polyphosphate, bis (dihydrogen orthophosphate) magnesium tetrahydrate described in Gypsum Lime Magazine No. 205, page 380. From the results of FIGS. 1 to 3 and 5, it is inferred that all of the crystals I to III and V are bis (dihydrogen orthophosphate) magnesium tetrahydrate when compared with the X-ray diffraction pattern of FIG. On the other hand, in FIG. 4, a peak specific to bis (dihydrogen orthophosphate) magnesium tetrahydrate indicated by a circle and a bis (dihydrogen orthophosphate) indicated by a ▽ mark.
Crystal IV is presumed to be a mixture of these salts, since a peak specific to calcium-hydrate is seen. Further, when comparing FIGS. 1 to 3 with FIG. 5, the peaks in FIGS. 1 to 3 are sharper, and thus the crystals I to III have better crystallinity than the crystal V. Is recognized. Furthermore, in FIGS. 1 to 3, 15.3 °, 23.3 °
°, 28.6 °, 35.1 °, 35.6 °, 36.6 °
Since the peak of is particularly high, crystals I to II
In I, it is presumed that a specific crystal plane is particularly grown.

【0019】結晶Iを電子顕微鏡で200倍に拡大して
観察した時の態様は、図6に示したように、比較的粒度
の揃った大きい長方形の板状の結晶が認められた。そし
て、これらの結晶の形状の特徴は、単に長方形であるだ
けでなく、長方形の両側の短辺の先には斜面が形成され
ていて、長辺に接する側面が、長辺と斜面の辺とによっ
て細長い六角形、又は、梯形を形成していることであっ
た。結晶II及びIIIも始ど同一の態様であった。一
方、結晶IVには、150μm程度のものと更に細かい
ものとが混在していた。また、結晶Vには、1μm未満
の非常に細かいものから50μm程度のものまで連続し
て存在していた。
As shown in FIG. 6, when the crystal I was observed under an electron microscope at a magnification of 200 times, large rectangular plate-like crystals having a relatively uniform grain size were observed. And, the characteristic of the shape of these crystals is not only that they are rectangular, but that slopes are formed at the ends of the short sides on both sides of the rectangle, and the side that is in contact with the long side is the side of the long side and the side of the slope. Was to form an elongated hexagon or a trapezoid. Crystals II and III were initially in the same manner. On the other hand, the crystal IV had a mixture of about 150 μm and a finer one. Further, the crystals V were continuously present from very fine particles of less than 1 μm to those of about 50 μm.

【0020】結晶I〜Vの化学組成、粒度、及び、前述
のX線回折図から判断される結晶構造等は、表2の通り
である。
Table 2 shows the chemical composition, grain size, and crystal structure of the crystals I to V determined from the above X-ray diffraction pattern.

【表2】 [Table 2]

【0021】[0021]

【発明の効果】本発明に係わる第1リン酸マグネシウム
結晶は、前述のような構成を有するので、肥料等に使用
してもすぐに溶けて流失することがなく、また、耐火物
用バインダー等として他の粒度の異なる材料と混合して
も底部に溜まって不均一になることもない等の効果をも
たらし、また、本発明に係わる第1リン酸マグネシウム
結晶の製造方法は、高価な有機溶媒を使用することな
く、簡単な操作で短時間で製造できる方法であるので、
初めて第1リン酸マグネシウム結晶の工業的生産を可能
にする等の優れた効果をもたらす。
Since the first magnesium phosphate crystal according to the present invention has the above-mentioned constitution, it does not melt and flow away immediately even when it is used as a fertilizer or the like, and a binder for a refractory material or the like. As a result, even if it is mixed with other materials having different particle sizes, it is not accumulated in the bottom portion and becomes non-uniform. Further, the method for producing the first magnesium phosphate crystal according to the present invention is performed with an expensive organic solvent. Since it is a method that can be manufactured in a short time with simple operation without using
For the first time, it brings about excellent effects such as enabling industrial production of crystals of monobasic magnesium phosphate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる結晶IのX線回折図である。FIG. 1 is an X-ray diffraction diagram of crystal I according to the present invention.

【図2】本発明に係わる結晶IIのX線回折図である。FIG. 2 is an X-ray diffraction diagram of crystal II according to the present invention.

【図3】本発明に係わる結晶IIIのX線回折図であ
る。
FIG. 3 is an X-ray diffraction diagram of crystal III according to the present invention.

【図4】本発明の比較例に係わる結晶IVのX線回折図
である。
FIG. 4 is an X-ray diffraction diagram of crystal IV according to a comparative example of the present invention.

【図5】本発明の比較例に係わる結晶VのX線回折図で
ある。
FIG. 5 is an X-ray diffraction diagram of crystal V according to a comparative example of the present invention.

【図6】本発明に係わる結晶Iを電子顕微鏡で200倍
に拡大した時の態様を示す図である。
FIG. 6 is a view showing a mode when the crystal I according to the present invention is magnified 200 times with an electron microscope.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01B 25/34 CA(STN)─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C01B 25/34 CA (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 結晶の平均直径が100μmないし20
0μmであるビス(オルトリン酸二水素)マグネシウム
結晶
1. A crystal having an average diameter of 100 μm to 20.
Bis (dihydrogen orthophosphate) magnesium crystal of 0 μm
【請求項2】 リン酸水溶液と、MgO/Pモル
比が0.95以下であって、酸化マグネシウムに換算し
て8〜11重量%のマグネシウム化合物とを、酸化物に
換算して0.05〜2.0重量%の1種以上のアルカリ
土類金属化合物の共存下で、反応させることを特徴とす
るビス(オルトリン酸二水素)マグネシウム結晶の製造
方法
2. A phosphoric acid aqueous solution and a magnesium compound having a MgO / P 2 O 5 molar ratio of 0.95 or less and 8 to 11% by weight in terms of magnesium oxide are converted into oxides. A method for producing bis (dihydrogen orthophosphate) magnesium crystals, which comprises reacting in the presence of 0.05 to 2.0% by weight of one or more alkaline earth metal compounds.
JP22253791A 1991-05-24 1991-05-24 First magnesium phosphate crystal and method for producing the same Expired - Lifetime JP3435495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22253791A JP3435495B2 (en) 1991-05-24 1991-05-24 First magnesium phosphate crystal and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22253791A JP3435495B2 (en) 1991-05-24 1991-05-24 First magnesium phosphate crystal and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04349112A JPH04349112A (en) 1992-12-03
JP3435495B2 true JP3435495B2 (en) 2003-08-11

Family

ID=16783995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22253791A Expired - Lifetime JP3435495B2 (en) 1991-05-24 1991-05-24 First magnesium phosphate crystal and method for producing the same

Country Status (1)

Country Link
JP (1) JP3435495B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of Crystal Growth,1986年,Vol.79,p205−209

Also Published As

Publication number Publication date
JPH04349112A (en) 1992-12-03

Similar Documents

Publication Publication Date Title
KR940010938B1 (en) Hexagonal-bipyramid crystalline scandium oxide powder and process for preparing the same
US20140011662A1 (en) Single phase yttrium phosphate having the xenotime crystal structure and method for its synthesis
Huizing et al. Hydrates of manganese (II) oxalate
US5503815A (en) Method for the preparation of a lanthanum manganite powder
JP3435495B2 (en) First magnesium phosphate crystal and method for producing the same
JP2001522344A (en) Manufacturing method of calcium borate
JP3384412B2 (en) Method for producing crystalline zirconium phosphate
JP2006335578A (en) Leaflet-like gypsum dihydrate and its manufacturing method
EP0107870B1 (en) Production of magnesium nitrate solutions
US4049779A (en) Crystalline salt monomers for stable phosphate glasses
JPS6335571B2 (en)
JP2549857B2 (en) Method for producing calcium carbonate with controlled particle size
JP2675465B2 (en) Hydrous calcium carbonate and method for producing the same
JPH04164816A (en) Production of acicular zinc oxide powder by submerged synthetic method
JPH0436092B2 (en)
JPH0527571B2 (en)
EP0146634B1 (en) Process for producing fine lead stannate particles
JPH07309623A (en) Production of angular rare earth element-ammonium oxalate double salt and angular oxide of rare earth element
JPS62252908A (en) Manufacture of barium ferrite fine particle for magnetic recording
JPH0769624A (en) Production of fine powder of rare earth element oxide
JPH0797212A (en) Rare earth element oxide and its production
JPH1036107A (en) Acicular crystal of zinc calcium sodium phosphate and its production
JPH09221318A (en) Production of acicular crystal basic magnesium chloride
SU1361109A1 (en) Method of obtaining zinc oxide
JPS627616A (en) Manufacture of crystalline alkali metal aluminum phosphate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

EXPY Cancellation because of completion of term