JP3431358B2 - Joint - Google Patents

Joint

Info

Publication number
JP3431358B2
JP3431358B2 JP18707195A JP18707195A JP3431358B2 JP 3431358 B2 JP3431358 B2 JP 3431358B2 JP 18707195 A JP18707195 A JP 18707195A JP 18707195 A JP18707195 A JP 18707195A JP 3431358 B2 JP3431358 B2 JP 3431358B2
Authority
JP
Japan
Prior art keywords
joint
silver
layer
stainless steel
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18707195A
Other languages
Japanese (ja)
Other versions
JPH0929463A (en
Inventor
悦二 柿本
泰弘 氏本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP18707195A priority Critical patent/JP3431358B2/en
Publication of JPH0929463A publication Critical patent/JPH0929463A/en
Application granted granted Critical
Publication of JP3431358B2 publication Critical patent/JP3431358B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、アルミニウム合金
製容器や配管と、ステンレス鋼配管とを溶接接合する際
の配管用異材継手に関するものである。 【0002】 【従来の技術】近年、空気分離装置やLNG気化器など
の、耐食性が要求され低温で使用されるプラントにはア
ルミニウム合金製の熱交換器が多く使用される。また通
常の配管の多くはステンレス鋼製であるため、該アルミ
ニウム製熱交換器より出ているアルミニウム合金製配管
とステンレス鋼製配管の接合が必要となる。 【0003】従来、アルミニウム合金とステンレス鋼と
の溶接は不可能であり、アルミニウム合金製配管とステ
ンレス鋼製配管との接合に際して、フランジによる機械
的な締結や、例えば爆発圧着に代表されるような、アル
ミニウム合金とステンレス鋼との接合が可能な接合方法
によってあらかじめ継手を作成し、該継手を媒体として
それぞれ同種の金属同士を溶接する方法が行われてい
る。中でもあらかじめ継手を作成する方法は、継手全体
が溶接一体構造となるため、フランジによる接合方法の
様に増し締めなどの定期保守を必要としないなどの利点
がある。 【0004】爆発圧着法を利用したアルミニウムとステ
ンレス鋼との異材継手としては、特公昭52−1129
3号公報の継手において純アルミニウムと鋼層の間に銀
又は銀合金の層を介在させた継手が開示されている。こ
の特公昭52−11293号公報の継手で管継手を作成
する場合、純アルミニウムはアルミニウム合金と比較し
て許容応力が低い為、配管の強度をアルミニウム合金で
設計する場合、該管継手の純アルミニウム部の肉厚をア
ルミニウム合金配管材料の肉厚よりも大きくとる必要が
ある。例えば、アルミニウム合金としてJIS A50
83P−O材と、純アルミニウムとしてJIS A11
00P−H112材を例に挙げると、室温以下での許容
応力はそれぞれ68.6MPa、22.54MPaであ
るので、アルミニウム合金製配管を外径50mm、内径
45mmとした場合、純アルミニウムは同じ内径で外径
59mm以上必要となる。 【0005】ところが一方では強度が必要となる配管溶
接は、突き合わせ溶接で行われており、このように厚さ
の異なる部材の突き合わせ溶接の方法は、JIS B8
243などに示されるように厚い板の部分にテーパーを
設ける必要がある。しかしながら、特公昭52−112
93号公報の継手の純アルミニウム層にテーパーを設け
ると、該テーパー部分の強度が低下してしまうため、該
純アルミニウムと鋼層の間に銀又は銀合金の層を介在さ
せた継手は実際に配管材料としては使用出来ないという
問題があった。 【0006】このため、アルミニウム合金製配管と、ス
テンレス鋼製配管との溶接には、たとえば、向井喜彦、
西村新による「極低温下における爆発接合継手の変形破
壊挙動に関する研究」(「ぜいせい」大阪大学低温セン
ター脆性試験機室成果報告書第5巻1987年)に示さ
れるような、アルミニウム合金/銀/ステンレス鋼の3
層クラッドから成る継手が用いられる。 【0007】また、「昭和58年度第2回九州・沖縄地
区高圧ガス取締担当者会議における質疑・要望事項」
(高圧ガス火薬類取締月報第234号記載)にて超低温
で使用される特定設備の配管用継手に、ステンレス鋼と
アルミニウム合金の爆発圧着による管継手を使用する場
合、以下に示す1.および2.の試験等を行い問題のな
いことが確認された場合に限り使用することができると
記載されている。 【0008】前記1.および2.の試験を以下に引用す
ると、1.申請に際し、当該圧接または爆着管継手に係
る引張試験、曲げ試験、剪断試験、衝撃試験、回転曲げ
疲労試験などについて、当該圧接または爆着管継手の製
造者が行った試験データを検査機関に提出すること。
2.圧接部および爆着部について、規則第49条の2に
規定する引張試験を行い、これに合格すること、であ
る。前記1.の試験において継手としての強度の合格基
準は明記されていないが、前記2.中に規則第49条の
2の記載があり、爆着継手は溶接継手と同等の強度が求
められていることが判る。 【0009】なお、溶接継手は高圧ガス取締法特定設備
検査規則第44条にて定められる機械試験に合格するも
のでなければならないと規定されている。特に衝撃試験
については、同規則第48条に規定される溶接継手の衝
撃試験において、母材の設計温度以下の温度にて、JI
S Z2242 金属材料衝撃試験方法に定められたシ
ャルピー衝撃試験によって、材料の最小引張り強さが4
6kg/mm2 以下の場合、試験片3個の吸収エネルギ
ーの平均値が1.8kg・m以上でかつ、1個の最小値
が1.4kg・m以上の場合が合格とされている。 【0010】 【発明が解決しようとする課題】しかしながら、前記ア
ルミニウム合金/銀/ステンレス鋼の3層クラッドから
なる継手は、衝撃試験の吸収エネルギーが低く、溶接継
手と同等の強度が得られず、高圧ガス特定設備に使用で
きないと言う問題があった。本発明はこれらの問題点に
取り組み、継手強度が高く、低温での衝撃特性の良いア
ルミニウム合金と鋼またはステンレス鋼との異材継手を
提供する事を課題とするものである。なお、本明細書中
のシャルピー衝撃試験は、前記JIS Z2242「金
属材料衝撃試験方法」に定められたシャルピー衝撃試験
であり、試験片はJIS Z 2202「金属材料衝撃
試験片」中の4号試験片である。また、吸収エネルギー
とは前記試験片を液体窒素中で冷却し、その後迅速に前
記シャルピー衝撃試験を行った場合の吸収エネルギーで
ある。 【0011】 【課題を解決するための手段】以上のような問題点に鑑
み、発明者らは前記アルミニウム合金/銀/ステンレス
鋼の3層クラッドのアルミニウム合金/銀界面に純アル
ミニウム層を挿入し、衝撃による変形を純アルミニウム
層によって吸収することで、継手全体の吸収エネルギー
を向上させることを見いだした。 【0012】すなわち、本発明は、アルミニウム合金と
ステンレス鋼との間に銀又は銀合金を介在させた爆発圧
着クラッドよりなる継手において、アルミニウム合金層
と銀層又は銀合金層の界面に純アルミニウム層を挿入し
たことを特徴としている。純アルミニウム層は、爆発圧
着時の取り扱いを考慮すると5〜15mm程度の板厚の
ものが好ましいが、板厚の上限は特に必要なく、継手に
対する衝撃を吸収するためには500μm程度、好まし
くは1mm以上であれば、所望の吸収エネルギーを確保
することが出来る。 【0013】また、銀層は、高価であることから薄い方
が好ましく、溶接熱影響によって接合界面に形成される
相互拡散層の生成を抑制するために必要な板厚があれば
十分である。例えば、溶接入熱を模擬して約350℃で
30分間保持後に空冷処理を施した材料には、銀/アル
ミニウム境界に数十μm厚さの反応生成層が観察され
る。したがって、アルミニウムとステンレス鋼の直接反
応を防止するためには、銀層の板厚は数十μmあれば良
く、好ましくは100μm以上、さらに好ましくは70
0μm以上あれば、より高温で長時間の熱処理が施され
たとしても、所望の引張り強度を確保するためには十分
である。なお、材料コストの点から厚くても3mm程
度、望ましくは2mm以下であればよい。 【0014】また、シャルピー衝撃試験での吸収エネル
ギーの値は、前記高圧ガス特定則の記載によれば1.4
kg・m以上であり、好ましくは1.8kg・m以上で
ある。なお、純アルミニウムの吸収エネルギーはおよそ
10kg・m程度である。これらアルミニウム合金とス
テンレス鋼との間に挿入する純アルミニウム層と銀層又
は銀合金層は、それぞれの層を爆発圧着によって順次接
合する方法や、先に、銀層又は銀合金層と純アルミニウ
ム層を接合しておき、これを圧延することでより薄い中
間材を作成しておき、これを挿入する方法でも良い。 【0015】 【発明の実施の形態】以下に、実施例を用いて説明す
る。 【0016】 【実施例1】アルミニウム合金(JIS A5052P
−O、板厚:50mm)と工業用純アルミニウム(JI
S A1100P−H24、板厚:5mm)と銀板(板
厚:1.2mm)とステンレス鋼(JIS SUS30
4L、板厚:40mm)からなる4層クラッドを爆発圧
着法により作成した。作成後のクラッドより、JISZ
2202の「金属材料の衝撃試験片」記載の4号試験片
を作成し、JISZ2242「金属材料の衝撃試験方
法」のシャルピー衝撃試験にそって、試験片を液体窒素
中において充分冷却した後、衝撃試験を実施した。衝撃
試験の吸収エネルギーを表1に示す。表1より全ての場
合に於いて1.8kg・m以上の吸収エネルギーを持
ち、優れた衝撃特性を持つことが判った。 【0017】 【実施例2】実施例1と同様に、アルミニウム合金(J
IS A5052P−O、板厚:50mm)と工業用純
アルミニウム(JIS A1100P−H24)と銀板
(板厚:1.0mm)とステンレス鋼(JIS SUS
304L、板厚:40mm)からなる4層クラッドを、
工業用純アルミニウムの板厚を1、2、3、4mmと変
化させ、合計4枚爆発圧着法により作成した。また、作
成後の各クラッドより、実施例1と同様に試験片を作成
し、実施例1と同様にシャルピー衝撃試験を実施した。
衝撃試験の吸収エネルギーを表2に示す。表2より全て
の場合に於いて1.8kg・m以上の吸収エネルギーを
持ち、優れた衝撃特性を持つことが判った。 【0018】 【実施例3】工業用純アルミニウム(JIS A110
0P−H24、板厚:15mm)と銀板(板厚:0.7
mm)のクラッドを爆発圧着により作成し、その後冷間
圧延にて板厚(2+0.1)mmのアルミニウム/銀爆
着圧延クラッドを作成した。その後、アルミニウム合金
(JIS A5052P−O、板厚:50mm)とステ
ンレス鋼(JIS SUS304L、板厚:40mm)
との間に、該爆着圧延クラッドを挿入し、4層クラッド
を爆発圧着法により作成した。作成後のクラッドより、
実施例1及び実施例2と同様にシャルピー衝撃試験を行
った。その結果衝撃試験の吸収エネルギーは実施例2で
行った純アルミニウムの板厚が2mmの場合の結果とほ
とんど同程度であり、全ての場合に於いて1.8kg・
m以上の吸収エネルギーを持ち、優れた衝撃特性を持つ
ことが判った。 【0019】 【比較例】アルミニウム合金(JIS A5083P−
O)と銀板(板厚:1.0mm)とステンレス鋼(JI
S SUS304L)からなる3層クラッドを爆発圧着
法により作成した。作成後のクラッドより、前記実施例
と同様に試験片を作成し、試験片を液体窒素中において
充分冷却した後、シャルピー衝撃試験を実施した。衝撃
試験の吸収エネルギーを表3に示す。表3よりアルミニ
ウム合金と銀とステンレス鋼より成る3層クラッドは、
全て1.4kg・m未満の吸収エネルギーであり、衝撃
特性が非常に低いことが判った。 【0020】 【表1】 【0021】 【表2】【0022】 【表3】 【0023】 【発明の効果】本発明は、アルミ合金/銀/ステンレス
鋼の3層からなる継手のアルミニウム/銀界面に純アル
ミニウム層を挿入することで、衝撃による変形を純アル
ミニウム層によって吸収せしめ、その結果、低温におい
ても優れた衝撃特性を有する、アルミニウム合金/純ア
ルミニウム/銀/ステンレス鋼から成る継手の提供を可
能とした。本発明による継手は空気分離装置などの低温
環境にさらされるアルミニウム合金とステンレス鋼の接
続部に極めて高い信頼性を提供する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dissimilar joint for a pipe when welding a vessel or a pipe made of an aluminum alloy to a stainless steel pipe. 2. Description of the Related Art In recent years, heat exchangers made of aluminum alloys are often used in plants that require corrosion resistance and are used at low temperatures, such as air separation units and LNG vaporizers. Further, since most of the ordinary pipes are made of stainless steel, it is necessary to join the aluminum alloy pipe and the stainless steel pipe coming out of the aluminum heat exchanger. Conventionally, it has been impossible to weld an aluminum alloy and stainless steel. When joining an aluminum alloy pipe and a stainless steel pipe, a flange is used for mechanical fastening or explosion crimping. In addition, there is a method in which a joint is prepared in advance by a joining method capable of joining an aluminum alloy and stainless steel, and the same type of metal is welded to each other using the joint as a medium. Above all, a method of preparing a joint in advance has an advantage that regular maintenance such as retightening is not required unlike the joining method using a flange because the entire joint has a welded integral structure. [0004] As a dissimilar material joint between aluminum and stainless steel using an explosion pressure bonding method, Japanese Patent Publication No. 52-1129 is known.
No. 3 discloses a joint in which a silver or silver alloy layer is interposed between a pure aluminum layer and a steel layer. When making a pipe joint using the joint disclosed in Japanese Patent Publication No. 52-11293, pure aluminum has a lower allowable stress than an aluminum alloy. It is necessary to make the thickness of the portion larger than the thickness of the aluminum alloy piping material. For example, JIS A50 as an aluminum alloy
83P-O material and JIS A11 as pure aluminum
Taking as an example the 00P-H112 material, the allowable stresses at room temperature or lower are 68.6 MPa and 22.54 MPa, respectively. Therefore, when the aluminum alloy pipe has an outer diameter of 50 mm and an inner diameter of 45 mm, pure aluminum has the same inner diameter. An outer diameter of 59 mm or more is required. [0005] On the other hand, pipe welding requiring strength is performed by butt welding, and the method of butt welding of members having different thicknesses is described in JIS B8.
As shown in 243 and the like, it is necessary to provide a taper in a thick plate portion. However, Japanese Patent Publication No. 52-112
If the pure aluminum layer of the joint of No. 93 is provided with a taper, the strength of the tapered portion is reduced. Therefore, a joint in which a silver or silver alloy layer is interposed between the pure aluminum and the steel layer is actually used. There is a problem that it cannot be used as a piping material. For this reason, welding of aluminum alloy pipe and stainless steel pipe is performed, for example, by Yoshihiko Mukai,
As shown in "Research on Deformation and Fracture Behavior of Explosion-Jointed Joints at Cryogenic Temperature" by Shin Nishimura ("ZEISEI", Result Report of Brittle Testing Laboratory, Low Temperature Center, Osaka University, Vol. 5, 1987) Silver / Stainless Steel 3
A joint consisting of a layer clad is used. [0007] Also, "Questions and Requests at the Second High-Pressure Gas Regulatory Meeting in Kyushu-Okinawa, 1983"
In the case of using pipe joints made by explosive crimping of stainless steel and aluminum alloy for pipe joints of specific equipment used at ultra-low temperature in (High Pressure Gas Explosives Control Monthly Report No. 234), the following 1. And 2. It is described that it can be used only when it is confirmed that there is no problem by conducting a test or the like. [0008] 1. And 2. To quote the test below, At the time of application, test data obtained by the manufacturer of the pressure-welded or explosion-fitted pipe joint for the tensile test, bending test, shear test, impact test, rotational bending fatigue test, etc. of the pressure-welded or explosion-fitted pipe joint shall be sent to the inspection organization. Submit.
2. The press-contact portion and the explosion-bonded portion are to be subjected to the tensile test specified in Article 49-2 of the Regulations and to pass the test. 1. Although the passing criteria for the strength as a joint in the test of the above are not specified, the above 2. There is a description in Article 49-2 of the Regulations, which indicates that the explosion joint is required to have the same strength as the welded joint. [0009] It is stipulated that the welded joint must pass a mechanical test specified in Article 44 of the High Pressure Gas Control Law Specific Equipment Inspection Regulations. In particular, regarding the impact test, in the impact test of the welded joint stipulated in Article 48 of the same regulation, the JI was tested at a temperature lower than the design temperature of the base material.
S Z2242 The minimum tensile strength of the material was 4 according to the Charpy impact test specified in the Metallic Material Impact Test Method.
In the case of 6 kg / mm 2 or less, the case where the average value of the absorbed energy of three test pieces is 1.8 kg · m or more and the minimum value of one test piece is 1.4 kg · m or more is regarded as pass. [0010] However, the joint composed of the aluminum alloy / silver / stainless steel three-layer clad has a low absorption energy in the impact test, and cannot have the same strength as the welded joint. There was a problem that it could not be used for high-pressure gas identification equipment. It is an object of the present invention to address these problems and to provide a dissimilar joint between an aluminum alloy and steel or stainless steel having high joint strength and good impact characteristics at low temperatures. The Charpy impact test in this specification is a Charpy impact test defined in JIS Z2242 “Metallic material impact test method”, and the test piece is a No. 4 test in JIS Z2202 “Metallic material impact test piece”. Is a piece. The absorbed energy is the absorbed energy when the test piece is cooled in liquid nitrogen and then the Charpy impact test is quickly performed. In view of the above problems, the present inventors have inserted a pure aluminum layer at the aluminum alloy / silver / stainless steel three-layer clad aluminum alloy / silver interface. It has been found that the absorption energy of the entire joint is improved by absorbing the deformation due to the impact by the pure aluminum layer. That is, the present invention relates to a joint comprising an explosion pressure-bonded clad in which silver or a silver alloy is interposed between an aluminum alloy and stainless steel, wherein a pure aluminum layer is provided at an interface between the aluminum alloy layer and the silver layer or the silver alloy layer. Is inserted. The thickness of the pure aluminum layer is preferably about 5 to 15 mm in consideration of handling during the explosion compression bonding, but the upper limit of the thickness is not particularly required, and is about 500 μm, preferably 1 mm, for absorbing an impact on the joint. If it is above, desired absorption energy can be secured. The silver layer is preferably thin because it is expensive, and it is sufficient if the silver layer has a thickness necessary to suppress the formation of an interdiffusion layer formed at the joint interface due to the influence of welding heat. For example, a reaction product layer having a thickness of several tens of μm is observed at a silver / aluminum boundary in a material which is subjected to air cooling after holding at about 350 ° C. for 30 minutes to simulate welding heat input. Therefore, in order to prevent a direct reaction between aluminum and stainless steel, the thickness of the silver layer may be several tens μm, preferably 100 μm or more, and more preferably 70 μm or more.
When the thickness is 0 μm or more, even if the heat treatment is performed at a higher temperature for a long time, it is enough to secure a desired tensile strength. In addition, from the viewpoint of material cost, the thickness may be about 3 mm at most, preferably 2 mm or less. The value of the absorbed energy in the Charpy impact test is 1.4 according to the description of the high pressure gas specification rule.
kg / m or more, preferably 1.8 kg / m or more. The energy absorbed by pure aluminum is about 10 kg · m. The pure aluminum layer and the silver layer or the silver alloy layer to be inserted between the aluminum alloy and the stainless steel may be sequentially joined by explosive compression bonding, or the silver layer or the silver alloy layer and the pure aluminum layer may be joined first. May be joined, and a thinner intermediate material may be prepared by rolling the material, and then inserted. Embodiments of the present invention will be described below with reference to embodiments. Embodiment 1 Aluminum alloy (JIS A5052P)
-O, plate thickness: 50mm) and industrial pure aluminum (JI
SA1100P-H24, plate thickness: 5 mm), silver plate (plate thickness: 1.2 mm), and stainless steel (JIS SUS30)
4L, a plate thickness: 40 mm) was formed by an explosion pressure bonding method. JISZ from clad after making
No. 4 test piece described in 2202 “Impact test piece of metal material” was prepared, and the test piece was sufficiently cooled in liquid nitrogen according to the Charpy impact test of JISZ2242 “Method of impact test of metal material”. The test was performed. Table 1 shows the absorbed energy in the impact test. From Table 1, it was found that all cases had an absorbed energy of 1.8 kg · m or more and had excellent impact characteristics. Embodiment 2 As in Embodiment 1, an aluminum alloy (J
IS A5052P-O, plate thickness: 50 mm), industrial pure aluminum (JIS A1100P-H24), silver plate (plate thickness: 1.0 mm), and stainless steel (JIS SUS)
304L, plate thickness: 40 mm)
The plate thickness of industrial pure aluminum was changed to 1, 2, 3, and 4 mm, and a total of four sheets were produced by an explosion pressure bonding method. Further, a test piece was prepared from each of the formed claddings in the same manner as in Example 1, and a Charpy impact test was performed in the same manner as in Example 1.
Table 2 shows the absorbed energy in the impact test. From Table 2, it was found that all the cases had an absorption energy of 1.8 kg · m or more and had excellent impact characteristics. Example 3 Pure aluminum for industrial use (JIS A110)
0P-H24, thickness: 15 mm) and silver plate (thickness: 0.7)
mm) was produced by explosive pressure bonding, and then cold-rolled to produce an aluminum / silver explosion rolled cladding having a thickness of (2 + 0.1) mm. Then, an aluminum alloy (JIS A5052PO, plate thickness: 50 mm) and stainless steel (JIS SUS304L, plate thickness: 40 mm)
And the explosion rolled cladding was inserted between them to form a four-layer cladding by an explosion pressure bonding method. From the clad after creation,
A Charpy impact test was performed in the same manner as in Example 1 and Example 2. As a result, the absorbed energy in the impact test was almost the same as the result obtained when the thickness of pure aluminum was 2 mm in Example 2, and in all cases, 1.8 kg ·
It has an absorbed energy of at least m and has excellent impact properties. Comparative Example Aluminum alloy (JIS A5083P-
O), silver plate (plate thickness: 1.0 mm) and stainless steel (JI
S SUS304L) was formed by an explosion pressure bonding method. A test piece was prepared from the clad after the preparation in the same manner as in the above example, and after sufficiently cooling the test piece in liquid nitrogen, a Charpy impact test was performed. Table 3 shows the absorbed energy in the impact test. From Table 3, the three-layer clad made of aluminum alloy, silver and stainless steel is
All had an absorption energy of less than 1.4 kg · m, and it was found that the impact characteristics were extremely low. [Table 1] [Table 2] [Table 3] According to the present invention, a pure aluminum layer is inserted into the aluminum / silver interface of a joint composed of three layers of aluminum alloy / silver / stainless steel so that deformation caused by impact is absorbed by the pure aluminum layer. As a result, it has become possible to provide a joint made of aluminum alloy / pure aluminum / silver / stainless steel having excellent impact properties even at low temperatures. The joint according to the present invention provides extremely high reliability for aluminum alloy-stainless steel connections exposed to low temperature environments such as air separation devices.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B23K 20/08 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) B23K 20/08

Claims (1)

(57)【特許請求の範囲】 【請求項1】 アルミニウム合金とステンレス鋼との間
に銀又は銀合金を介在させた爆発圧着クラッドよりなる
継手において、アルミニウム合金層と銀層又銀合金層の
界面に純アルミニウム層を挿入させたことを特徴とする
継手。
(57) [Claim 1] In a joint consisting of an explosion pressure-bonded clad in which silver or a silver alloy is interposed between an aluminum alloy and stainless steel, the joint between the aluminum alloy layer and the silver layer or the silver alloy layer is provided. A joint characterized by having a pure aluminum layer inserted at the interface.
JP18707195A 1995-07-24 1995-07-24 Joint Expired - Lifetime JP3431358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18707195A JP3431358B2 (en) 1995-07-24 1995-07-24 Joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18707195A JP3431358B2 (en) 1995-07-24 1995-07-24 Joint

Publications (2)

Publication Number Publication Date
JPH0929463A JPH0929463A (en) 1997-02-04
JP3431358B2 true JP3431358B2 (en) 2003-07-28

Family

ID=16199633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18707195A Expired - Lifetime JP3431358B2 (en) 1995-07-24 1995-07-24 Joint

Country Status (1)

Country Link
JP (1) JP3431358B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178315A1 (en) 2013-04-28 2014-11-06 旭化成ケミカルズ株式会社 Different-material joint

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515811B1 (en) * 2003-05-26 2005-09-21 홍유표 METHOD FOR MANUFACTURING CLAD STAINLESS STEEL PLATE INCLUDING Ag AS BEING CLADDING METAL, AND PRODUCT MADE
JP5141141B2 (en) * 2007-08-23 2013-02-13 東京エレクトロン株式会社 Vaporizer, source gas supply system using vaporizer, and film forming apparatus using the same
CN103009702A (en) * 2012-12-13 2013-04-03 南京润邦金属复合材料有限公司 W6Mo5Cr4V2/Q345 explosive welding composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178315A1 (en) 2013-04-28 2014-11-06 旭化成ケミカルズ株式会社 Different-material joint

Also Published As

Publication number Publication date
JPH0929463A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
JP6449192B2 (en) Dissimilar material joint
US3798011A (en) Multilayered metal composite
US6024276A (en) Method for bonding dual-phase stainless steel
JP3431358B2 (en) Joint
Glover et al. Construction and installation of X100 pipelines
JP3240211B2 (en) Copper-aluminum dissimilar metal joint material
JP3079973B2 (en) Aluminum alloy and stainless steel clad plate and method for producing the same
JPH0255148B2 (en)
JPH01313193A (en) Manufacture of clad steel plate
JPH0386367A (en) Method for joining clad steel pipe
JP3245477B2 (en) Thick plate clad material
JPH02104482A (en) Pipe joint for joining high corrosion resistant stainless steel-titanium and manufacture thereof
Fox et al. Transition fittings between aluminum and stainless steel components of cryogenic accelerators
Xu et al. Technical Basis of ASME B31 Code Case 216: Use of Enhanced Pressure Ratings for Brazed Copper Tubes and Fittings by Cold Stretch Process
Gilman Tubular Transition Joints—Stainless Steel to Aluminum; A Diffusion-Bonding Technique Compared with Alternate Methods
Ok et al. Cryogenic Aluminum to Stainless Steel Pipe Transition Joint Qualification
JPH0469210B2 (en)
JPH0471636B2 (en)
Naumann et al. Broken Structural Bolt
JPS60152378A (en) Connecting method of metallic hoop coil material
Bruce et al. Repair of pipelines by direct deposition of weld metal further studies. Final report
JPH01180720A (en) Manufacture of two-layer pipe joint
Koecher Use and working of nickel alloys in chemical plant construction and in environmental technology
JPH07507725A (en) Joint protection of reaction vessels lined with molybdenum-rhenium alloy
Stannard et al. Duplex stainless steel: Specification requirements

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 11

EXPY Cancellation because of completion of term