JP3433110B2 - Three-dimensional diffractive optical element and method of manufacturing the same - Google Patents

Three-dimensional diffractive optical element and method of manufacturing the same

Info

Publication number
JP3433110B2
JP3433110B2 JP21893498A JP21893498A JP3433110B2 JP 3433110 B2 JP3433110 B2 JP 3433110B2 JP 21893498 A JP21893498 A JP 21893498A JP 21893498 A JP21893498 A JP 21893498A JP 3433110 B2 JP3433110 B2 JP 3433110B2
Authority
JP
Japan
Prior art keywords
dimensional
optical element
diffractive optical
glass
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21893498A
Other languages
Japanese (ja)
Other versions
JP2000056112A (en
Inventor
一良 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP21893498A priority Critical patent/JP3433110B2/en
Publication of JP2000056112A publication Critical patent/JP2000056112A/en
Application granted granted Critical
Publication of JP3433110B2 publication Critical patent/JP3433110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0891Processes or apparatus adapted to convert digital holographic data into a hologram

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、3次元的回折光学
素子及びその製造方法に係り、特に超短パルスレーザー
光加工によるガラス中の3次元的回折光学素子及びその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional diffractive optical element and a method for manufacturing the same, and more particularly to a three-dimensional diffractive optical element in glass by ultrashort pulse laser beam processing and a method for manufacturing the same.

【0002】[0002]

【従来の技術】現在、計算機でもって、2次元平面上に
振幅または位相物パターンを描くことにより、回折場に
任意の振幅または強度分布を得ることができる回折光学
素子の利用が進んでいる。
2. Description of the Related Art At present, use of a diffractive optical element capable of obtaining an arbitrary amplitude or intensity distribution in a diffracted field by drawing an amplitude or phase object pattern on a two-dimensional plane with a computer is in progress.

【0003】この回折光学素子は、今までの光学素子に
ない多様性を有しており、CDのピックアップ光学系な
ど様々な方面に応用されている。
This diffractive optical element has versatility not found in conventional optical elements, and is applied to various fields such as a pickup optical system for CDs.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、そのよ
うな従来の回折光学素子は、全てが2次元平面または曲
面上に展開されているため、その自由度が低い。また、
色収差の補正ができない。さらに、回折効率が低い。ま
た、特定の点と点をつなぐ信号経路を構成することがで
きないなどといった問題があった。
However, since all such conventional diffractive optical elements are developed on a two-dimensional plane or curved surface, the degree of freedom thereof is low. Also,
Cannot correct chromatic aberration. Furthermore, the diffraction efficiency is low. In addition, there is a problem that a signal path connecting specific points cannot be configured.

【0005】そして、これら回折光学素子の加工は、平
面または曲線上に限られているために、自ずとその性能
に限界がある。少なくとも、一つの平面上に書かれた回
折光学素子の波長依存性を取り除くことは不可能であ
る。この点、3次元的構造を持つ回折光学素子の場合
は、回折効率100%を達成することは容易である。
Since the processing of these diffractive optical elements is limited to a plane or a curve, the performance is naturally limited. At least, it is impossible to remove the wavelength dependence of the diffractive optical element written on one plane. In this respect, it is easy to achieve a diffraction efficiency of 100% in the case of a diffractive optical element having a three-dimensional structure.

【0006】更に、3次元の自由度を利用して、色収差
を含む様々な収差の少ない光学素子を作製することがで
きる。
Further, by utilizing the three-dimensional degree of freedom, it is possible to manufacture various optical elements having a small amount of aberration including chromatic aberration.

【0007】電磁エネルギーの空間的な集中は、光加工
の基本であるが、光源に超短パルスレーザー光などを用
い、パワー密度の時間的空間的な集中によって、非線形
効果の利用が可能となる。
Spatial concentration of electromagnetic energy is the basis of optical processing, but by using ultrashort pulsed laser light as the light source, the nonlinear effect can be utilized by temporal and spatial concentration of power density. .

【0008】また、光学ガラス中への超短レーザーパル
ス光の照射による永続的屈折率変化を利用して、光メモ
リのビットの書き込みや直線導波路の書き込みの例がす
でに報告されている(レーザー研究、第26巻第2号、
P.150〜154『超短パルスレーザーによるガラス
内部の光誘起屈折率変化』、1998年2月)。
Further, examples of writing bits in an optical memory and writing in a linear waveguide have been already reported by utilizing a permanent change in refractive index due to irradiation of ultrashort laser pulse light into an optical glass (laser research. , Vol. 26, No. 2,
P. 150-154, "Photo-induced refractive index change inside glass by ultrashort pulse laser", February 1998).

【0009】本発明は、このような先行技術を発展さ
せ、永続的屈折率変化を3次元的に分布させ、高性能を
有する回折光学素子を光学ガラス中に作製することがで
きる3次元的回折光学素子及びその製造方法を提供する
ことを目的とする。
The present invention develops such a prior art and three-dimensionally diffractive optical element capable of producing a diffractive optical element having a high performance by three-dimensionally distributing a permanent refractive index change in an optical glass. An object is to provide an optical element and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕3次元的回折光学素子において、集光レンズを介
した光学ガラスへの1ナノ秒から1フェムト秒のパルス
幅を持つ、波長200nmから2000nmの超短パル
スレーザー光の多光子吸収による永続的屈折率変化また
は光学損傷を利用して、前記光学ガラス中に書き込まれ
る、3次元的な屈折率分布を有するようにしたものであ
る。
In order to achieve the above-mentioned object, the present invention [1] In a three-dimensional diffractive optical element, a condensing lens is used.
In the optical glass, the permanent refractive index change or optical damage due to the multiphoton absorption of the ultrashort pulsed laser light with a wavelength of 200 nm to 2000 nm having a pulse width of 1 nanosecond to 1 femtosecond is applied to the optical glass. It has a three-dimensional refractive index distribution.

【0011】〔2〕上記〔1〕記載の3次元的回折光学
素子において、前記光学ガラスは、シリカガラスであ
る。
[2] In the three-dimensional diffractive optical element described in [1] above, the optical glass is silica glass.

【0012】〔〕上記〔1〕記載の3次元的回折光学
素子において、前記光学ガラスは、耐破損性のソーダガ
ラスである。
[ 3 ] In the three-dimensional diffractive optical element described in [1], the optical glass is soda glass having breakage resistance.

【0013】〔〕上記〔1〕記載の3次元的回折光学
素子において、前記光学ガラスは、光学プラスチックス
である。
[ 4 ] In the three-dimensional diffractive optical element according to the above [1], the optical glass is an optical plastic.

【0014】〔〕上記〔〕記載の3次元的回折光学
素子において、前記光学プラスチックスはアクリルであ
る。
[ 5 ] In the three-dimensional diffractive optical element according to the above [ 4 ], the optical plastic is acrylic.

【0015】〔〕3次元的回折光学素子の製造方法に
おいて、集光レンズを介した光学ガラスに、1ナノ秒か
ら1フェムト秒のパルス幅を持つ、波長200nmから
2000nmの超短パルスレーザー光を照射し、前記光
学ガラスに前記超短パルスレーザー光の多光子吸収によ
る永続的屈折率変化または光学損傷を生じさせ、前記光
学ガラス中に書き込まれる、3次元的な屈折率分布を生
成させるようにしたものである。
[ 6 ] In the method for manufacturing a three-dimensional diffractive optical element, an ultrashort pulse laser beam having a pulse width of 1 nanosecond to 1 femtosecond and a wavelength of 200 nm to 2000 nm is applied to an optical glass via a condenser lens. To cause a permanent refractive index change or optical damage to the optical glass due to multiphoton absorption of the ultrashort pulsed laser light, and to generate a three-dimensional refractive index distribution written in the optical glass. It is the one.

【0016】〔〕上記〔〕記載の3次元的回折光学
素子の製造方法において、前記超短パルスレーザー光
走査により、前記光学ガラス中に書き込まれる、3次元
的な屈折率分布を生成させるようにしたものである。
[0016] [7] In the method for manufacturing a three-dimensional diffractive optical element described in [6], wherein the <br/> scanning the ultrashort pulse laser beam, the written in the optical glass, three-dimensional refractive A rate distribution is generated.

【0017】〔〕上記〔〕記載の3次元的回折光学
素子の製造方法において、前記3次元的な屈折率分布
が、ブラッグ回折格子である。
[ 8 ] In the method for manufacturing a three-dimensional diffractive optical element according to the above [ 6 ], the three-dimensional refractive index distribution is a Bragg diffraction grating.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0019】本発明は、1ナノ乃至1フェムト秒のパル
ス幅を有し、波長200nm乃至2000nmの超短パ
ルスレーザー光を、シリカガラス、ソーダガラス、アク
リルなどの光学プラスチックスなど、透明な光学ガラス
中に集光し、多光子吸収により永続的屈折率の変化また
は光学損傷を発生させることにより、光学ガラス内にブ
ラッグ回折格子などのような3次元的に屈折率が分布し
ている回折光学素子を作製するものである。
The present invention provides a transparent optical glass such as silica glass, soda glass, or optical plastics such as acryl having an ultrashort pulsed laser light having a pulse width of 1 nanometer to 1 femtosecond and a wavelength of 200 nm to 2000 nm. A diffractive optical element in which the refractive index is three-dimensionally distributed in the optical glass, such as a Bragg diffraction grating, by condensing the light inside and causing a permanent change in the refractive index or optical damage due to multiphoton absorption. Is to be manufactured.

【0020】図1は本発明にかかる3次元的回折光学素
子の製造方法を示す模式図である。
FIG. 1 is a schematic view showing a method of manufacturing a three-dimensional diffractive optical element according to the present invention.

【0021】この図において、1はバルクとしての光学
ガラス、2はその光学ガラス中に書き込まれる、3次
元的な屈折率分布としての3次元回折格子である。
In this figure, 1 is an optical glass as a bulk, and 2 is a three-dimensional diffraction grating as a three-dimensional refractive index distribution written in the optical glass 1 .

【0022】ここでは、1ナノ乃至1フェムト秒のパル
ス幅を有し、波長200nm乃至2000nmの超短パ
ルスレーザー光11を集光レンズ12を介して光学ガラ
ス1に照射し、この超短パルスレーザー光11の多光子
吸収による永続的屈折率変化または光学損傷を利用し
て、光学ガラス1中に書き込まれる、3次元的な屈折率
分布13を生成させる。なお、図1において、14はビ
ーム(レンズ)のラスタ走査を示している。
Here, an ultrashort pulse laser beam 11 having a pulse width of 1 nanometer to 1 femtosecond and a wavelength of 200 nm to 2000 nm is irradiated onto the optical glass 1 through a condenser lens 12, and this ultrashort pulse laser is emitted. A permanent refractive index change or optical damage due to multiphoton absorption of the light 11 is utilized to generate a three-dimensional refractive index distribution 13 written in the optical glass 1. In FIG. 1, reference numeral 14 denotes a beam (lens) raster scan.

【0023】〔実施例1〕 シリカガラス中に波長800nm、0.1ピコ秒、1ミ
リジュールの増幅されたチタンサファイヤレーザーパル
スを集光し、集光点を走査することにより、縦横1m
m、3ミクロン周期、奥行き約30ミクロンの規則的な
ブラッグ回折格子を作製した。
Example 1 An amplified titanium sapphire laser pulse having a wavelength of 800 nm, 0.1 picoseconds, and 1 millijoule was condensed in silica glass, and the converging point was scanned to measure 1 m in length and width.
A regular Bragg grating having a 3 m period and a depth of about 30 m was prepared.

【0024】この実施例では、奥行き方向の走査は行わ
なかったが、奥行き方向に走査すれば、より厚みのある
3次元回折格子の製作が可能になる。
In this embodiment, scanning in the depth direction was not performed, but scanning in the depth direction makes it possible to fabricate a three-dimensional diffraction grating having a greater thickness.

【0025】また、曲線的な走査を行えば、レンズの機
能を付加することも可能である。
If curved scanning is performed, it is possible to add the function of a lens.

【0026】このようにして、作製された3次元的回折
光学素子の3次的回折格子2を、図2に示すように、H
e−Neレーザー光21で照射すると、体積型回折格子
の特徴である非対称な回折現象を確認することができ
た。なお、図2において、22は回折光、23は非回折
光である。
The third-order diffraction grating 2 of the three-dimensional diffractive optical element produced in this manner is H
When irradiated with the e-Ne laser beam 21, it was possible to confirm the asymmetrical diffraction phenomenon that is characteristic of the volume type diffraction grating. In FIG. 2, 22 is diffracted light and 23 is non-diffracted light.

【0027】まだ、回折効率は低く、現在のところは数
%であるが、レーザー光強度、書き込み条件、走査方
の最適化により、100%の回折効率を達成することが
原理的に可能である。
[0027] Still diffraction efficiency is low, although at present a few percent, the laser beam intensity, the write condition, run by optimizing 査方 method, to achieve a diffraction efficiency of 100% theoretically possible Is.

【0028】このように、この実施例によれば、体積型
回折格子の特徴である非対称な回折現と高い回折効率
を得ることができる。
[0028] Thus, according to this embodiment, it is possible to obtain an asymmetrical diffraction phenomena and a high diffraction efficiency is a characteristic of the volume type diffraction grating.

【0029】現在のところは、回折効率は数%である
が、既に述べているように、多少の工夫によって、10
0%の回折効率を達成することが、可能である。
At present, the diffraction efficiency is only a few percent, but as already mentioned, it can be reduced to 10 by some measures.
It is possible to achieve a diffraction efficiency of 0%.

【0030】なお、シリカガラス中に水素ガスを含有さ
せることにより、超短パルスレーザー光の書き込み感度
の向上を図ることができる。
By containing hydrogen gas in the silica glass, the writing sensitivity of ultrashort pulse laser light can be improved.

【0031】〔実施例2〕 光学ガラスとして、耐破損性のソーガラスの場合は、
学術雑誌報告等においても、数ミクロ径のスポットを
多数書き込む例が示されており、それへの適用も考えら
れる。
[0031] EXAMPLE 2 optical glass, in the case of resistance to breakage of the soda glass,
Also in journals reporting, etc., it has been shown example of writing a number of spots of a few microns diameter, also conceivable application to it.

【0032】〔実施例3〕 光学ガラスとして、アクリルなどの光学プラスチックス
の場合は、1970年代の学会報告においても、導波路
と体積型回折格子の書き込みの例が示されており、それ
への適用も考えられる。
[Example 3] In the case of an optical plastic such as acrylic as the optical glass, an example of writing a waveguide and a volume type diffraction grating is shown in the academic conference report of the 1970's, and Application is also considered.

【0033】上記したように、この3次元的回折光学素
子の製造方法によれば、3次元的な屈折率分布を創り出
すことができ、この自由度により、例えば、計算機で設
計された任意形状の3次元ブラッグ回折格子の作製が可
能である。換言すれば、3次元の空間を用いる本発明の
回折素子では、この自由度は、3次元空間そのものの自
由度を持つ。その点、レンズの自由度は、表面の曲面、
つまり、球面に限られる。
As described above, according to the method for manufacturing a three-dimensional diffractive optical element, a three-dimensional refractive index distribution can be created, and this degree of freedom allows, for example, an arbitrary shape designed by a computer to be obtained. It is possible to manufacture a three-dimensional Bragg diffraction grating. In other words, in the diffraction element of the present invention that uses a three-dimensional space, this degree of freedom has the degree of freedom of the three-dimensional space itself. In that respect, the degree of freedom of the lens is
In other words, it is limited to the spherical surface.

【0034】本発明の3次元的回折光学素子は、光学機
器分野においては、一般的学機器結像装置(カメ
、光通信分野においては、光伝送交換装置波長多
重光通信装置、光計測分野においては、光学干渉計
体光計測装置などの広い囲の適用が可能である。
[0034] 3-dimensional diffractive optical element of the present invention is an optical device field is generally light science instruments and imaging devices (turtle <br/> la), in the field of optical communication, optical transmission switching device or a wavelength multiplexing optical communication system, the optical measurement field is applicable in a wide range such as an optical interferometer or raw <br/> body light measuring device.

【0035】また、本発明の3次元的回折光学素子とレ
ンズとの組み合わせも考えられ、多くの用途が考えられ
る。例えば、従来のレンズの中に3次元回折格子を書き
込むことも可能であり、写真レンズの合焦検出や測光に
利用可能である。更に、2重焦点にすることもできる。
A combination of the three-dimensional diffractive optical element of the present invention and a lens is also conceivable, and many applications are possible. For example, it is also possible to write the three-dimensional diffraction grating in the conventional lens, it is available for focus detection and photometry photograph lens. Further, it is possible to have a double focus.

【0036】また、その利用法として、セキュリティ
ー、暗号への応用が考えられる。例えば、小さなガラス
の部分などに、3次元ホログラムで、ID(個人識別番
号)などを書き込んでおくことが可能である。情報容量
は大容量になるので、様々な応用が可能である。
Further, as its usage, application to security and encryption can be considered. For example, it is possible to write an ID (personal identification number) or the like on a small glass portion or the like with a three-dimensional hologram. Since the information capacity is large, various applications are possible.

【0037】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and these modifications are not excluded from the scope of the present invention.

【0038】[0038]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、次のような効果を奏することができる。
As described in detail above, according to the present invention, the following effects can be obtained.

【0039】(A)永続的屈折率変化を3次元的に分布
させ、高性能を有する回折光学素子を光学ガラス中に作
製することができる。
(A) A diffractive optical element having high performance can be produced in an optical glass by three-dimensionally distributing permanent refractive index changes.

【0040】(B)3次元的な屈折率分布を創り出すこ
とができ、この自由度により、例えば、計算機で設計さ
れた任意形状の3次元ブラッグ回折格子の作製が可能で
ある。
(B) A three-dimensional refractive index distribution can be created, and with this degree of freedom, for example, a three-dimensional Bragg diffraction grating of arbitrary shape designed by a computer can be manufactured.

【0041】(C)堆積型回折格子の特徴である非対称
な回折現と高い回折効率を得ることができる。
[0041] can be obtained (C) which is characteristic of the deposition type diffraction grating asymmetrical diffraction phenomena and high diffraction efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる3次元的回折光学素子の製造方
法を示す模式図である。
FIG. 1 is a schematic view showing a method for manufacturing a three-dimensional diffractive optical element according to the present invention.

【図2】本発明の実施例を示す3次元的回折光学素子の
作用を示す模式図である。
FIG. 2 is a schematic diagram showing an operation of a three-dimensional diffractive optical element showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 バルクとしての光学ガラス 2 3次元的な屈折率分布としての3次元回折格子 11 超短パルスレーザー光 12 集光レンズ 13 3次元回折格子(3次元的な屈折率分布) 21 He−Neレーザー光 22 回折光 23 非回折光 1 Optical glass as bulk 2 Three-dimensional diffraction grating as three-dimensional refractive index distribution 11 Ultra short pulse laser light 12 Condensing lens 13 Three-dimensional diffraction grating (three-dimensional refractive index distribution) 21 He-Ne laser light 22 Diffracted light 23 Non-diffracted light

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 集光レンズを介した光学ガラスへの1ナ
ノ秒から1フェムト秒のパルス幅を持つ、波長200n
mから2000nmの超短パルスレーザー光の多光子吸
収による永続的屈折率変化または光学損傷を利用して、
前記光学ガラス中に書き込まれる、3次元的な屈折率分
布を有することを特徴とする3次元的回折光学素子。
1. A wavelength of 200n having a pulse width of 1 nanosecond to 1 femtosecond to an optical glass through a condenser lens.
Utilizing permanent refractive index change or optical damage due to multiphoton absorption of ultrashort pulsed laser light from m to 2000 nm,
A three-dimensional diffractive optical element having a three-dimensional refractive index distribution written in the optical glass.
【請求項2】 請求項1記載の3次元的回折光学素子に
おいて、前記光学ガラスは、シリカガラスであることを
特徴とする3次元的回折光学素子。
2. The three-dimensional diffractive optical element according to claim 1, wherein the optical glass is silica glass.
【請求項3】 請求項1記載の3次元的回折光学素子に
おいて、前記光学ガラスは、耐破損性のソーダガラスで
あることを特徴とする3次元的回折光学素子。
3. The three-dimensional diffractive optical element according to claim 1, wherein the optical glass is a damage-resistant soda glass.
【請求項4】 請求項1記載の3次元的回折光学素子に
おいて、前記光学ガラスは、光学プラスチックスである
ことを特徴とする3次元的回折光学素子。
4. The three-dimensional diffractive optical element according to claim 1, wherein the optical glass is an optical plastic.
【請求項5】 請求項記載の3次元的回折光学素子に
おいて、前記光学プラスチッスはアクリルであること
を特徴とする3次元的回折光学素子。
5. The three-dimensional diffractive optical element according to claim 4, wherein the optical plastic scan the three-dimensional diffractive optical element which is a acrylic.
【請求項6】(a)集光レンズを介した光学ガラスに、
1ナノ秒から1フェムト秒のパルス幅を持つ、波長20
0nmから2000nmの超短パルスレーザー光を照射
し、 (b)前記光学ガラスに前記超短パルスレーザー光の多
光子吸収による永続的屈折率変化または光学損傷を生じ
させ、 (c)前記光学ガラス中に書き込まれる、3次元的な屈
折率分布を生成させることを特徴とする3次元的回折光
学素子の製造方法。
6. (a) On an optical glass via a condenser lens ,
Wavelength 20 with pulse width of 1 nanosecond to 1 femtosecond
Irradiating ultrashort pulsed laser light of 0 nm to 2000 nm, (b) causing permanent refractive index change or optical damage due to multiphoton absorption of the ultrashort pulsed laser light in the optical glass, (c) in the optical glass A method for manufacturing a three-dimensional diffractive optical element, which is characterized in that a three-dimensional refractive index distribution written in is generated.
【請求項7】 請求項記載の3次元的回折光学素子の
製造方法において、前記超短パルスレーザー光走査に
より、前記光学ガラス中に書き込まれる、3次元的な屈
折率分布を生成させることを特徴とする3次元的回折光
学素子の製造方法。
7. A method for producing a three-dimensional diffractive optical element according to claim 6, wherein the scanning of the ultrashort pulse laser beam, the written in the optical glass, thereby generating a three-dimensional refractive index distribution And a method for manufacturing a three-dimensional diffractive optical element.
【請求項8】 請求項記載の3次元的回折光学素子の
製造方法において、前記3次元的な屈折率分布が、ブラ
ッグ回折格子であることを特徴とする3次元的回折光学
素子の製造方法。
8. The method for manufacturing a three-dimensional diffractive optical element according to claim 6 , wherein the three-dimensional refractive index distribution is a Bragg diffraction grating. .
JP21893498A 1998-08-03 1998-08-03 Three-dimensional diffractive optical element and method of manufacturing the same Expired - Fee Related JP3433110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21893498A JP3433110B2 (en) 1998-08-03 1998-08-03 Three-dimensional diffractive optical element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21893498A JP3433110B2 (en) 1998-08-03 1998-08-03 Three-dimensional diffractive optical element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000056112A JP2000056112A (en) 2000-02-25
JP3433110B2 true JP3433110B2 (en) 2003-08-04

Family

ID=16727623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21893498A Expired - Fee Related JP3433110B2 (en) 1998-08-03 1998-08-03 Three-dimensional diffractive optical element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3433110B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347171B1 (en) * 1999-03-31 2002-02-12 Matsushita Electric Industrial Co., Ltd. Method and apparatus for forming a diffraction grating
JP4124396B2 (en) * 1999-12-17 2008-07-23 独立行政法人科学技術振興機構 Hologram manufacturing method and apparatus
AU2001282474A1 (en) * 2000-08-24 2002-03-04 U.C. Laser Ltd. Intravolume diffractive optical elements
FR2815425B1 (en) * 2000-10-12 2003-10-31 Holophane PIECE OF TRANSPARENT MATERIAL AND LENS OF HEADLIGHTS OF VEHICLES
US6929886B2 (en) * 2001-01-02 2005-08-16 U-C-Laser Ltd. Method and apparatus for the manufacturing of reticles
JP4880820B2 (en) * 2001-01-19 2012-02-22 株式会社レーザーシステム Laser assisted machining method
JP4565754B2 (en) * 2001-02-26 2010-10-20 日東電工株式会社 Plastic structure
JP2003014915A (en) * 2001-07-03 2003-01-15 Japan Science & Technology Corp Optical element with dammann grating
JP2007531249A (en) * 2003-07-18 2007-11-01 ユーシーエルティ リミテッド Method for correcting critical dimension variations in photomasks
JP4645076B2 (en) * 2004-06-28 2011-03-09 凸版印刷株式会社 Phase shift mask, manufacturing method thereof, and pattern transfer method
US7405883B2 (en) 2004-12-03 2008-07-29 Ohara Inc. Optical component and method of manufacture of optical component
JP5109076B2 (en) * 2005-07-15 2012-12-26 並木精密宝石株式会社 Refractive index control type diffractive optical element and manufacturing method thereof
JP5320779B2 (en) * 2007-03-09 2013-10-23 東洋製罐株式会社 Structure, structure forming method, structure forming apparatus, structure color and / or diffracted light reading method, and authenticity determining method
JP6410030B2 (en) * 2014-09-24 2018-10-24 日本電気硝子株式会社 Optical imaging member and method of manufacturing optical imaging member
JP2023069750A (en) * 2021-11-08 2023-05-18 大学共同利用機関法人自然科学研究機構 Optical element, optical device, and manufacturing method for optical element

Also Published As

Publication number Publication date
JP2000056112A (en) 2000-02-25

Similar Documents

Publication Publication Date Title
JP3433110B2 (en) Three-dimensional diffractive optical element and method of manufacturing the same
US7759630B2 (en) Method and apparatus for the generation and control of multiple near-field light sources at subwavelength resolution
Watanabe et al. Two-photon readout of three-dimensional memory in silica
US9606415B2 (en) Super-oscillatory lens device
JP2002117575A (en) Optical recording medium having super-high resolution layer structure using proximity field light
Boyd et al. Quantum lithography: status of the field
US6839191B2 (en) Optical near-field generating element and optical apparatus including the same
KR100354798B1 (en) System and method for holographic storage using a holographic optical element
CN102402172A (en) Three-dimensional real time super-resolution digital holography recording system
Cheng et al. Demonstration of high-density three-dimensional storage in fused silica by femtosecond laser pulses
Worts et al. Simultaneous multi-dimensional spatial frequency modulation imaging
WO2010127386A1 (en) Optical recording, storage and retrieval product, process, system and medium
US11796740B2 (en) Optical device
CN202583708U (en) Three dimensional real time super-resolution digital holographic recording system
JP3348668B2 (en) Method for manufacturing three-dimensional diffraction grating
Gu Confocal readout of three-dimensional data bits recorded by the photorefractive effect under single-photon and two-photon excitation
JP4610268B2 (en) Hologram multiplex recording device
Kitano et al. Non‐optically probing near‐field microscopy with illumination of total internal reflection
DE69937102D1 (en) DEVICE FOR OPTICAL SENSING OF A RECORDING CARRIER
Kong et al. High-density optical data storage enabled by the photonic nanojet from a dielectric microsphere
JP3962526B2 (en) Optical recording method
Kim et al. Holographic approach to record and retrieve subwavelength-size objects using optical near-field
Dal Negro et al. Engineering the orbital angular momentum of light with plasmonic vogel spiral arrays
Kim et al. Single-beam recording and retrieving of sub-wavelength-size optical information in a photorefractive crystal using near-field scanning optical microscopy
Li et al. Wavelength and defocus margins of the collinear holographic storage system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030513

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees