JP3434425B2 - 3D shape measuring device - Google Patents

3D shape measuring device

Info

Publication number
JP3434425B2
JP3434425B2 JP29059796A JP29059796A JP3434425B2 JP 3434425 B2 JP3434425 B2 JP 3434425B2 JP 29059796 A JP29059796 A JP 29059796A JP 29059796 A JP29059796 A JP 29059796A JP 3434425 B2 JP3434425 B2 JP 3434425B2
Authority
JP
Japan
Prior art keywords
light receiving
measured
distance
calibration
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29059796A
Other languages
Japanese (ja)
Other versions
JPH10132529A (en
Inventor
原 稔 久 藤
居 修 司 鳥
田 文 男 上
田 敏 彦 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Digital Process Ltd
Original Assignee
Nissan Motor Co Ltd
Digital Process Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Digital Process Ltd filed Critical Nissan Motor Co Ltd
Priority to JP29059796A priority Critical patent/JP3434425B2/en
Publication of JPH10132529A publication Critical patent/JPH10132529A/en
Application granted granted Critical
Publication of JP3434425B2 publication Critical patent/JP3434425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0046Data acquisition means or methods
    • A61C9/0053Optical means or methods, e.g. scanning the teeth by a laser or light beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0093Workpiece support

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Measurement Of Optical Distance (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光を用いて
三次元形状を有する被測定物の形状を非接触状態で測定
するのに用いられる三次元形状の測定装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional shape measuring apparatus used for measuring the shape of an object to be measured having a three-dimensional shape in a non-contact state using laser light.

【0002】[0002]

【従来の技術】この種の三次元形状の測定装置として
は、例えば、特開平7−113637号公報に開示され
たものがある。同公報の装置は、レーザ光源と複数のセ
ンサを設けたセンサヘッド側に、受信信号処理回路と個
々のセンサに対する較正データメモリを備えており、セ
ンサとコントローラとの接続互換性を高めて、測定精度
の低下を防止するようにしている。
2. Description of the Related Art A three-dimensional shape measuring device of this type is disclosed, for example, in Japanese Unexamined Patent Publication No. 7-113637. The device of the publication includes a reception signal processing circuit and a calibration data memory for each sensor on the sensor head side provided with a laser light source and a plurality of sensors, and enhances connection compatibility between the sensor and the controller for measurement. We are trying to prevent a decrease in precision.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記したよ
うな従来の測定装置では、被測定物が量産品である場合
には、予め設定した較正データを参照して測定信号を処
理することにより、信号処理上の精度低下を防ぐことが
できるが、被測定物が量産品ではなく、例えば歯科用補
綴物製作用の歯牙模型や歯型のように、個々の形状が異
なり、また表面材質の相違により反射率特性が異なる被
測定物である場合には、予め設定した数種の較正データ
だけでは測定精度の低下防止に充分に対応することがで
きないという問題があり、このような問題を解決するこ
とが課題であった。
However, in the conventional measuring device as described above, when the object to be measured is a mass-produced product, the measurement signal is processed by referring to the preset calibration data, Although it is possible to prevent a decrease in accuracy in signal processing, the object to be measured is not a mass-produced product, and individual shapes are different, such as a tooth model or tooth mold for manufacturing a dental prosthesis, and surface materials are different. Therefore, when the objects to be measured have different reflectance characteristics, there is a problem that it is not possible to sufficiently prevent the deterioration of the measurement accuracy with only several kinds of calibration data set in advance. That was the challenge.

【0004】なお、この種の測定装置では、例えば、受
光系のフィルターガラスや光学レンズが少しでも汚れて
いたり水滴が付着したりしていると、センサにおける受
光量が変わることにより出力が微妙に変化するため、光
学系における汚れが無い状態で設定した較正データを用
いても測定距離に誤差が生じることがあり、このほか
に、温度変化による光位置検出素子の特性変化や、温度
膨脹による微小な光学系の変化によっても、測定距離に
誤差が生じることがある。
In this type of measuring device, for example, if the filter glass or optical lens of the light receiving system is slightly dirty or water droplets are attached, the amount of light received by the sensor changes and the output becomes delicate. Because of the change, the measurement distance may have an error even when using the calibration data set in the condition that the optical system is clean. In addition to this, the characteristic change of the optical position detection element due to the temperature change and the minute change due to the temperature expansion may occur. Even if the optical system is changed, an error may occur in the measurement distance.

【0005】また、例えば、歯科用補綴物製作用の歯型
の形状測定では、歯型に用いられる石膏材における顔料
の色および濃度の違いや、材料が均一に混ざっていない
ことによる材質むら、あるいは歯型の微小な表面凹凸形
状の有無により、歯型の表面反射率特性に差が生じるこ
とがある。したがって、歯科用補綴物製作用の歯牙模型
や歯型の形状を測定する場合には、上記した様々な要因
が複雑に関連して測定の度に測定条件が微妙に変化する
ことから、数種の較正データだけでは精度の高い形状測
定を行うことができないという問題があった。
Further, for example, in measuring the shape of a dental mold for producing a dental prosthesis, the difference in the color and concentration of the pigment in the plaster material used for the dental mold, the unevenness of the material due to the non-uniform mixing of the materials, Alternatively, there may be a difference in the surface reflectance characteristics of the tooth mold depending on the presence or absence of minute surface irregularities on the tooth mold. Therefore, when measuring the shape of a tooth model or tooth model for producing a dental prosthesis, the above-mentioned various factors are complicatedly related, and the measurement conditions change delicately at each measurement. There is a problem in that it is not possible to perform highly accurate shape measurement only with the calibration data of.

【0006】[0006]

【発明の目的】本発明は、上記従来の課題に着目して成
されたもので、個々の被測定物の形状や表面の反射率特
性が異なる場合であっても、高精度な形状測定を行うこ
とができる三次元形状の測定装置を提供することを目的
としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and is capable of performing highly accurate shape measurement even when the shape of each measured object or the reflectance characteristic of the surface is different. It is an object of the present invention to provide a three-dimensional shape measuring device that can perform measurement.

【0007】[0007]

【課題を解決するための手段】本発明に係わる三次元形
状の測定装置は、請求項1として、レーザ光源を含む投
光系と光位置検出素子を含む受光系とを組合わせて三角
測量法により被測定物までの距離を測定する距離測定手
段と、距離測定手段と被測定物との相対的な位置を直交
する3軸方向に変化させる多軸移動手段の各軸方向の移
動量を検出する移動位置検出手段を備え、被測定物の三
次元形状を測定する装置において、距離測定手段と被測
定物とが近接離間する方向をZ軸方向として、多軸移動
手段により距離測定手段と被測定物とのZ軸方向の距離
を変化させながら距離測定手段で被測定物の任意の検量
点を測定した際の距離データと移動位置検出手段のZ軸
方向の移動位置データから相互の関係を表す検量データ
を検出する検量手段と、距離測定手段の光位置検出素子
の出力から受光量を検出する受光量検出手段と、検量手
段で検量データを検出した際に受光量検出手段により検
出した受光量が予め設定した範囲内にあるか否かを判定
する受光量判定手段を備え、距離測定手段で本測定した
際の距離データを検量データで較正する制御を行う構成
とし、請求項2として、距離測定手段が、レーザ光の投
光軸を中心にして複数の受光系を軸対称位置に備えてお
り、検量手段が、各受光系毎に検量データを検出する手
段である構成とし、請求項3として、請求項2に記載の
三次元形状の測定装置において、距離測定手段の各受光
系の出力から受光量を検出する受光量検出手段と、各受
光系による受光量を比較して最も大きい受光量を選択す
る選択手段を備え、受光量が選択された受光系で得た本
測定の距離データを検量手段で検出した検量データで較
正する制御を行う構成としており、上記の構成を課題を
解決するための手段としている。
A three-dimensional shape measuring apparatus according to the present invention is, as a first aspect, a triangulation method in which a light projecting system including a laser light source and a light receiving system including an optical position detecting element are combined. Detects the amount of movement in each axial direction of the distance measuring means for measuring the distance to the object to be measured, and the multi-axis moving means for changing the relative position of the distance measuring means and the object to be measured in three axial directions. In the apparatus for measuring the three-dimensional shape of the object to be measured, which is provided with the moving position detecting means, the direction in which the distance measuring means and the object to be measured approach and separate is defined as the Z axis direction, and the distance measuring means and the object to be measured are moved by the multi-axis moving means. From the distance data when the distance measuring means measures an arbitrary calibration point of the measured object while changing the distance in the Z-axis direction to the measured object, and the moving position data of the moving position detecting means in the Z-axis direction Calibration hand to detect the calibration data represented And a received light amount detecting means for detecting the received light amount from the output of the optical position detecting element of the distance measuring means, and a received light amount detected by the received light amount detecting means when the measuring data is detected by the measuring means within a preset range. The distance measuring means is provided with a received light amount determining means for determining whether or not there is a light receiving amount determining means, and the distance measuring means performs control to calibrate the distance data when the main measurement is performed. A plurality of light receiving systems are provided at axially symmetrical positions about the light projecting axis, and the calibration means is a means for detecting calibration data for each light receiving system. In the three-dimensional shape measuring device, the light receiving amount detecting means for detecting the light receiving amount from the output of each light receiving system of the distance measuring means and the selecting means for comparing the light receiving amount by each light receiving system and selecting the largest light receiving amount. Equipped, the amount of received light is selected It was has been configured to perform control to calibrate with calibration data and the distance data of the measurement detected by the calibration unit obtained by the light receiving system, and a means for solving the problems of the above configuration.

【0008】また、本発明に係わる三次元形状の測定装
置は、請求項4として、レーザ光源を含む投光系と光位
置検出素子を含む受光系とを組合わせて三角測量法によ
り被測定物までの距離を測定する距離測定手段と、距離
測定手段と被測定物との相対的な位置を直交する3軸方
向に変化させる多軸移動手段の各軸方向の移動量を検出
する移動位置検出手段を備え、被測定物の三次元形状を
測定する装置において、距離測定手段と被測定物とが近
接離間する方向をZ軸方向として、多軸移動手段により
距離測定手段と被測定物とのZ軸方向の距離を変化させ
ながら距離測定手段で被測定物の任意の検量点を測定し
た際の距離データと移動位置検出手段のZ軸方向の移動
位置データから相互の関係を表す検量データを検出する
検量手段を備え、距離測定手段が、レーザ光の投光軸を
中心にして軸対称に配置された複数の受光系を一組とし
て受光角度が異なる複数組の受光系と、各組からの出力
を選択する切替え手段を備えると共に、検量手段が、各
受光系毎に検量データを検出する手段であり、距離測定
手段で本測定した際の距離データを検量データで較正す
る制御を行う構成としており、上記の構成を課題を解決
するための手段としている。
A three-dimensional shape measuring apparatus according to the present invention is, in claim 4, an object to be measured by a triangulation method by combining a light projecting system including a laser light source and a light receiving system including an optical position detecting element. Position detecting means for measuring the distance to the object and moving position detecting means for detecting the amount of movement in each axial direction of the multi-axis moving means for changing the relative positions of the distance measuring means and the object to be measured in three orthogonal directions. In the device for measuring the three-dimensional shape of the object to be measured, the direction in which the distance measuring means and the object to be measured approach and separate is defined as the Z-axis direction, and the distance measuring means and the object to be measured are moved by the multi-axis moving means. Calibration data representing a mutual relationship is obtained from the distance data when the distance measuring means measures an arbitrary calibration point of the measured object while changing the distance in the Z-axis direction and the movement position data of the movement position detecting means in the Z-axis direction. Equipped with a calibration means to detect, The separation measuring means selects a plurality of sets of light receiving systems having different light receiving angles with one set of a plurality of light receiving systems arranged symmetrically about the projection axis of the laser light, and a switching means for selecting an output from each set. In addition, the calibration means is a means for detecting calibration data for each light receiving system, and is configured to perform control to calibrate the distance data when the main measurement is performed by the distance measuring means with the calibration data. It is used as a means to solve the problem.

【0009】[0009]

【発明の作用】本発明の請求項1に係わる三次元形状の
測定装置では、距離測定手段と被測定物とが近接離間す
る方向をZ軸方向として、検量手段において、多軸移動
手段により距離測定手段と被測定物とのZ軸方向の距離
を変化させながら距離測定手段で被測定物の任意の検量
点を測定した際の距離データと移動位置検出手段のZ軸
方向の移動位置データから相互の関係を表す検量データ
を検出し、こののち距離測定手段で本測定した際に、そ
の距離データを検量データで較正する制御を行うので、
個々の被測定物の形状や表面反射率特性が異なる場合で
あっても、被測定物の形状測定の度に、その被測定物自
体の検量データを用いて距離データの較正が行われるこ
ととなり、これにより高精度な測定結果が得られる。ま
た、当該測定装置では、受光量検出手段において受光量
を検出し、受光量判定手段において受光量が設定範囲内
にあるか否かを判定することにより、受光量が設定範囲
内であるときには、正常な測定が行われていると判断し
得ることとなり、受光量が設定範囲外であるときには、
受光系や被測定物側に何らかの不具合があることを判断
し得る。
In the three-dimensional shape measuring apparatus according to the first aspect of the present invention, the direction in which the distance measuring means and the object to be measured come close to and apart from each other is defined as the Z-axis direction, and the measuring means moves the distance by the multi-axis moving means. From the distance data and the moving position data of the moving position detecting means in the Z-axis direction when the distance measuring means measures an arbitrary calibration point of the measured object while changing the distance between the measuring means and the measuring object in the Z-axis direction. Detecting the calibration data representing the mutual relationship, after this, when the main measurement by the distance measuring means, because the control to calibrate the distance data with the calibration data is performed,
Even if the shape and surface reflectance characteristics of individual DUTs are different, each time the shape of the DUT is measured, the calibration data of the DUT itself is used to calibrate the distance data. As a result, highly accurate measurement results can be obtained. Further, in the measuring device, when the received light amount is within the set range by detecting the received light amount by the received light amount detection means and determining whether the received light amount is within the set range by the received light amount determining means, It can be judged that the normal measurement is being performed, and when the received light amount is outside the setting range,
It can be judged that there is some trouble in the light receiving system or the DUT side.

【0010】本発明の請求項2に係わる三次元形状の測
定装置では、距離測定手段における複数の受光系から夫
々の距離データを得ると共に、検量手段において各受光
系毎に検量データを検出するので、較正に用いる検量デ
ータが複数得られることとなり、または、被測定物の表
面形状などにより一部の受光系に反射光が入射しない場
合でも残りの受光系によって距離データが得られること
となり、これに伴って形状測定の精度または測定機能の
信頼性を向上し得る。
In the three-dimensional shape measuring apparatus according to the second aspect of the present invention, the distance data is obtained from each of the plurality of light receiving systems in the distance measuring means, and the calibration data is detected for each light receiving system in the calibration means. , Multiple calibration data used for calibration will be obtained, or even if the reflected light does not enter a part of the light receiving system due to the surface shape of the object to be measured, etc., the remaining light receiving system will obtain the distance data. Accordingly, the accuracy of shape measurement or the reliability of the measurement function can be improved.

【0011】[0011]

【0012】本発明の請求項3に係わる三次元形状の測
定装置では、受光検出手段において距離測定手段の複数
の受光系の出力から各々の受光量を検出し、選択手段に
おいて最も大きい受光量を選択し、受光量が選択された
受光系で得た本測定の距離データを検量手段で検出した
検量データで較正する制御を行うので、例えば一部の光
学系にわずかな汚れがあったり、被測定物の表面の一部
に反射率特性の差があったりしても、これらの影響を受
けずに高精度の形状測定が行われる。
In the three-dimensional shape measuring apparatus according to the third aspect of the present invention, the light receiving detecting means detects the respective light receiving amounts from the outputs of the plurality of light receiving systems of the distance measuring means, and the selecting means gives the largest light receiving amount. The control is performed to calibrate the distance data of the main measurement obtained by the selected light receiving system with the selected light receiving system using the calibration data detected by the calibration device. Even if there is a difference in reflectance characteristics on a part of the surface of the object to be measured, highly accurate shape measurement can be performed without being affected by these differences.

【0013】本発明の請求項4に係わる三次元形状の測
定装置では、距離測定手段と被測定物とが近接離間する
方向をZ軸方向として、検量手段において、多軸移動手
段により距離測定手段と被測定物とのZ軸方向の距離を
変化させながら距離測定手段で被測定物の任意の検量点
を測定した際の距離データと移動位置検出手段のZ軸方
向の移動位置データから相互の関係を表す検量データを
検出し、こののち距離測定手段で本測定した際に、その
距離データを検量データで較正する制御を行うので、個
々の被測定物の形状や表面反射率特性が異なる場合であ
っても、被測定物の形状測定の度に、その被測定物自体
の検量データを用いて距離データの較正が行われること
となり、これにより高精度な測定結果が得られる。ま
た、当該測定装置では、距離測定手段における複数の受
光系から夫々の距離データを得ると共に、検量手段にお
いて各受光系毎に検量データを検出するので、較正に用
いる検量データが複数得られることとなり、または、被
測定物の表面形状などにより一部の受光系に反射光が入
射しない場合でも残りの受光系によって距離データが得
られることとなり、これに伴って形状測定の精度または
測定機能の信頼性を向上し得る。さらに、当該測定装置
では、距離測定手段が、受光角度の異なる複数組の受光
系と、各組の切り替え手段を備えているので、例えば被
測定物に深い凹部などがある場合、反射光に対して死角
にならない位置の光学系を選択し得ることとなる。
In the three-dimensional shape measuring apparatus according to the fourth aspect of the present invention, the direction in which the distance measuring means and the object to be measured approach and separate is defined as the Z-axis direction, and the measuring means uses the multi-axis moving means to measure the distance. And the object to be measured while varying the distance in the Z-axis direction from the distance data when measuring an arbitrary calibration point of the object to be measured by the distance measuring means and the moving position data in the Z-axis direction of the moving position detecting means. When the calibration data that represents the relationship is detected and then the distance measurement means performs the main measurement, the calibration is performed to calibrate the distance data, so when the shape and surface reflectance characteristics of each measured object are different. However, each time the shape of the object to be measured is measured, the calibration data of the object to be measured is used to calibrate the distance data, whereby a highly accurate measurement result can be obtained. Further, in the measuring device, since the distance data is obtained from each of the plurality of light receiving systems in the distance measuring means, and the calibration data is detected in each of the light receiving systems in the calibration means, a plurality of calibration data used for calibration is obtained. Or, even if the reflected light is not incident on a part of the light receiving system due to the surface shape of the object to be measured, the distance data can be obtained by the remaining light receiving system. Can improve the sex. Further, in the measuring device, the distance measuring means includes a plurality of sets of light receiving systems having different light receiving angles and a switching means of each set. Therefore, it is possible to select an optical system at a position that does not cause a blind spot.

【0014】[0014]

【0015】[0015]

【0016】[0016]

【0017】[0017]

【発明の効果】本発明の請求項1に係わる三次元形状の
測定装置によれば、個々の被測定物の形状や表面反射率
特性が異なる場合であっても、被測定物の形状測定の度
に、その被測定物自体の検量データを用いて距離データ
の較正を行うことから、例えば歯科用補綴物製作用の歯
牙模型や歯型等の被測定物のように、個々の被測定物の
形状や表面の反射率特性が異なる場合であっても、いず
れの被測定物の形状測定をも精度良く行うことができ、
高精度な測定結果を得ることができる。また、当該測定
装置によれば、本測定の前に、受光量が設定範囲内であ
るか否かを判定することにより、正常な測定が行われて
いるか否かを判断することができるようになり、受光量
が設定範囲外であるときには、光学系の汚れ、被測定物
の材質の影響、検量点の位置不良、あるいは被測定物の
置き方の不良といった不具合の発生を判断することがで
き、測定の失敗を未然に防ぐことができる。
According to the three-dimensional shape measuring apparatus according to the first aspect of the present invention, even when the shape or the surface reflectance characteristic of each measured object is different, it is possible to measure the shape of the measured object. Since the calibration of the distance data is performed each time using the calibration data of the measured object itself, each measured object such as a tooth model or a tooth mold for manufacturing a dental prosthesis is measured. Even if the shape and the reflectance characteristics of the surface are different, it is possible to accurately measure the shape of any object to be measured,
Highly accurate measurement results can be obtained. Further, according to the measuring device, it is possible to determine whether or not normal measurement is performed by determining whether or not the amount of received light is within the set range before the main measurement. When the amount of received light is out of the setting range, it is possible to determine the occurrence of problems such as contamination of the optical system, the influence of the material of the measured object, the position error of the calibration point, or the poor placement of the measured object. , It is possible to prevent the measurement failure.

【0018】本発明の請求項2に係わる三次元形状の測
定装置によれば、請求項1と同様の効果を得ることがで
きるうえに、較正に用いる検量データが複数得られるこ
とにより、被測定物の形状測定のさらなる高精度化を実
現することができ、または、被測定物の表面形状などに
より一部の受光系に反射光が入射しない場合でも残りの
受光系によって距離データが得られることから、測定機
能の信頼性を向上させることができる。
According to the three-dimensional shape measuring apparatus of the second aspect of the present invention, the same effect as that of the first aspect can be obtained, and a plurality of calibration data used for calibration can be obtained, so that the measurement target can be measured. It is possible to achieve higher accuracy in measuring the shape of an object, or even if reflected light does not enter part of the light receiving system due to the surface shape of the object to be measured, distance data can be obtained from the remaining light receiving system. Therefore, the reliability of the measurement function can be improved.

【0019】[0019]

【0020】本発明の請求項3に係わる三次元形状の測
定装置によれば、請求項2と同様の効果を得ることがで
きるうえに、複数の受光系に対し、最も大きい受光量を
検出した受光系で得た本測定の距離データを検量データ
で較正することから、仮に、一部の光学系にわずかな汚
れがあったり、被測定物の表面の一部に反射率特性の差
があったり、あるいは受光系の温度特性変化があったり
した場合でも、これらの影響を受けることなく高精度の
形状測定を行うことができる。
According to the three-dimensional shape measuring apparatus of the third aspect of the present invention, the same effect as that of the second aspect can be obtained, and the largest amount of received light is detected for the plurality of light receiving systems. Since the distance data of the actual measurement obtained by the light receiving system is calibrated with the calibration data, it is assumed that some optical systems have slight stains or there is a difference in the reflectance characteristics on the surface of the DUT. Even if there is a change in the temperature characteristics of the light receiving system, it is possible to perform highly accurate shape measurement without being affected by these.

【0021】本発明の請求項4に係わる三次元形状の測
定装置によれば、個々の被測定物の形状や表面反射率特
性が異なる場合であっても、被測定物の形状測定の度
に、その被測定物自体の検量データを用いて距離データ
の較正を行うことから、例えば歯科用補綴物製作用の歯
牙模型や歯型等の被測定物のように、個々の被測定物の
形状や表面の反射率特性が異なる場合であっても、いず
れの被測定物の形状測定をも精度良く行うことができ、
高精度な測定結果を得ることができる。また、当該測定
装置によれば、較正に用いる検量データが複数得られる
ことにより、被測定物の形状測定のさらなる高精度化を
実現することができ、または、被測定物の表面形状など
により一部の受光系に反射光が入射しない場合でも残り
の受光系によって距離データが得られることから、測定
機能の信頼性を向上させることができる。さらに、当該
測定装置によれば、例えば被測定物に深い凹部などがあ
る場合であっても、反射光に対して死角にならない位置
の光学系を選択することにより、何ら問題なく高精度の
形状測定を行うことができ、また、1組の光学系に不具
合が発生したような場合には、バックアップ手段として
速やかに他の組の光学系に切り替えることができる。
According to the three-dimensional shape measuring apparatus of the fourth aspect of the present invention, even when the shape or surface reflectance characteristic of each measured object is different, each time the shape of the measured object is measured. Since the distance data is calibrated using the calibration data of the measured object itself, the shape of each measured object such as the measured model such as a tooth model or a tooth mold for manufacturing a dental prosthesis is measured. Even if the reflectance characteristics of the surface is different, it is possible to accurately measure the shape of any object to be measured,
Highly accurate measurement results can be obtained. Further, according to the measuring device, a plurality of calibration data used for calibration can be obtained, so that the accuracy of shape measurement of the object to be measured can be further improved, or the surface shape of the object to be measured can be more accurate. Even when the reflected light does not enter the light receiving system of the part, since the distance data can be obtained by the remaining light receiving systems, the reliability of the measuring function can be improved. Further, according to the measuring device, even if the object to be measured has a deep recess, for example, by selecting an optical system at a position that does not form a blind spot with respect to the reflected light, a highly accurate shape can be obtained without any problem. Measurement can be performed, and if a failure occurs in one optical system, it can be quickly switched to another optical system as a backup means.

【0022】[0022]

【0023】[0023]

【0024】[0024]

【0025】[0025]

【実施例】図1〜図9は、本発明の請求項1〜3に係わ
る三次元形状の測定装置の一実施例を説明する図であ
る。
1 to 9 are views for explaining an embodiment of a three-dimensional shape measuring apparatus according to claims 1 to 3 of the present invention.

【0026】三次元形状の測定装置は、図1に示すよう
に、レーザ光を用いた距離測定手段(センサヘッド)1
と、制御装置2と、三次元形状の被測定物Mをセットす
るステージ3を備えており、制御装置2には測定結果な
どを示す表示装置4が接続してある。この実施例の被測
定物Mは歯科用補綴物製作用の歯牙模型(支台歯)であ
る。
As shown in FIG. 1, the three-dimensional shape measuring device is a distance measuring means (sensor head) 1 using laser light.
The control device 2 and the stage 3 for setting the three-dimensionally measured object M are provided, and the control device 2 is connected to the display device 4 for displaying the measurement results and the like. The object M to be measured in this example is a tooth model (abutment) for manufacturing a dental prosthesis.

【0027】測定装置は、距離測定手段1を下側の被測
定物Mに対して近接離間つまり上下方向に駆動するZ軸
駆動装置5と、ステージ3を水平な2軸方向に移動させ
るXY軸駆動装置6を備えており、Z軸駆動装置5とX
Y軸駆動装置6とにより、距離測定手段1と被測定物M
との相対的な位置を直交するX,Y,Zの3軸方向に変
化させる多軸移動手段を構成している。各駆動装置5,
6には、Z軸方向およびXY軸方向の移動量を検出する
移動位置検出手段7,8が設けてある。
The measuring device comprises a Z-axis driving device 5 for driving the distance measuring means 1 closer to and away from the object to be measured M on the lower side, that is, an XY-axis for moving the stage 3 in two horizontal axial directions. The drive device 6 is provided, and the Z-axis drive device 5 and X
With the Y-axis drive device 6, the distance measuring means 1 and the object to be measured M are measured.
It constitutes a multi-axis moving means for changing the relative position with respect to three directions of X, Y and Z which are orthogonal to each other. Each drive 5,
6 is provided with movement position detecting means 7 and 8 for detecting movement amounts in the Z-axis direction and the XY-axis direction.

【0028】距離測定手段1は、レーザダイオード9a
およびその駆動回路9bから成るレーザ光源9を含む投
光系Lと、光位置検出素子10a,10bを含む2つの
受光系R1,R2を備えている。投光系Lは、レーザ光
源9のほか、投光レンズ11などを備えている。他方、
2つの受光系R1,R2は、照射レーザ光LTの投光軸
を中心にして軸対称位置で且つ同じ受光角度となるよう
に配置してあり、光位置検出素子10a,10bのほ
か、受光レンズ12a,12bや受光フィルタ13a,
13bを備えている。また、各光位置検出素子10a,
10bには、同素子から出力する電流を電圧に変換する
I/V変換回路14a,14bが設けてある。
The distance measuring means 1 comprises a laser diode 9a.
And a light projecting system L including a laser light source 9 including its driving circuit 9b, and two light receiving systems R1 and R2 including optical position detecting elements 10a and 10b. The light projecting system L includes a laser light source 9 and a light projecting lens 11. On the other hand,
The two light receiving systems R1 and R2 are arranged at axially symmetrical positions about the projection axis of the irradiation laser beam LT and at the same light receiving angle, and in addition to the light position detecting elements 10a and 10b, a light receiving lens. 12a, 12b and the light receiving filter 13a,
13b is provided. In addition, each optical position detection element 10a,
The 10b is provided with I / V conversion circuits 14a and 14b for converting the current output from the same element into a voltage.

【0029】上記の距離測定手段1は、投光系Lから被
測定物Mに向けて照射レーザ光LTを照射し、被測定物
Mからの反射レーザ光LRを各受光系R1,R2で受光
するようになっており、各受光系R1,R2の位置や受
光角度、および光位置検出素子10a,10bにおける
受光位置などに基づいて、三角測量法により被測定物M
までの距離が測定される。
The distance measuring means 1 emits the irradiation laser beam LT from the light projecting system L toward the object to be measured M, and the reflected laser beam LR from the object to be measured M is received by each of the light receiving systems R1 and R2. Based on the position and the light receiving angle of each of the light receiving systems R1 and R2, the light receiving positions of the light position detecting elements 10a and 10b, and the like, the object M to be measured is triangulated.
The distance to is measured.

【0030】制御装置2は、各I/V変換回路14a,
14bからの電圧信号(V1,V2)a,(V1,V
2)bを増幅するアンプ15と、アンプ15から出力す
るアナログ信号をデジタル信号に変換するA/D変換回
路16と、A/D変換回路16からの出力により各光位
置検出素子10a,10bにおける受光点の位置に比例
する特性値Vsを演算する演算回路17を備えている。
特性値Vsは(V1−V2)/(V1+V2)である。
そして、制御装置2は、演算回路17からの出力値(V
s)つまり距離測定手段1で被測定物Mまでの距離を測
定した際の距離データと、Z軸方向の移動位置検出手段
7からの移動位置データから、相互の関係を表す検量デ
ータを検出する検量手段18を備えている。
The control device 2 includes each I / V conversion circuit 14a,
14b voltage signals (V1, V2) a, (V1, V
2) An amplifier 15 for amplifying b, an A / D conversion circuit 16 for converting an analog signal output from the amplifier 15 into a digital signal, and an output from the A / D conversion circuit 16 for each of the optical position detection elements 10a and 10b. The calculation circuit 17 is provided for calculating the characteristic value Vs proportional to the position of the light receiving point.
The characteristic value Vs is (V1-V2) / (V1 + V2).
The control device 2 then outputs the output value (V
s) That is, from the distance data when the distance to the object M is measured by the distance measuring means 1 and the moving position data from the moving position detecting means 7 in the Z-axis direction, the calibration data representing the mutual relationship is detected. A calibration means 18 is provided.

【0031】また、制御装置2は、A/D変換回路16
に、距離測定手段1の光位置検出素子10a,10bの
出力から受光量(V1+V2)を検出する受光量検出手
段19が接続してあると共に、受光量検出手段19によ
り検出した受光量が予め設定した範囲内にあるか否かを
判定する受光量判定手段20を備えており、さらに、検
量手段18と受光量検出手段19の間に、各受光系R
1,R2による受光量を比較して大きい方の受光量を選
択する選択手段21を備えている。
Further, the control device 2 includes an A / D conversion circuit 16
A light receiving amount detecting means 19 for detecting the light receiving amount (V1 + V2) from the outputs of the optical position detecting elements 10a and 10b of the distance measuring means 1 is connected to the light receiving amount detecting means 19 and the light receiving amount detected by the light receiving amount detecting means 19 is preset. The light receiving amount determining means 20 for determining whether or not the light receiving amount is within the range is provided, and each light receiving system R is provided between the calibration means 18 and the light receiving amount detecting means 19.
The selection means 21 is provided for comparing the received light amounts of 1 and R2 and selecting the larger received light amount.

【0032】次に、図2〜図5に示すフローチャートを
用いて、上記構成を備えた三次元形状の測定装置の動作
を説明する。
Next, the operation of the three-dimensional shape measuring apparatus having the above configuration will be described with reference to the flow charts shown in FIGS.

【0033】図2は、形状測定の工程を概略的に示すフ
ローチャートであって、ステップS01において、ステ
ージ3に被測定物Mを取付けたのち、検量線を検出する
検量線取得ステップS10に進み、ステップS40にお
いて、検量線データに不具合があるか否かを表示し、不
具合がある場合には被測定物Mの取付け前に戻り、不具
合が無い場合には距離測定手段1の位置を設定するセン
サ高さ設定ステップS20に進み、XYZ測定ステップ
S30において被測定物Mの本測定を行う。
FIG. 2 is a flow chart schematically showing the shape measuring process. In step S01, the object to be measured M is attached to the stage 3, and then the calibration curve acquisition step S10 for detecting the calibration curve is performed. In step S40, a sensor for displaying whether or not there is a defect in the calibration curve data, and if there is a defect, returns to before mounting the object to be measured M, and if there is no defect, a sensor for setting the position of the distance measuring means 1 Proceeding to the height setting step S20, the main measurement of the measured object M is performed in the XYZ measurement step S30.

【0034】検量線取得ステップS10では、図3に示
すように、被測定物Mの取付け後、ステップS11にお
いて、ステージ3をXおよびY軸方向に移動させ、距離
測定手段1に対する被測定物Mの任意の検量点を指定す
る。
In the calibration curve acquisition step S10, as shown in FIG. 3, after the object to be measured M is attached, in step S11, the stage 3 is moved in the X and Y axis directions to measure the object to be measured M with respect to the distance measuring means 1. Specify any calibration point of.

【0035】次に、ステップS12において、距離測定
手段1をZ軸方向(上下方向)に微小なステップで移動
させるとともに各ステップ毎に検量点までの距離を測定
し、ステップS13において、受光量検出手段19によ
り各受光系R1,R2の光位置検出素子10a,10b
の受光量(V1+V2)を検出し、ステップS14にお
いて、受光量判定手段20により受光量が予め設定した
範囲A1〜A2内にあるか否かを判定する。
Next, in step S12, the distance measuring means 1 is moved in the Z-axis direction (vertical direction) in minute steps, and the distance to the calibration point is measured for each step. In step S13, the received light amount is detected. The light position detecting elements 10a and 10b of the light receiving systems R1 and R2 are provided by the means 19.
Of the received light amount (V1 + V2) is detected, and in step S14, the received light amount determination means 20 determines whether or not the received light amount is within a preset range A1 to A2.

【0036】ステップ14Sにおいて、受光量が設定範
囲内である場合(Yse)には、ステップS15におい
て、演算回路17により、各受光系R1,R2の出力か
ら光位置検出素子10a,10bの受光点の位置に比例
する特性値Vsを求め、これをZ軸方向のステップ毎に
求め、ステップS16において、検量手段18により、
距離データである特性値VsとZ軸方向の移動位置検出
手段7からの移動位置データとの対応データである検量
線データを検出する。なお、上記の工程では、距離測定
手段1をZ軸方向にステップ移動させて各ステップ毎に
被測定物Mとの距離を測定しているので、検量データは
検量線データとなる。
When the amount of received light is within the set range in step 14S (Yse), in step S15 the arithmetic circuit 17 determines the light receiving points of the light position detecting elements 10a and 10b from the outputs of the respective light receiving systems R1 and R2. The characteristic value Vs that is proportional to the position of is calculated for each step in the Z-axis direction, and in step S16, the calibration means 18
Calibration curve data, which is correspondence data between the characteristic value Vs, which is distance data, and the movement position data from the movement position detecting means 7 in the Z-axis direction is detected. In the above process, the distance measuring means 1 is moved stepwise in the Z-axis direction and the distance to the object M to be measured is measured at each step, so the calibration data becomes calibration curve data.

【0037】また、ステップS14において、受光量が
設定範囲外である場合(No)には、ステップS19に
おいて範囲外となった連続回数を判断し、連続回数が予
め設定した回数(N回)以下の場合(No)には、検量
点不良と判断してステップS12から検量点の測定をや
り直し、連続回数が設定回数を超えた場合(Yes)に
は、ステップS40において受光径R1,R2に不具合
が生じていることを表示し、さらに、被加工物Mの取付
け不良と判断して被測定物Mの取付け前に戻る。なお、
受光量(V1+V2)が規定の範囲A1〜A2外となる
原因は、後で詳細に述べる。
If the amount of received light is out of the set range in step S14 (No), the number of consecutive times out of the range is determined in step S19, and the number of consecutive times is equal to or less than the preset number (N times). In the case of (No), the calibration point is determined to be defective and the measurement of the calibration point is repeated from step S12. When the number of consecutive times exceeds the set number of times (Yes), the light receiving diameters R1 and R2 are defective in step S40. Is displayed, and it is determined that the workpiece M is not properly attached, and the procedure returns to before the attachment of the object M to be measured. In addition,
The reason why the amount of received light (V1 + V2) is outside the specified range A1 to A2 will be described in detail later.

【0038】センサ高さ設定ステップS20では、先の
検量線データを検出したのち、ステップS21におい
て、距離測定手段1のZ軸方向の位置である高さを仮決
めしてから、XY軸駆動手段6によりステージ3を粗い
ピッチで水平方向に移動させながら被測定物Mの代表的
な形状をサンプリング測定し、ステップS22において
各点における距離データである特性値Vsを求め、ステ
ップS23において前に求めた検量線データを参照し
て、ステップS24において仮のZ軸方向の距離データ
群を検出する。そして、ステップS25において、仮の
距離データ群から、例えば平均値が検量線データの中央
値になるように、あるいは、被測定物Mが投光系Lから
の照射レーザ光LTの焦点位置(スポット径が小さくな
る位置)となるように、距離測定手段1の適切な高さを
設定する。
In the sensor height setting step S20, after the previous calibration curve data is detected, in step S21 the height which is the position of the distance measuring means 1 in the Z-axis direction is tentatively determined, and then the XY-axis driving means. 6, the representative shape of the object to be measured M is sampled and measured while moving the stage 3 in a horizontal direction at a coarse pitch, the characteristic value Vs which is the distance data at each point is obtained in step S22, and previously obtained in step S23. The provisional distance data group in the Z-axis direction is detected in step S24 with reference to the calibration curve data. Then, in step S25, from the provisional distance data group, for example, the average value becomes the median value of the calibration curve data, or the measured object M is the focal position (spot) of the irradiation laser beam LT from the projection system L. An appropriate height of the distance measuring means 1 is set so that the diameter becomes smaller).

【0039】なお、レーザスポット径は焦点位置からず
れると大きくなり、同スポット径が大きくなると細かい
ポイント測定を行うことができず、精度の低下をもたら
すため、上記したように距離測定手段1の高さを設定す
ることにより、精度維持が可能となる。
The laser spot diameter increases as it deviates from the focus position, and if the spot diameter increases, fine point measurement cannot be performed, resulting in a decrease in accuracy. Therefore, as described above, the distance measuring means 1 has a high height. The accuracy can be maintained by setting the height.

【0040】XYZ測定ステップS30では、ステップ
S31において、距離測定手段1の高さを本決めしたの
ち、ステージ3をXY軸方向に細かいピッチで移動させ
ながら被測定物Mの本測定を行い、ステップS32にお
いて、受光量検出手段19により各XY位置での各受光
系R1,R2による受光量(V1+V2)a,bを検出
し、ステップS33において選択手段21により2つの
受光量を比較して、ステップS34において同選択手段
21により大きい方の受光量を選択する。
In XYZ measurement step S30, after the height of the distance measuring means 1 is finally determined in step S31, the object M to be measured is actually measured while moving the stage 3 in the XY axis directions at a fine pitch. In S32, the received light amount detecting means 19 detects the received light amounts (V1 + V2) a and b by the respective light receiving systems R1 and R2 at each XY position, and in step S33, the selecting means 21 compares the two received light amounts, In S34, the larger light receiving amount is selected by the selecting means 21.

【0041】つまり、被測定物Mが図1に示すような円
錐台形状である場合、左側の側面mに照射レーザ光LT
が照射されているときには、右側の受光系R2がブライ
ンド位置となる。このとき、当該測定装置では、右側の
受光系R2の受光量が著しく低下したことで同受光系R
2がブラインド位置となったことを判別し、左側の受光
系R1を自動的に選択するようにしている。
That is, when the object M to be measured has a truncated cone shape as shown in FIG. 1, the irradiation laser beam LT is applied to the left side surface m.
Is illuminated, the light receiving system R2 on the right side becomes a blind position. At this time, in the measuring device, the light receiving amount of the right light receiving system R2 is significantly reduced,
It is determined that 2 has become the blind position, and the light receiving system R1 on the left side is automatically selected.

【0042】そして、ステップS35において、大きい
受光量を得た受光系からの出力を用いて距離データであ
る特性値Vsを検出し、ステップS36において、先に
検出した各受光系R1,R2からの出力を用いた検量線
データのうち、大きい受光量を得た受光系からの出力を
用いた検量線データを選択し、ステップS37におい
て、選択した検量線データで本測定で得た距離データを
較正する。また、ステップS34の受光量の選択に伴う
受光系の選択をステージ3の移動ピッチ毎に繰り返し行
い、ステップS38において、検量線データで較正した
Z軸方向の距離データと移動位置検出手段8からのXY
軸方向の移動位置データにより、XYZのデータ群すな
わち被測定物Mの三次元形状データを検出し、測定終了
となる。
Then, in step S35, the characteristic value Vs, which is distance data, is detected using the output from the light receiving system that has obtained a large amount of received light, and in step S36, the previously detected light receiving systems R1 and R2 are detected. From the calibration curve data using the output, select the calibration curve data using the output from the light receiving system that has obtained a large received light amount, and in step S37, calibrate the distance data obtained in the main measurement with the selected calibration curve data. To do. Further, the selection of the light receiving system according to the selection of the light receiving amount in step S34 is repeated for each movement pitch of the stage 3, and in step S38, the distance data in the Z-axis direction calibrated by the calibration curve data and the movement position detecting means 8 are used. XY
The XYZ data group, that is, the three-dimensional shape data of the measured object M is detected from the axial movement position data, and the measurement is completed.

【0043】このように、上記した三次元形状の測定装
置では、基本的に、個々の被測定物Mの形状や表面反射
率特性が異なる場合であっても、被測定物Mの形状測定
の度に、その被測定物自体の検量データを用いて距離デ
ータの較正を行うので、高精度な形状測定を行うことが
でき、仮に、一部の光学系にわずかな汚れがあったり、
被測定物Mの表面の一部に反射率特性の差があったり、
あるいは受光系の温度特性変化があったりした場合で
も、これらの影響を受けることがない。
As described above, in the above-described three-dimensional shape measuring apparatus, basically, even when the shape or surface reflectance characteristic of each measured object M is different, the shape measurement of the measured object M is performed. Each time, the calibration data of the object to be measured is used to calibrate the distance data, so that highly accurate shape measurement can be performed, and if some optical systems are slightly soiled,
There is a difference in reflectance characteristics on a part of the surface of the object to be measured M,
Alternatively, even if there is a change in the temperature characteristic of the light receiving system, these effects are not affected.

【0044】しかも、上記した三次元形状の測定装置で
は、距離測定手段1と被測定物MとのZ軸方向の距離を
一定のステップで変化させて検量線データを検出し、こ
の検量線データを較正に用いるようにしているので、そ
の後に行うサンプリング測定や本測定の結果をより高精
度化し得ることとなり、さらに、検量線データを用いて
被測定物Mのサンプリング測定を行い、その距離データ
に基づいて距離測定手段の高さを定めるので、本測定を
行う前に、正確なポイント測定を行うためにレーザスポ
ット径が小さくなるように距離測定手段1と被測定物M
との距離が適切に設定される。
Moreover, in the above-mentioned three-dimensional shape measuring apparatus, the calibration curve data is detected by changing the distance between the distance measuring means 1 and the object to be measured M in the Z-axis direction at regular steps. Since it is used for calibration, it is possible to improve the accuracy of the subsequent sampling measurement and main measurement results. Furthermore, the calibration curve data is used to perform the sampling measurement of the measured object M, and the distance data Since the height of the distance measuring means is determined on the basis of the distance measurement means 1 and the object to be measured M so that the laser spot diameter becomes small in order to perform accurate point measurement before performing the main measurement.
The distance between and is set appropriately.

【0045】また、検量線取得ステップS10中のステ
ップS14において、受光量(V1+V2)が規定の範
囲A1〜A2外となる原因としては、被測定物Mの表面
における反射光量の過多や不足が挙げられる。
Further, in step S14 of the calibration curve acquisition step S10, the cause that the amount of received light (V1 + V2) is out of the specified range A1 to A2 is the excessive or insufficient amount of reflected light on the surface of the object M to be measured. To be

【0046】この実施例で示すような被測定物Mである
歯牙模型は、通常石膏材に顔料を混合したものを素材と
して成形してあり、その表面反射率は、図6に示すよう
に、受光角度に対してほぼ余弦の関数になっている。つ
まり、理想拡散反射に近い状態となっており、平面を垂
直照射したレーザスポットを角度θの傾きで受光する場
合、光位置検出素子10a,10bの受光量は図4の特
性値と比例する。
The tooth model, which is the object M to be measured as shown in this embodiment, is usually formed by mixing a plaster material with a pigment, and the surface reflectance thereof is as shown in FIG. It is almost a function of cosine with respect to the light receiving angle. That is, when the laser spot is in a state close to ideal diffuse reflection and the plane is vertically irradiated, and the light is received at an inclination of the angle θ, the amount of light received by the optical position detection elements 10a and 10b is proportional to the characteristic value of FIG.

【0047】反射強度の高い石膏材(例えば、明色ピン
ク系)の場合は、2次反射光によるゴースト強度も大き
くなり、これを受光すると誤差が生じやすくなので、受
光量が設定範囲A1〜A2の上限A2以下である場合の
みを可とする。
In the case of a plaster material having a high reflection intensity (for example, a light pink color), the ghost intensity due to the secondary reflection light is also large, and an error is likely to occur when this light is received. Therefore, the received light amount is within the setting range A1 to A2. Only when it is less than or equal to the upper limit A2 of.

【0048】他方、反射強度の低い石膏材(例えば、黒
色)の場合は、1次反射レーザ光LR自体が弱くなり、
光位置検出素子10a,10bにおける受光量が小さく
なると、同光位置検出素子10a,10bの暗電流が相
対的に大きくなって誤差を生じるので、受光量が設定範
囲A1〜A2の下限A1以上である場合のみを可とす
る。
On the other hand, in the case of a gypsum material having a low reflection intensity (for example, black), the primary reflected laser light LR itself becomes weak,
When the amount of light received by the light position detecting elements 10a, 10b decreases, the dark current of the light position detecting elements 10a, 10b relatively increases and an error occurs. Therefore, when the amount of light received exceeds the lower limit A1 of the setting range A1 to A2. Only if there is one.

【0049】このほか、受光量(V1+V2)が規定の
範囲A1〜A2外となる原因としては、片方の受光系が
汚れて受光量が設定範囲A1〜A2の下限A1以下にな
る場合や、図7に示すように、被測定物(歯牙模型)M
の表面に石膏製作時に混入した気泡の抜け跡hがあり、
これに照射レーザ光LTがかかってしまう場合などが挙
げられる。図7に示す状態の場合、片方の受光系の受光
量が設定範囲内に入らないことがある。
In addition, the reason why the amount of received light (V1 + V2) is out of the specified range A1 to A2 is that one of the light receiving systems becomes dirty and the amount of received light becomes less than the lower limit A1 of the set range A1 to A2, or As shown in 7, the object to be measured (tooth model) M
There is a trace h of air bubbles mixed in during the plaster production on the surface of
There is a case where the irradiation laser beam LT is applied to this. In the case of the state shown in FIG. 7, the amount of light received by one of the light receiving systems may not fall within the set range.

【0050】以上の不具合はいずれも形状測定の精度を
阻害するものであるため、ステップS19において、受
光量が設定範囲内にN回連続して入らないことを判断
し、これにより不具合が生じていることを表示する。
Since all of the above problems impair the accuracy of shape measurement, it is determined in step S19 that the amount of received light does not fall within the set range N times in a row, and this causes problems. Is displayed.

【0051】さらに、受光量が設定範囲にあるにもかか
わらず、2つの受光系R1,R2で受光量が異なること
があり、その原因としては、図8に示すように、検量点
が被測定物Mの傾斜面に指定された場合が挙げられる。
検量点が角度φを有する傾斜面にあると、図9に示すよ
うに各受光系R1,R2における受光角度が角度φ分だ
け変化し、各々の受光量が異なることになる。つまり、
各受光系R1,R2の受光量が異なっている場合には、
ステージ3における被測定物Mの置き方に不具合がある
と判断することができるので、このような場合にも不具
合が生じていることを表示する。なお、被測定物Mの置
き方不良は、被測定物Mが著しく傾いた場合、その側面
mが照射レーザ光LTの投光軸に対して死角になること
があるので、これを修正する必要がある。
Further, although the received light amount is within the set range, the received light amount may differ between the two light receiving systems R1 and R2. The cause is that the calibration point is measured as shown in FIG. The case where it is designated as the inclined surface of the object M is mentioned.
When the calibration point is on the inclined surface having the angle φ, the light receiving angle in each of the light receiving systems R1 and R2 changes by the angle φ, as shown in FIG. 9, and the respective light receiving amounts differ. That is,
When the light receiving amounts of the respective light receiving systems R1 and R2 are different,
Since it can be determined that there is a problem with the placement of the object to be measured M on the stage 3, the fact that a problem has occurred is also displayed in such a case. It should be noted that when the object M to be measured is significantly tilted, the side surface m of the object M to be measured may be a blind spot with respect to the projection axis of the irradiation laser beam LT. There is.

【0052】このように、当該測定装置では、受光量の
検出や選択により、本測定の前に、光学系の汚れ、被測
定物Mの材質の影響、検量点の位置不良、あるいは被測
定物の置き方の不良といった不具合の発生を判断するこ
とができ、測定の失敗を未然に防止する。
As described above, according to the measuring apparatus, the amount of received light is detected and selected, and before the main measurement, contamination of the optical system, the influence of the material of the object M to be measured, the position error of the calibration point, or the object to be measured. It is possible to determine the occurrence of a defect such as a defective placement of the device, and prevent measurement failure.

【0053】図10〜図12は、本発明の請求項4に係
わる三次元形状の測定装置の一実施例を説明する図であ
る。なお、先の実施例と同一の構成部位は、同一符号を
付して説明を省略する。
10 to 12 are views for explaining an embodiment of a three-dimensional shape measuring apparatus according to claim 4 of the present invention. The same components as those in the previous embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0054】図10に示す三次元形状の測定装置は、距
離測定手段1が、照射レーザ光LTの投光軸を中心にし
て軸対称に配置された複数の受光系を一組として受光角
度が異なる複数組の受光系(R1〜R4)と、各組から
の出力を選択する切替え手段30を備えている。
In the three-dimensional shape measuring apparatus shown in FIG. 10, the distance measuring means 1 has a plurality of light receiving systems arranged axially symmetrically with respect to the projection axis of the irradiation laser beam LT as a set and has a light receiving angle of one set. A plurality of different sets of light receiving systems (R1 to R4) and switching means 30 for selecting the output from each set are provided.

【0055】各受光系は、投光軸に対して軸対称に配置
された2つの受光系R1,R2と、これらよりも受光角
度が小さくなる位置に設けた2つの受光系R3,R4と
の2組に分けてある。各受光系R1〜R4は、光位置検
出素子10a〜10d、受光レンズ12a〜12d、受
光フィルタ13a〜13dおよびI/V変換回路14a
〜14dを各々備えている。
Each light receiving system is composed of two light receiving systems R1 and R2 arranged symmetrically with respect to the light projecting axis, and two light receiving systems R3 and R4 provided at positions where the light receiving angle is smaller than these. It is divided into two groups. Each of the light receiving systems R1 to R4 includes light position detecting elements 10a to 10d, light receiving lenses 12a to 12d, light receiving filters 13a to 13d, and an I / V conversion circuit 14a.
.About.14d respectively.

【0056】切替え手段30は、受光角度が大きい方の
組の受光系R1,R2で得た各々の出力(V1,V2)
a,(V1,V2)bと、受光角度が小さい方の組の受
光系R3,R4で得た各々の出力(V1,V2)c,
(V1,V2)dとを切替えて制御装置2側へ送るもの
であり、選択的に操作することができる。
The switching means 30 outputs the respective outputs (V1, V2) obtained by the pair of light receiving systems R1, R2 having the larger light receiving angle.
a, (V1, V2) b and respective outputs (V1, V2) c, obtained by the light receiving systems R3, R4 of the pair having the smaller light receiving angle.
(V1, V2) d is switched and sent to the control device 2 side, and can be selectively operated.

【0057】ところで、一般に、三角測量原理では、図
11に示すように、被測定物Mの高さの変位dに対する
光位置検出素子10の受光点の変位δは、受光角度θが
大きいほど感度が高い。このため、受光角度θがある程
度大きくなるように受光系を配置しているが、被測定物
Mの形状によっては受光角度θが大きいことによる不具
合が生じることがある。
Generally, according to the triangulation principle, as shown in FIG. 11, the displacement δ of the light receiving point of the optical position detecting element 10 with respect to the displacement d of the height of the object M to be measured is more sensitive as the light receiving angle θ is larger. Is high. For this reason, the light receiving system is arranged so that the light receiving angle θ becomes large to some extent, but depending on the shape of the object M to be measured, a problem may occur due to the large light receiving angle θ.

【0058】つまり、図12に示すように、被測定物M
の上面に狭くて深い凹部Hがある場合、反射レーザ光L
Rの反射角度αが小さくなり、一対の受光系がともに1
次反射レーザ光LRの受光ができない死角位置となるこ
とがある。この場合、受光系には2次反射が受光される
が、光位置検出素子は反射光が1次であるか2次である
かの区別をすることがなく、積分的に受光してデータを
出力する。このような出力データでは誤差が大きいこと
が明らかである。
That is, as shown in FIG.
If there is a narrow and deep recess H on the upper surface of the
The reflection angle α of R becomes small, and both of the pair of light receiving systems have 1
There may be a blind spot position where the secondary reflected laser light LR cannot be received. In this case, the secondary reflection is received by the light receiving system, but the light position detection element does not distinguish whether the reflected light is primary or secondary, and it receives light in an integrated manner to obtain data. Output. It is clear that such output data has a large error.

【0059】このような不具合に対して、この実施例の
測定装置では、距離測定手段1に受光角度が異なる2組
の受光系R1〜R4備え、切替え手段30により組の選
択を可能にしているので、例えば、通常は受光角度が大
きい組の受光系R1,R2で形状測定を行い、図12に
示す如く被測定物Mに凹部Hがあるような場合には、1
次の反射レーザ光LTを確実に受光できる受光角度の小
さい組の受光系R3,R4に切替えることにより、高精
度を維持した測定が可能となる。
In order to cope with such a problem, in the measuring apparatus of this embodiment, the distance measuring means 1 is provided with two sets of light receiving systems R1 to R4 having different light receiving angles, and the switching means 30 makes it possible to select a set. Therefore, for example, in the case where the shape measurement is performed by the pair of light receiving systems R1 and R2 that normally have a large light receiving angle, and the object M to be measured has a recess H as shown in FIG.
By switching to the light receiving systems R3 and R4 of a small light receiving angle that can reliably receive the next reflected laser light LT, it is possible to perform measurement while maintaining high accuracy.

【0060】また、切替え手段30を距離測定手段1側
に設けているので、制御装置2側では切替えに関連した
変更を何ら行う必要がなく、先の実施例と同様のデータ
処理により形状測定を行うこととなり、このほか、この
実施例の測定装置では、1組の受光系に不具合が発生し
たような場合に、バックアップ機能として速やかに他の
組の受光系に切り替えることが可能である。
Further, since the switching means 30 is provided on the distance measuring means 1 side, it is not necessary to make any change related to the switching on the control device 2 side, and the shape measurement can be performed by the same data processing as in the previous embodiment. In addition, in the measuring apparatus of this embodiment, when a defect occurs in one set of light receiving systems, it is possible to quickly switch to another set of light receiving systems as a backup function.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1〜3に係わる三次元形状の測
定装置の一実施例を示す説明図である。
FIG. 1 is an explanatory view showing an embodiment of a three-dimensional shape measuring apparatus according to claims 1 to 3 of the present invention.

【図2】図1に示す測定装置の動作を概略的に示したフ
ローチャートである。
FIG. 2 is a flowchart schematically showing the operation of the measuring apparatus shown in FIG.

【図3】図2に示す検量線取得ステップを詳細に示した
フローチャートである。
FIG. 3 is a flowchart showing in detail the calibration curve acquisition step shown in FIG.

【図4】図3に続いて図2に示すセンサ高さ設定ステッ
プを詳細に示したフローチャートである。
FIG. 4 is a flowchart showing in detail the sensor height setting step shown in FIG. 2 subsequent to FIG. 3;

【図5】図4に続いて図2に示すXYZ測定ステップを
詳細に示したフローチャートである。
5 is a flowchart showing in detail the XYZ measurement steps shown in FIG. 2 subsequent to FIG. 4;

【図6】石膏材製の歯牙模型である被測定物に対する受
光系の受光角度と反射強度との関係を示すグラフであ
る。
FIG. 6 is a graph showing a relationship between a light receiving angle of a light receiving system and a reflection intensity with respect to an object to be measured which is a tooth model made of gypsum material.

【図7】石膏材製の歯牙模型である被測定物に気泡の抜
け跡がある場合を説明する側面図である。
FIG. 7 is a side view for explaining a case where there are traces of air bubbles in the measured object, which is a tooth model made of gypsum material.

【図8】被測定物の置き方不良が生じている状態を示す
説明図である。
FIG. 8 is an explanatory diagram showing a state in which a placement error of an object to be measured has occurred.

【図9】傾斜面に検量点が指定された際の受光系の受光
角度と反射強度との関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the light receiving angle of the light receiving system and the reflection intensity when a calibration point is designated on the inclined surface.

【図10】本発明の請求項4に係わる三次元形状の測定
装置の一実施例を示す説明図である。
FIG. 10 is an explanatory diagram showing an embodiment of a three-dimensional shape measuring apparatus according to claim 4 of the present invention.

【図11】三角測量原理における被測定物の高さ変位
と、光位置検出素子における受光点の変位と、受光系の
受光角度の関係を示す説明図である。
FIG. 11 is an explanatory diagram showing the relationship between the height displacement of the object to be measured based on the triangulation principle, the displacement of the light receiving point in the light position detection element, and the light receiving angle of the light receiving system.

【図12】被測定物の上面に凹部がある場合の反射レー
ザ光を示す説明図である。
FIG. 12 is an explanatory diagram showing reflected laser light when there is a concave portion on the upper surface of the object to be measured.

【符号の説明】[Explanation of symbols]

1 距離測定手段 5 Z軸駆動装置(多軸移動手段) 6 XY軸駆動装置(多軸移動手段) 7 (Z軸方向の)移動位置検出手段 8 (XY軸方向の)移動位置検出手段 9 レーザ光源 10a 10b 光位置検出素子 18 検量手段 19 受光量検出手段 20 受光量判定手段 21 選択手段 30 切替え手段 L 投光系 M 被測定物 R1〜R4 受光系 1 Distance measuring means 5 Z-axis drive (multi-axis moving means) 6 XY axis drive (multi-axis moving means) 7 Moving position detection means (in Z-axis direction) 8 Moving position detecting means (in XY axis directions) 9 Laser light source 10a 10b Optical position detection element 18 Calibration means 19 Light receiving amount detecting means 20 Light reception amount determination means 21 Selection means 30 switching means L light projection system M DUT R1 to R4 light receiving system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上 田 文 男 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社 内 (72)発明者 松 田 敏 彦 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社 内 (56)参考文献 特開 平2−116706(JP,A) 特開 平3−167410(JP,A) 特開 平2−115711(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/24 G01C 3/06 A61C 19/04 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Fumio Ueda 2 Takara-cho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Toshihiko Matsuda 2 Takara-cho, Kanagawa-ku, Yokohama, Kanagawa Sanko Co., Ltd. (56) Reference JP-A-2-116706 (JP, A) JP-A-3-167410 (JP, A) JP-A-2-115711 (JP, A) (58) Fields investigated ( Int.Cl. 7 , DB name) G01B 11/24 G01C 3/06 A61C 19/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 レーザ光源を含む投光系と光位置検出素
子を含む受光系とを組合わせて三角測量法により被測定
物までの距離を測定する距離測定手段と、距離測定手段
と被測定物との相対的な位置を直交する3軸方向に変化
させる多軸移動手段の各軸方向の移動量を検出する移動
位置検出手段を備え、被測定物の三次元形状を測定する
装置において、 距離測定手段と被測定物とが近接離間する方向をZ軸方
向として、多軸移動手段により距離測定手段と被測定物
とのZ軸方向の距離を変化させながら距離測定手段で被
測定物の任意の検量点を測定した際の距離データと移動
位置検出手段のZ軸方向の移動位置データから相互の関
係を表す検量データを検出する検量手段と、 距離測定手段の光位置検出素子の出力から受光量を検出
する受光量検出手段と、 検量手段で検量データを検出した際に受光量検出手段に
より検出した受光量が予め設定した範囲内にあるか否か
を判定する受光量判定手段を備え、 距離測定手段で本測定した際の距離データを検量データ
で較正する制御を行うことを特徴とする三次元形状の測
定装置。
1. A distance measuring means for measuring a distance to an object to be measured by a triangulation method by combining a light projecting system including a laser light source and a light receiving system including an optical position detecting element, and the distance measuring means and the object to be measured. An apparatus for measuring a three-dimensional shape of an object to be measured, comprising moving position detecting means for detecting a moving amount in each axial direction of a multi-axis moving means for changing a relative position to an object in three orthogonal directions. The direction in which the distance measuring means and the object to be measured approach and separate is defined as the Z-axis direction, and the distance measuring means changes the distance in the Z-axis direction between the distance measuring means and the object to be measured by the distance measuring means. From the output of the optical position detection element of the distance measuring means and the calibration means for detecting the calibration data indicating the mutual relationship from the distance data when measuring an arbitrary calibration point and the movement position data of the movement position detecting means in the Z-axis direction. Received light amount detection to detect received light amount Means and a received light amount determination means for determining whether the received light amount detected by the received light amount detecting means when the calibration data is detected by the measuring means is within a preset range, and the main measurement is performed by the distance measuring means. A three-dimensional shape measuring device, characterized in that control is performed to calibrate distance data at the time with calibration data.
【請求項2】 距離測定手段が、レーザ光の投光軸を中
心にして複数の受光系を軸対称位置に備えており、検量
手段が、各受光系毎に検量データを検出する手段である
ことを特徴とする請求項1に記載の三次元形状の測定装
置。
2. The distance measuring means is provided with a plurality of light receiving systems at axially symmetric positions around the projection axis of the laser light, and the calibration means is means for detecting calibration data for each light receiving system. The three-dimensional shape measuring apparatus according to claim 1, wherein
【請求項3】 請求項2に記載の三次元形状の測定装置
において、距離測定手段の各受光系の出力から受光量を
検出する受光量検出手段と、各受光系による受光量を比
較して最も大きい受光量を選択する選択手段を備え、受
光量が選択された受光系で得た本測定の距離データを検
量手段で検出した検量データで較正する制御を行うこと
を特徴とする三次元形状の測定装置。
3. The three-dimensional shape measuring device according to claim 2, wherein the light receiving amount detecting means for detecting the light receiving amount from the output of each light receiving system of the distance measuring means is compared with the light receiving amount by each light receiving system. A three-dimensional shape characterized by comprising a selection means for selecting the largest amount of received light, and performing control to calibrate the distance data of the main measurement obtained by the light receiving system with the selected amount of received light with the calibration data detected by the calibration means. Measuring device.
【請求項4】 レーザ光源を含む投光系と光位置検出素
子を含む受光系とを組合わせて三角測量法により被測定
物までの距離を測定する距離測定手段と、距離測定手段
と被測定物との相対的な位置を直交する3軸方向に変化
させる多軸移動手段の各軸方向の移動量を検出する移動
位置検出手段を備え、被測定物の三次元形状を測定する
装置において、 距離測定手段と被測定物とが近接離間する方向をZ軸方
向として、多軸移動手段により距離測定手段と被測定物
とのZ軸方向の距離を変化させながら距離測定手段で被
測定物の任意の検量点を測定した際の距離データと移動
位置検出手段のZ軸方向の移動位置データから相互の関
係を表す検量データを検出する検量手段を備え、 距離測定手段が、レーザ光の投光軸を中心にして軸対称
に配置された複数の受光系を一組として受光角度が異な
る複数組の受光系と、各組からの出力を選択する切替え
手段を備えると共に、検量手段が、各受光系毎に検量デ
ータを検出する手段であり、 距離測定手段で本測定した際の距離データを検量データ
で較正する制御を行うことを特徴とする三次元形状の測
定装置。
4. A distance measuring means for measuring a distance to an object to be measured by a triangulation method by combining a light projecting system including a laser light source and a light receiving system including an optical position detecting element, and the distance measuring means and the object to be measured. An apparatus for measuring a three-dimensional shape of an object to be measured, comprising moving position detecting means for detecting a moving amount in each axial direction of a multi-axis moving means for changing a relative position to an object in three orthogonal directions. The direction in which the distance measuring means and the object to be measured approach and separate is defined as the Z-axis direction, and the distance measuring means changes the distance in the Z-axis direction between the distance measuring means and the object to be measured by the distance measuring means. The distance measuring means is provided with a calibration means for detecting calibration data indicating a mutual relationship from the distance data when measuring an arbitrary calibration point and the movement position data of the movement position detecting means in the Z-axis direction. Arranged symmetrically about the axis In addition to a plurality of light receiving systems having different light receiving angles as one set and a switching means for selecting the output from each set, the calibration means is a means for detecting the calibration data for each light receiving system. A three-dimensional shape measuring device characterized by performing control to calibrate the distance data when the main measurement is performed by the distance measuring means with the calibration data.
JP29059796A 1996-10-31 1996-10-31 3D shape measuring device Expired - Fee Related JP3434425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29059796A JP3434425B2 (en) 1996-10-31 1996-10-31 3D shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29059796A JP3434425B2 (en) 1996-10-31 1996-10-31 3D shape measuring device

Publications (2)

Publication Number Publication Date
JPH10132529A JPH10132529A (en) 1998-05-22
JP3434425B2 true JP3434425B2 (en) 2003-08-11

Family

ID=17758074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29059796A Expired - Fee Related JP3434425B2 (en) 1996-10-31 1996-10-31 3D shape measuring device

Country Status (1)

Country Link
JP (1) JP3434425B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083607A (en) * 2009-10-16 2011-04-28 Straumann Holding Ag Scanning device for scanning dental objects and method for scanning dental objects

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162495A (en) * 2007-12-28 2009-07-23 Panasonic Corp 3d sensor
JP6565428B2 (en) * 2015-07-28 2019-08-28 ブラザー工業株式会社 3D shape measuring device
JP6854681B2 (en) * 2017-03-29 2021-04-07 シチズン時計株式会社 Judgment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083607A (en) * 2009-10-16 2011-04-28 Straumann Holding Ag Scanning device for scanning dental objects and method for scanning dental objects

Also Published As

Publication number Publication date
JPH10132529A (en) 1998-05-22

Similar Documents

Publication Publication Date Title
JP3511450B2 (en) Position calibration method for optical measuring device
EP1972886B1 (en) Method and apparatus for detecting a location of a workpiece surface using a surface height focus sensor means
US20100014099A1 (en) Coordinate measuring device and method for measuring with a coordinate measuring device
US20080100850A1 (en) Surface height and focus sensor
US8711365B2 (en) Coordinate measuring device and method for measuring with a coordinate measuring device
EP1078218A2 (en) Wavelength-dependent surface contour measurement system and method
JP3434425B2 (en) 3D shape measuring device
US5321495A (en) Optical detecting system for determining particle position on a substrate
JP2017053793A (en) Measurement device, and manufacturing method of article
JPH0323856B2 (en)
JPS6125003A (en) Configuration measuring method
JP2557650B2 (en) Sample shape measuring device
US20240003674A1 (en) Photogrammetric camera and method for the two-dimensional measurement of objects
JPS61223604A (en) Gap measuring instrument
JPH08327336A (en) Three dimensional shape-measuring apparatus
JP3638639B2 (en) Position detection device
JPH08233520A (en) Three-dimensional shape measuring apparatus
JP2524357B2 (en) Optical signal processing method for optical fiber sensor for distance measurement
JPH03211437A (en) Lens meter
JPH0540012A (en) Interferometer and its aligning method
JP2661477B2 (en) Method and apparatus for detecting surface profile of material to be detected
KR100380133B1 (en) Method for compensating error according to intensity of rays reflected on subject in optical sensor
JPH11132736A (en) Confocal optical device and positioning method therefor
JPH0658839A (en) Automatic inspecting apparatus for defect of color filter
KR20090027963A (en) Apparatus for shape measurement of three dimension

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees