JP3430670B2 - Continuous ion water conditioner - Google Patents
Continuous ion water conditionerInfo
- Publication number
- JP3430670B2 JP3430670B2 JP24807994A JP24807994A JP3430670B2 JP 3430670 B2 JP3430670 B2 JP 3430670B2 JP 24807994 A JP24807994 A JP 24807994A JP 24807994 A JP24807994 A JP 24807994A JP 3430670 B2 JP3430670 B2 JP 3430670B2
- Authority
- JP
- Japan
- Prior art keywords
- side electrode
- water
- electrode chamber
- chamber
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、水道水等を電気分解し
て、アルカリイオン水と酸性イオン水を生成する連続式
イオン整水器の電解槽に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic cell of a continuous ion water conditioner for electrolyzing tap water or the like to produce alkaline ionized water and acidic ionized water.
【0002】[0002]
【従来の技術】近年、イオン整水器は、アルカリイオン
水による消化不良、胃酸過多、制酸、慢性下痢、胃腸内
異常発酵に対する効果と、酸性イオン水による肌を引き
締めるアストリンゼントの効果から、医療用器具として
注目されている。2. Description of the Related Art In recent years, ion water purifiers have been used for medical treatment due to their effects on indigestion, excessive gastric acidity, antacids, chronic diarrhea, abnormal gastrointestinal fermentation due to alkaline ionized water, and the effect of astringent which tightens the skin with acidic ionized water. Has attracted attention as a tool for use.
【0003】従来のイオン整水器に用いられる電解槽
は、陰極室と陽極室を電解隔膜(または隔壁)で仕切
り、陽極室内部と陰極室内部に電解隔膜を介して位置す
る電極を設けて構成される。そして、電解槽はその構造
により2つの方式に分類される。一つは例えば実開昭5
0−64643号公報で提供されているような、電解槽
が生成したアルカリイオン水や酸性イオン水を保存する
タンクを兼用するバッチ式のものであり、もう一つは連
続式である。前記の2つの方式の中で、後者の連続式が
瞬時にイオン水が得られる便利さから、浄水機能を付加
することも併せて主流となっている。In an electrolytic cell used in a conventional ion water conditioner, a cathode chamber and an anode chamber are partitioned by an electrolytic diaphragm (or partition wall), and an electrode located inside the anode chamber and inside the cathode chamber is provided via the electrolytic diaphragm. Composed. The electrolytic cell is classified into two types depending on its structure. One is, for example, Shokai Sho 5
No. 0-64643 discloses a batch type, which also serves as a tank for storing alkaline ionized water and acidic ionized water produced by an electrolytic cell, and another is a continuous type. Of the above-mentioned two methods, the latter continuous method is also mainstream to add a water purification function because it is convenient because ion water can be obtained instantly.
【0004】本発明に係るイオン整水器の電解槽も連続
式であるが、従来のイオン整水器に用いられる連続式の
電解槽はいずれも、例えば特開昭55−1822号公報
にみられるように、電解槽の流入口から供給した水を電
解隔膜で仕切られた陰極室と陽極室に通しながら電気分
解し、電解槽の陰極室側からアルカリイオン水、陽極側
から酸性イオン水を生成するように構成されている。そ
して連続式イオン整水器ではさらに、バッチ式と異な
り、短時間で、効率良くpH(水素イオン濃度を表す指
標)の大きいアルカリイオン水やpHの小さい酸性イオ
ン水を生成するため、或いは小型化をはかるために種々
の流水式の電解槽が提案されている。The electrolytic cell of the ion water conditioner according to the present invention is also a continuous type, but any continuous type electrolytic cell used in the conventional ion water moderator is disclosed in, for example, Japanese Patent Laid-Open No. 55-1822. As it is, the water supplied from the inlet of the electrolytic cell is electrolyzed while passing through the cathode chamber and the anode chamber partitioned by the electrolytic diaphragm, and the alkaline ionized water is fed from the cathode chamber side of the electrolytic cell and the acidic ionized water is fed from the anode side. It is configured to generate. Further, unlike the batch type, the continuous type ion water purifier further efficiently produces alkaline ionized water having a large pH (index indicating hydrogen ion concentration) or acidic ionized water having a small pH, or downsizing, in a short time. In order to prevent this, various flowing water type electrolytic cells have been proposed.
【0005】流水式の電解槽の代表的なものは構造で分
類すると以下のものがある。
(1)ユニットセル方式;電解槽本体の箱(セル)と内
部に隔膜付き隔膜箱があり、隔膜箱が陽極室(または陰
極室)で、隔膜箱の外部が陰極室(陽極室)で構成され
る方式(実開平2−95589号公報、特開平3−38
293号公報参照)。
(2)フィルタープレス方式;電極板と電解隔膜が交互
に積層され、電極板と陰極と陽極が交互になるように構
成される方式(特公昭55−13795号公報参照)。
(3)円筒方式;陰極室と陽極室が電解隔膜を介して2
重円筒形状で構成される方式(実開昭55−14159
4号公報、実開昭55−144591号公報、特開昭6
4−27688号公報参照)。Typical flowing water electrolytic cells are classified according to their structure. (1) Unit cell system; there is a box (cell) of the electrolytic cell body and a diaphragm box with a diaphragm inside, the diaphragm box is an anode chamber (or cathode chamber), and the outside of the diaphragm box is a cathode chamber (anode chamber) Method (Japanese Utility Model Laid-Open No. 2-95589, JP-A-3-38)
293). (2) Filter press method: a method in which electrode plates and electrolytic membranes are alternately laminated so that the electrode plates, the cathodes, and the anodes are alternately arranged (see Japanese Patent Publication No. 55-13795). (3) Cylindrical method; cathode chamber and anode chamber are separated by an electrolytic diaphragm
A system composed of a heavy cylinder (Actually developed 55-14159)
4, Japanese Utility Model Laid-Open No. 55-144591, Japanese Patent Laid-Open No. 6-6
No. 4-27688).
【0006】[0006]
【発明が解決しようとする課題】しかしながら、本発明
者が研究実験した結果、電解槽の開発には以下の2つの
課題があることが解った。However, as a result of the research and experiment conducted by the present inventor, it was found that the development of the electrolytic cell had the following two problems.
【0007】1つめの課題は、最近、消費者の飲料水の
安全性に対する意識の向上から注目されているトリハロ
メタンである。そして、イオン整水器にも浄水機能を持
つものが主流を占めてきたが、電解槽部分でのトリハロ
メタンに関する安全性については未だ検討されていな
い。[0007] The first problem is trihalomethane, which has recently been attracting attention due to the increased awareness of consumers regarding the safety of drinking water. The ion-stream water purifiers having a water purifying function have become the mainstream, but the safety of trihalomethane in the electrolytic cell has not yet been examined.
【0008】本発明者は電解槽部でのトリハロメタンの
生成の可能性に着目し、ビーカーを用いたバッチ系で実
験確認したところ表1に示すようにトリハロメタンの生
成が起こることが確認された。The inventor of the present invention paid attention to the possibility of trihalomethane formation in the electrolytic cell part, and conducted experimental confirmation in a batch system using a beaker, and as shown in Table 1, it was confirmed that trihalomethane formation occurred.
【0009】[0009]
【表1】 [Table 1]
【0010】また、流水式(連続式)の電解槽を用いた
実験でも表2に示すように構造によってはわずかである
がトリハロメタンが生成することが確認された。Also, in an experiment using a flowing water type (continuous type) electrolytic cell, as shown in Table 2, it was confirmed that trihalomethane was produced although it was slight depending on the structure.
【0011】[0011]
【表2】 [Table 2]
【0012】このトリハロメタンの生成メカニズムは、
次のハロホルム反応によるものが代表的反応機構であ
る。The mechanism of formation of this trihalomethane is
The following reaction mechanism is based on the haloform reaction.
【0013】[0013]
【化1】 [Chemical 1]
【0014】そして上記の加水分解反応は水酸化物イオ
ンが触媒となって次の反応式のように促進されるもので
あり、即ち、アルカリ性になるほどこの加水分解が促進
されてトリハロメタンが生成される。The above-mentioned hydrolysis reaction is promoted by the use of hydroxide ion as a catalyst as shown in the following reaction formula. That is, the more alkaline the reaction is, the more accelerated the hydrolysis is to produce trihalomethane. .
【0015】[0015]
【化2】 [Chemical 2]
【0016】上記のことから、電解槽の陰極室において
生成されるアルカリイオン水にトリハロメタンが発生す
る原因が、陽極室で生成された塩素(塩素の平衡反応で
次亜塩素も生成する)が陰極室へ隔膜を介して混入する
ことによるものであり、その結果、陰極室で前駆物質が
次亜塩素酸と反応し、さらに陰極で生成するOHイオン
が反応を促進することでトリハロメタンが発生すること
が解った。From the above, the reason why trihalomethane is generated in the alkaline ionized water generated in the cathode chamber of the electrolytic cell is that chlorine generated in the anode chamber (hypochlorous is also generated by the equilibrium reaction of chlorine) is the cathode. It is due to mixing into the chamber through the diaphragm, and as a result, the precursor reacts with hypochlorous acid in the cathode chamber, and OH ions generated at the cathode accelerate the reaction to generate trihalomethane. I understand.
【0017】もう1つの課題は、炭酸成分を多く含む地
下水を水源とする水で見られる現象であるが、陽極室で
弱い酸性イオン水、いわゆるアストリンゼント水を生成
するにあたって、電解槽から出た直後のこの水はpH7
〜8前後のアルカリ性を示すが、コップ等に受けた水は
時間と共にpH6前後の弱い酸性へと戻る現象が観察さ
れることである。この現象により、配水経路にpHセン
シング機能を付加する場合、生成されたコップ水のpH
が酸性であるにもかかわらず、センシングされたpHは
アルカリ表示されるという不都合が発生する。Another problem is a phenomenon found in water using groundwater containing a large amount of carbonic acid as a water source. In producing weak acidic ionized water, so-called astringent water, in the anode chamber, immediately after leaving the electrolytic cell. This water has a pH of 7.
Although it shows an alkalinity of about -8, the phenomenon that water received in a cup or the like returns to a weak acidity of about pH 6 with time is observed. Due to this phenomenon, when adding a pH sensing function to the water distribution route, the pH of the generated cup water is
Although pH is acidic, there is a disadvantage that the sensed pH is displayed as alkali.
【0018】そして、このようなpHのアルカリ表示が
起こる状況は以下の通りである。
(1)河川水を水源とした水道水ではみられず、地下水
を水源とした水道水のような炭酸成分の多い水質でみら
れる。
(2)アルカリイオン水を生成するときには、電解槽の
吐水側が陰極室、排水側が陽極室になり、このような電
極への印加方向を正方向とすると、弱い酸性イオン水を
生成するときには、吐水側が陽極室、排水側が陰極室に
なるように電極の極性を反転した逆方向で行うが、この
逆方向の印加で弱い酸性イオン水を生成する時のみpH
のアルカリ表示がみられる。これに対して、正方向の印
加時には排水側は酸性イオン水であるが、この酸性イオ
ン水ではpHのアルカリ表示はみられない。
(3)排水側のイオン水は捨て水になるので、一般的
に、排水側出口の配管流路を絞ることにより、吐水側か
らの吐水量を多くして排水側からの排水量を極力少なく
している。そのことにより、正方向の印加時での排水側
の酸性イオン水はpH4以下の強い酸性の水が生成さ
れ、逆方向の印加での排水側のアルカリイオン水はpH
10以上の強いアルカリの水が生成される。The situation in which such an alkaline display of pH occurs is as follows. (1) Not found in tap water that uses river water as a water source, but in water with a high carbonic acid content such as tap water that uses groundwater as a water source. (2) When generating alkaline ionized water, the discharge side of the electrolytic cell is the cathode chamber and the drain side is the anode chamber. If the direction of application to such an electrode is the forward direction, the discharge water is generated when weakly acidic ionized water is generated. side is the anode chamber, pH only when the drainage side is performed in the reverse direction by reversing the polarity of the electrodes so that the negative electrode chamber, for generating a weak acid ion water with application of the reverse
You can see the alkali display. On the other hand, when the water is applied in the forward direction, the drainage side is acidic ionized water, but this acidic ionized water does not show an alkaline indication of pH. (3) Since the ionized water on the drainage side becomes discarded water, generally, by narrowing the piping flow path on the outlet side on the drainage side, the amount of water discharged from the water discharge side is increased to minimize the amount of drainage water from the drainage side. ing. As a result, the acidic ionized water on the drainage side when applying the forward direction is strongly acidic water with a pH of 4 or less, and the alkaline ionized water on the drainage side when applying the reverse direction has
Strong alkaline water of 10 or more is produced.
【0019】上記のことから、本発明者はpHのアルカ
リ表示現象の原因が、逆方向の印加状態で排水側の電極
室(この場合陰極室となる)で生成された強いアルカリ
イオン水(水酸化物イオンOH−)が隔膜を介して吐水
側へ透過して酸性イオン水に混入することにより起こる
もので、その原理が以下のとおりであることを見いだし
た。すなわち、炭酸成分の影響が無い場合、OH−が少
量混入しても
OH−+H+ → H2O
の中和反応が瞬時に起こるためpHのアルカリ表示はみ
られない。しかし、炭酸成分が多い場合、次式で示す炭
酸成分の緩衝作用が働き、From the above, the present inventor has found that the cause of the phenomenon of alkaline display of pH is that strong alkaline ionized water (water is generated in the electrode chamber on the drainage side (in this case, the cathode chamber) is generated in the reverse applied state. It was found that the oxide ion OH − ) permeates to the water discharge side through the diaphragm and mixes with the acidic ionized water, and the principle is as follows. That is, when there is no influence of the carbonic acid component, even if a small amount of OH − is mixed in, the neutralization reaction of OH − + H + → H 2 O occurs instantly, so that the alkali display of pH is not observed. However, when there are many carbonic acid components, the buffering action of the carbonic acid components shown by the following formula works,
【0020】[0020]
【化3】 [Chemical 3]
【0021】中和反応速度が遅くなるので、高いpHの
アルカリイオン水が少量混入すると、一旦pHがアルカ
リ性を表示し、その後、中和反応により酸性へ移行する
現象がみられるのである。Since the rate of neutralization reaction becomes slow, when a small amount of alkaline ionized water having a high pH is mixed, the pH once exhibits alkalinity, and thereafter, there is a phenomenon that the neutralization reaction shifts to acidic.
【0022】従って、本発明の目的の1つは、電解槽で
のトリハロメタンの生成を防止して安全な飲料水を生成
する連続式イオン整水器を提供することであり、本発明
の他の目的の1つは、配水経路にpHセンシング機能を
付加する場合の、弱酸性イオン水生成時にpHがアルカ
リ表示されない連続式イオン整水器を提供することであ
る。Therefore, one of the objects of the present invention is to provide a continuous ion water purifier which prevents the production of trihalomethane in the electrolytic cell to produce safe drinking water, and another of the present invention. One of the objects is to provide a continuous ion water purifier in which pH is not displayed as an alkali when weakly acidic ionized water is generated when a pH sensing function is added to a water distribution path.
【0023】[0023]
【課題を解決するための手段】上記の2つの目的はその
課題の原因が共通しており、排水側の電極室の水が吐水
側の電極室へと電解隔膜を透過して混入することであ
る。従って排水側の電極室から吐水側の電極室に電解隔
膜を介して水が混入することを防止することによって、
本発明の上記の2つの目的は達成される。The above-mentioned two purposes have the same cause, and the water in the drain-side electrode chamber permeates through the electrolytic diaphragm into the discharge-side electrode chamber. is there. Therefore, by preventing water from mixing from the drain-side electrode chamber to the discharge-side electrode chamber through the electrolytic diaphragm,
The above two objects of the present invention are achieved.
【0024】このために本発明の請求項1に係る連続式
イオン整水器は、電解隔膜3で分離された吐水側電極室
4と排水側電極室5とを有し、吐水側電極室4には原水
の流入口6及び吐水パイプへ接続される流出口7を、排
水側電極室5には原水の流入口8及び排水パイプへ接続
される流出口9をそれぞれ設けると共に、吐水側電極室
4内と排水側電極室5内に電解隔膜3を介して対向配置
される電極2a,2bを設けて形成される電解槽1を具
備した連続式イオン整水器において、電解隔膜3を透過
して排水側電極室5から吐水側電極室4に水が混入する
ことを防止する手段を有し、かつこの手段を、吐水側電
極室4及び排水側電極室5での水の流入量に対して等量
分流出するよう流入量と流出量を調整するために吐水側
電極室4や排水側電極室5の少なくとも一方の流入口
6,8や流出口7,9の少なくとも一方に設けられたオ
リフィス10,11と、吐水側電極室4を流れる水の圧
力勾配と排水側電極室5を流れる水の圧力勾配とが等し
くなるよう調整された吐水側電極室4の電極2aと電解
隔膜3との間の隙間距離及び排水側電極室5の電極2b
と電解隔膜3との間の隙間距離とから構成することを特
徴とするものである。 For this purpose, the continuous type according to claim 1 of the present invention
The ion water purifier has a water discharge side electrode chamber 4 and a drainage side electrode chamber 5 which are separated by an electrolytic diaphragm 3, and the water discharge side electrode chamber 4 has a raw water inlet 6 and an outlet connected to a water discharge pipe. 7, a drainage side electrode chamber 5 is provided with an inlet 8 for raw water and an outlet 9 connected to a drainage pipe, respectively, and the discharge side electrode chamber 4 and the drainage side electrode chamber 5 are provided with an electrolytic diaphragm 3 interposed therebetween. In a continuous ion water regulator provided with an electrolytic cell 1 formed by providing electrodes 2a and 2b facing each other, water permeates through an electrolytic diaphragm 3 and mixes water from a drain side electrode chamber 5 into a discharge side electrode chamber 4. have a means to prevent the, and this means, water discharge side conductive
Equivalent to the inflow of water in the polar chamber 4 and the drain-side electrode chamber 5.
Discharge side to adjust the inflow and outflow so that it flows out
Inlet of at least one of the electrode chamber 4 and the drain-side electrode chamber 5
6 and 8 and at least one of the outlets 7 and 9
The pressure of the water flowing through the refills 10 and 11 and the discharge side electrode chamber 4
The force gradient and the pressure gradient of the water flowing through the drain-side electrode chamber 5 are equal.
2a of the water discharge side electrode chamber 4 and electrolysis adjusted so that
The gap distance between the diaphragm 3 and the electrode 2b of the drain-side electrode chamber 5
And a gap distance between the electrolytic membrane 3 and the electrolytic diaphragm 3 .
【0025】また本発明の請求項2に係る連続式イオン
整水器は、電解隔膜3で分離された吐水側電極室4と排
水側電極室5とを有し、吐水側電極室4には原水の流入
口6及び吐水パイプへ接続される流出口7を、排水側電
極室5には原水の流入口8及び排水パイプへ接続される
流出口9をそれぞれ設けると共に、吐水側電極室4内と
排水側電極室5内に電解隔膜3を介して対向配置される
電極2a,2bを設けて形成される電解槽1を具備した
連続式イオン整水器において、電解隔膜3を透過して排
水側電極室5から吐水側電極室4に水が混入することを
防止する手段を有し、かつこの手段を、吐水側電極室4
の水の流出量と排水側電極室5の水の流出量の比である
出口流量比と、吐水側電極室4の水の流入量と排水側電
極室5の水の流入量の比である入口流量比との関係が、
出口流量比≦入口流量比になるよう流入量と流出量を調
整するために吐水側電極室4や排水側電極室5の少なく
とも一方の流入口6,8や流出口7,9の少なくとも一
方に設けられたオリフィス10,11によって構成する
ことを特徴とするものである。 A continuous type ion according to claim 2 of the present invention
The water conditioner includes a discharge side electrode chamber 4 separated by the electrolytic diaphragm 3 and a drainage side.
It has a water side electrode chamber 5 and the raw water flows into the water discharge side electrode chamber 4.
Connect the outlet 6 connected to the mouth 6 and the water discharge pipe to the drain side power
The polar chamber 5 is connected to the raw water inlet 8 and the drainage pipe.
Each of the outlets 9 is provided, and the inside of the water discharge side electrode chamber 4 is
Arranged oppositely in the drain side electrode chamber 5 with the electrolytic diaphragm 3 in between.
Equipped with an electrolytic cell 1 formed by providing electrodes 2a and 2b
In a continuous ion water purifier, it passes through the electrolytic diaphragm 3 and is discharged.
It is possible to prevent water from entering the water discharge side electrode chamber 4 from the water side electrode chamber 5.
There is a means for preventing this, and this means is used as the water discharge side electrode chamber 4
Is the ratio of the outlet flow rate, which is the ratio of the outflow rate of water to the outflow rate of water in the drain side electrode chamber 5, and the ratio of the inflow rate of water in the discharge side electrode chamber 4 and the inflow rate of water in the drain side electrode chamber 5. The relationship with the inlet flow ratio is
In order to adjust the inflow rate and the outflow rate such that the outlet flow rate ratio ≦ the inlet flow rate ratio, at least one of the inflow ports 6 and 8 and the outflow ports 7 and 9 of at least one of the discharge side electrode chamber 4 and the drain side electrode chamber 5 It is characterized by being constituted by the orifices 10 and 11 provided .
【0026】[0026]
【作用】本発明は、連続式イオン整水器において、電解
隔膜3を透過して排水側電極室5から吐水側電極室4に
水が混入することを防止する手段を有するために、排水
側電極室5の水が吐水側電極室4の水に混入することが
なくなり、吐水側電極室4を陰極室としてアルカリイオ
ン水を生成する際に、排水側電極室5が陽極室となって
生成される酸性イオン水が吐水側電極室5のアルカリイ
オン水に混入することを防ぐことができると共に、吐水
側電極室5を陽極室として酸性イオン水を生成する際
に、排水側電極室5が陰極室となって生成されるアルカ
リイオン水が吐水側電極室5の酸性イオン水に混入する
ことを防ぐことができる。 The present invention has a means for preventing water from permeating the electrolytic diaphragm 3 and mixing the water from the drain-side electrode chamber 5 into the discharge-side electrode chamber 4 in the continuous ion water purifier. The water in the electrode chamber 5 is not mixed with the water in the water discharge side electrode chamber 4, and when the ion discharge side electrode chamber 4 is used as a cathode chamber to generate alkaline ionized water, the drainage side electrode chamber 5 is generated as an anode chamber. It is possible to prevent the acidic ionized water to be mixed with the alkaline ionized water in the water discharge side electrode chamber 5 and to prevent the drainage side electrode chamber 5 from being generated when the acid ionized water is generated using the water discharge side electrode chamber 5 as an anode chamber. It is possible to prevent the alkaline ionized water generated as the cathode chamber from mixing with the acidic ionized water in the water discharge side electrode chamber 5 .
【0027】また電解隔膜3を透過して排水側電極室5
から吐水側電極室4に水が混入することを防止する手段
を、吐水側電極室4及び排水側電極室5での水の流入量
に対して等量分流出するよう流入量と流出量を調整する
ために吐水側電極室4や排水側電極室5の少なくとも一
方の流入口6,8や流出口7,9に設けられたオリフィ
ス10,11と、吐水側電極室4を流れる水の圧力勾配
と排水側電極室5を流れる水の圧力勾配とが等しくなる
よう調整された吐水側電極室4の電極2aと電解隔膜3
との間の隙間距離及び排水側電極室5の電極2bと電解
隔膜3との隙間距離とから構成することによって、吐水
側電極室4と排水側電極室5との間の水の圧力差をなく
して、排水側電極室5から吐水側電極室4に水が電解隔
膜3を透過することを防ぐことができる。Further, it passes through the electrolytic diaphragm 3 and the drain side electrode chamber 5
Means for preventing water from mixing into the water discharge side electrode chamber 4 from the water discharge side electrode chamber 4 and the drainage side electrode chamber 5 so that the same amount of water flows out. Orifices 10 and 11 provided at the inflow ports 6 and 8 and outflow ports 7 and 9 of at least one of the water discharge side electrode chamber 4 and the drainage side electrode chamber 5 for adjustment, and the pressure of the water flowing through the water discharge side electrode chamber 4. The electrode 2a and the electrolytic diaphragm 3 of the water discharge side electrode chamber 4 adjusted so that the gradient and the pressure gradient of the water flowing through the drainage side electrode chamber 5 become equal.
And the gap distance between the electrode 2b of the drainage-side electrode chamber 5 and the electrolytic diaphragm 3, the water pressure difference between the water discharge-side electrode chamber 4 and the drainage-side electrode chamber 5 can be reduced. It is possible to prevent water from permeating the electrolytic diaphragm 3 from the drain side electrode chamber 5 to the water discharge side electrode chamber 4.
【0028】さらに、電解隔膜3を透過して排水側電極
室5から吐水側電極室4に水が混入することを防止する
手段を、吐水側電極室4の水の流出量と排水側電極室5
の水の流出量の比である出口流量比と、吐水側電極室4
の水の流入量と排水側電極室5の水の流入量の比である
入口流量比との関係が、出口流量比≦入口流量比になる
よう流入量と流出量を調整するために吐水側電極室4や
排水側電極室5の少なくとも一方の流入口6,8や流出
口7,9の少なくとも一方に設けられたオリフィス1
0,11によって構成することによって、吐水側電極室
4の内圧が排水側電極室5の内圧と等しいか若しくは高
くなり、排水側電極室5から吐水側電極室4に水が電解
隔膜3を透過することを防ぐことができる。Further, means for preventing water from permeating the electrolytic diaphragm 3 and mixing into the discharge side electrode chamber 4 from the discharge side electrode chamber 5 is provided by the amount of water flowing out from the discharge side electrode chamber 4 and the discharge side electrode chamber 4. 5
Outlet flow ratio, which is the ratio of the outflow of water, and the water discharge side electrode chamber 4
In order to adjust the inflow amount and the outflow amount such that the relationship between the inflow amount of the water and the inlet flow ratio, which is the ratio of the inflow amount of the water in the drain-side electrode chamber 5, is the outlet flow ratio ≤ the inlet flow ratio. Orifice 1 provided in at least one of inlets 6 and 8 and outlets 7 and 9 of at least one of electrode chamber 4 and drain-side electrode chamber 5.
By configuring with 0 and 11, the internal pressure of the water discharge side electrode chamber 4 becomes equal to or higher than the internal pressure of the drainage side electrode chamber 5, and water permeates the electrolytic diaphragm 3 from the drainage side electrode chamber 5 to the water discharge side electrode chamber 4. Can be prevented.
【0029】[0029]
【実施例】次に、本発明に係る連続式イオン整水器を実
施例に即して更に詳しく説明する。EXAMPLES Next, the continuous ion water purifier according to the present invention will be described in more detail with reference to Examples.
【0030】図1に本発明に係る連続式イオン整水器に
用いる電解槽1の第1の実施例を示す。先ず、電解槽1
の構成について説明すると、電解槽1は電解隔膜3で分
離された吐水側電極室4と排水側電極室5とからなって
おり、吐水側電極室4には電解槽1の下部において原水
Aの流入口6が、電解槽1の上部において吐水パイプB
(図示省略)へ配管される流出口7がそれぞれ突出して
設けてあり、排水側電極室5には電解槽1の下部におい
て原水Aの流入口8が、電解槽1の上部において排水パ
イプC(図示省略)へ配管される流出口9がそれぞれ突
出して設けてある。流入口6,8には原水Aを供給する
配管が分岐して接続してある。更に、各電極室4,5内
部に電解隔膜3を介して位置する電極2a,2bが設け
てある。この電極2a,2bは、各電極室4,5の電解
隔膜3と対向する内壁面に配置されるものであり、電解
隔膜3と電極2a,2bはそれぞれ平行に配置してあ
る。FIG. 1 shows a first embodiment of an electrolytic cell 1 used in a continuous ion water conditioner according to the present invention. First, electrolysis tank 1
The electrolysis tank 1 is composed of a water discharge side electrode chamber 4 and a drainage side electrode chamber 5 which are separated by an electrolytic diaphragm 3, and the water discharge side electrode chamber 4 contains raw water A at a lower portion of the electrolysis tank 1. The inflow port 6 is provided at the upper part of the electrolytic cell 1 with the water discharge pipe B.
Outflow ports 7 that are piped to (not shown) are provided so as to project, and in the drainage-side electrode chamber 5, an inflow port 8 for raw water A is provided in the lower portion of the electrolytic cell 1 and a drainage pipe C (in the upper portion of the electrolytic cell 1). Outflow ports 9 are provided so as to project to (not shown). Pipes for supplying raw water A are branched and connected to the inflow ports 6 and 8. Further, electrodes 2a and 2b located inside the electrode chambers 4 and 5 with the electrolytic diaphragm 3 interposed therebetween are provided. The electrodes 2a and 2b are arranged on the inner wall surface of the electrode chambers 4 and 5 facing the electrolytic diaphragm 3, and the electrolytic diaphragm 3 and the electrodes 2a and 2b are arranged in parallel.
【0031】そして排水側電極室5を通過する水は排水
パイプCから排出されるので、排水側電極室5からの排
水量を少なくし、また吐水側電極室4の吐水量と排水側
電極室5の排水量のバランスを取るため、吐水側電極室
4や排水側電極室5の流入口6,8や流出口7,9の内
周にオリフィス10,11を設けて流入口6,8や流出
口7,9の口径を調整し、吐水側電極室4における流入
口6からの流入量と等量が流出口7から流出されるよう
にすると共に、排水側電極室5における流入口8からの
流入量と等量が流出口9から流出されるようにしてあ
る。図1の実施例では吐水側電極室4の流入口6や流出
口7にはオリフィスを特に設けず、排水側電極室5から
の排水量を少なくするために排水側電極室5の流入口8
や流出口9に設けたオリフィス10,11のみで調整す
るようにしてある。図において12は吐水側電極室4の
流出口7から流出する水のpHを計測するpHセンサー
である。Since the water passing through the drain side electrode chamber 5 is discharged from the drain pipe C, the amount of drainage from the drain side electrode chamber 5 is reduced, and the amount of water discharged from the discharge side electrode chamber 4 and the drain side electrode chamber 5 are reduced. In order to balance the amount of drainage of the discharge side electrode chamber 4 and the drainage side electrode chamber 5, the orifices 10 and 11 are provided on the inner circumferences of the inlets 6 and 8 and the outlets 7 and 9, respectively. The diameters of 7 and 9 are adjusted so that the same amount as the inflow amount from the inflow port 6 in the water discharge side electrode chamber 4 flows out from the outflow port 7, and the inflow amount from the inflow port 8 in the drainage side electrode chamber 5 is adjusted. An amount equal to the amount is discharged from the outlet 9. In the embodiment of FIG. 1, the inlet 6 and the outlet 7 of the water discharge side electrode chamber 4 are not provided with orifices in particular, and the inlet 8 of the drainage side electrode chamber 5 is reduced in order to reduce the amount of drainage from the drainage side electrode chamber 5.
The adjustment is made only by the orifices 10 and 11 provided at the outflow port 9. In the figure, 12 is a pH sensor for measuring the pH of water flowing out from the outlet 7 of the water discharge side electrode chamber 4.
【0032】上記の電解槽1の動作について説明する
と、まず、吐水側電極室4からアルカリイオン水を生成
させる場合は、吐水側電極室4の電極2aを陰極に、排
水側電極室5の電極2bを陽極になるように印加する。
そのことにより、流入口6を通して吐水側電極室4に供
給された水からアルカリイオン水が生成され、このアル
カリイオン水は流出口7を通して吐出パイプBからコッ
プ等に吐出される。またこのとき流入口8を通して排水
側電極室5に供給された水から酸性イオン水が生成さ
れ、この酸性イオン水は流出口9を通して排水パイプC
から排出されて捨てられる。一方、アストリンゼント
水、即ち弱い酸性イオン水を生成する場合は、吐水側電
極室4の電極2aを陽極に、排水側電極室5の電極2b
を陰極になるように印加する。そのことにより、流入口
6を通して吐水側電極室4に供給された水から酸性イオ
ン水が生成され、この酸性イオン水は流出口7を通して
吐出パイプBからコップ等に吐出される。またこのとき
流入口8を通して排水側電極室5に供給された水からア
ルカリイオン水が生成され、このアルカリイオン水は流
出口9を通して排水パイプCから排出されて捨てられ
る。The operation of the electrolytic cell 1 will be described. First, when alkaline ionized water is generated from the water discharge side electrode chamber 4, the electrode 2a of the water discharge side electrode chamber 4 is used as a cathode and the electrode of the drainage side electrode chamber 5 is used. 2b is applied so as to serve as an anode.
As a result, alkaline ionized water is generated from the water supplied to the water discharge side electrode chamber 4 through the inflow port 6, and this alkaline ionized water is discharged from the discharge pipe B to the cup or the like through the outflow port 7. At this time, acidic ionized water is generated from the water supplied to the drainage-side electrode chamber 5 through the inflow port 8, and this acidic ionized water passes through the outflow port 9 and the drainage pipe C
Is discharged from and discarded. On the other hand, in the case of producing astringent water, that is, weak acidic ionized water, the electrode 2a of the water discharge side electrode chamber 4 is used as an anode and the electrode 2b of the drainage side electrode chamber 5 is used.
Is applied so that it becomes a cathode. As a result, acidic ionized water is generated from the water supplied to the water discharge side electrode chamber 4 through the inflow port 6, and this acidic ionized water is discharged from the discharge pipe B to the cup or the like through the outflow port 7. At this time, alkaline ionized water is generated from the water supplied to the drain side electrode chamber 5 through the inflow port 8, and this alkaline ionized water is discharged from the drainage pipe C through the outflow port 9 and discarded.
【0033】そして図1の実施例では、電解隔膜3を透
過して排水側電極室5から吐水側電極室4に水が混入す
ることを防止する手段を有するものであり、この手段と
して、電解隔膜3を排水側電極室5の側へ寄せて配置す
ることによって、吐水側電極室4の電極2aと電解隔膜
3との間の隙間距離D1 、すなわち吐水側電極室4内
の流路の幅よりも、排水側電極室5の電極2bと電解隔
膜3との間の隙間距離D2 、すなわち排水側電極室5
内の流路の幅が小さくなるようにしてある。また排水側
電極室5の流入口8と流出口9に設けるオリフィス1
0,11として口径が大きいものを用いるようにしてあ
るが、オリフィス10,11で吐水側電極室4における
流入口6からの流入量と等量が流出口7から流出される
ようにすると共に、排水側電極室5における流入口8か
らの流入量と等量が流出口9から流出されるようにして
ある。In the embodiment shown in FIG. 1, there is provided a means for preventing water from permeating the electrolytic diaphragm 3 and mixing the water from the drain side electrode chamber 5 into the water discharge side electrode chamber 4. /> to, by placing Intention electrolytic diaphragm 3 to the side of the drainage side electrode chamber 5, the gap distance D1 between the electrodes 2a of the water discharge side electrode chamber 4 and the electrolytic membrane 3, i.e. the water discharge side electrode chamber 4 The gap distance D2 between the electrode 2b of the drainage-side electrode chamber 5 and the electrolytic diaphragm 3, that is, the width of the internal flow path, that is, the drainage-side electrode chamber 5
The width of the inner channel is made smaller. Further, the orifice 1 provided at the inflow port 8 and the outflow port 9 of the drain-side electrode chamber 5
It is to use a having a large mouth diameter and 0,11, but inflow from the inlet 6 at the water discharge side electrode chamber 4 at orifice 10, 11 and an equal amount is to be flowing out from the outlet 7 At the same time, the same amount of inflow from the inflow port 8 in the drain-side electrode chamber 5 is allowed to flow out from the outflow port 9.
【0034】この実施例では、排水側電極室5の電極2
bと電解隔膜3との間の隙間距離D2 が小さくなって
いるために、排水側電極室5内での水の流れの抵抗が大
きくなり、排水側電極室5内の圧力勾配が大きくなる。
このために、吐水側電極室4の電極2aと電解隔膜3と
の間の隙間距離D1 と排水側電極室5の電極2bと電
解隔膜3との間の隙間距離D2 を調整することによっ
て、図2に示すように吐水側電極室4での圧力勾配と排
水側電極室5での圧力勾配がほぼ等しくなるようにする
ことができるものである。しかもオリフィス10,11
で吐水側電極室4及び排水側電極室5での水の流入量に
対して等量分流出するよう流入量と流出量を調整するよ
うにしているために、図2のように吐水側電極室4内の
圧力と排水側電極室5内の圧力がほぼ等しくなり、排水
側電極室5から吐水側電極室4に水が電解隔膜3を透過
して混入することを防ぐことができるものである。In this embodiment, the electrode 2 of the drain-side electrode chamber 5 is
To gap distance D2 between the b and the electrolyte membrane 3 is small, the resistance of water flow in a drainage side electrode chamber 5 is increased, the pressure gradient of the drainage side electrode chamber 5 large Kikunaru .
Therefore, by adjusting the gap distance D1 between the electrode 2a of the water discharge side electrode chamber 4 and the electrolytic diaphragm 3 and the gap distance D2 between the electrode 2b of the drainage side electrode chamber 5 and the electrolytic diaphragm 3, As shown in FIG. 2 , the pressure gradient in the water discharge side electrode chamber 4 and the pressure gradient in the drainage side electrode chamber 5 can be made substantially equal. Moreover, the orifices 10 and 11
In order to have to adjust the inflow and outflow to flow out equal amounts fraction relative to the inflow of water at the water discharge side electrode chamber 4 and the drain-side electrode chamber 5, the water discharge side electrodes as shown in FIG. 2 Since the pressure inside the chamber 4 and the pressure inside the drain side electrode chamber 5 become substantially equal, it is possible to prevent water from permeating the electrolytic diaphragm 3 and mixing into the water discharge side electrode chamber 4 from the drain side electrode chamber 5. is there.
【0035】このようにこの第1の実施例では、電解隔
膜3を透過して排水側電極室5から吐水側電極室4に水
が混入することを防止する手段を、吐水側電極室4及び
排水側電極室5での水の流入量に対して等量分流出する
よう流入量と流出量を調整するために吐水側電極室4や
排水側電極室5の少なくとも一方の流入口6,8や流出
口7,9の少なくとも一方に設けられたオリフィス1
0,11と、吐水側電極室4を流れる水の圧力勾配と排
水側電極室5を流れる水の圧力勾配とがほぼ等しくなる
よう調整された吐水側電極室4の電極2aと電解隔膜3
との間の隙間距離D1 及び排水側電極室5の電極2b
と電解隔膜3との間の隙間距離D2 とから構成するよ
うにしたものである。尚、オリフィス10,11として
口径が大きいものを用いることによって、オリフィス1
0,11の箇所での圧力変化を小さくすることができ、
吐水側電極室4での圧力勾配と排水側電極室5での圧力
勾配を一層等しくなるようにすることができるものであ
る。As described above, in the first embodiment, a means for preventing water from permeating the electrolytic diaphragm 3 and mixing from the drainage side electrode chamber 5 into the discharge side electrode chamber 4 is provided. At least one of the water discharge side electrode chamber 4 and the drainage side electrode chamber 5 is provided with an inflow port 6, 8 in order to adjust the inflow amount and the outflow amount so that the same amount of water flows out in the drain side electrode chamber 5. Orifice 1 provided in at least one of the outlets 7 and 9
0 and 11, the pressure gradient of water flowing through the water discharge side electrode chamber 4 and the pressure gradient of water flowing through the drainage side electrode chamber 5 are adjusted to be substantially equal to each other, the electrode 2a of the water discharge side electrode chamber 4 and the electrolytic diaphragm 3 are adjusted.
Gap distance D1 between the electrode 2b and the electrode 2b of the drain-side electrode chamber 5
And a gap distance D2 between the electrolytic membrane 3 and the electrolytic diaphragm 3. It should be noted that, as the the orifice 10, 11
By using those mouth diameter is large, the orifice 1
It is possible to reduce the pressure change at points 0 and 11,
The pressure gradient in the water discharge side electrode chamber 4 and the pressure gradient in the drainage side electrode chamber 5 can be further equalized.
【0036】次に、図3の実施例について説明する。基
本構成は図1の実施例と同じであるが、吐水側電極室4
や排水側電極室5における水の流出量や流入量を調整す
るようにしてある。すなわち図3の実施例では、排水側
電極室5の流入口8に設けたオリフィス10の口径を小
さく、流出口9に設けたオリフィス11の口径を大きく
形成するようにして、吐水側電極室4の水の流出量と排
水側電極室5の水の流出量の比である出口流量比(吐水
側電極室4の水の流出量/排水側電極室5の水の流出
量)と、吐水側電極室4の水の流入量と排水側電極室5
の水の流入量の比である入口流量比(吐水側電極室4の
水の流入量/排水側電極室5の水の流入量)との関係
が、出口流量比≦入口流量比になるよう流入量と流出量
を調整してある。このように、出口流量比≦入口流量比
になるよう流入量と流出量を調整すると、吐水側電極室
4内の水圧と排水側電極室5内の水圧は、等しくなるか
あるいは図4に示すように吐水側電極室4の水圧が排水
側電極室5の水圧よりも高くなる。従って、吐水側電極
室4内の水が電解隔膜3を透過して排水側電極室5に混
入することはあっても、排水側電極室5内の水が電解隔
膜3を透過して吐水側電極室4に混入することはなくな
るものである。Next, the embodiment shown in FIG. 3 will be described. The basic structure is the same as that of the embodiment of FIG.
The outflow amount and the inflow amount of water in the drainage-side electrode chamber 5 are adjusted. That is, in the embodiment of FIG. 3 , the diameter of the orifice 10 provided at the inflow port 8 of the drainage side electrode chamber 5 is made small and the diameter of the orifice 11 provided at the outflow port 9 is made large so that the water discharge side electrode chamber 4 is formed. Outlet flow ratio (water outflow rate of the water discharge side electrode chamber 4 / water outflow rate of the drainage side electrode chamber 5), which is the ratio of the outflow rate of water to the water outflow rate of the drainage side electrode chamber 5, and the water discharge side Inflow rate of water in the electrode chamber 4 and drain-side electrode chamber 5
So that the relationship with the inlet flow rate ratio (water inflow rate of the water discharge side electrode chamber 4 / water inflow rate of the drainage side electrode chamber 5), which is the ratio of the inflow rate of water, is such that the outlet flow rate ratio ≦ the inlet flow rate ratio. The inflow and outflow are adjusted. Thus, by adjusting the outflow and inflow so that the outlet flow rate ratio ≦ inlet flow rate, water pressure of the water discharge side electrode chamber water pressure and the water discharge side electrode chamber 5 in 4 illustrates the equal or 4 Thus, the water pressure in the water discharge side electrode chamber 4 becomes higher than the water pressure in the drainage side electrode chamber 5. Therefore, even if the water in the water discharge side electrode chamber 4 permeates the electrolytic diaphragm 3 and mixes into the drain side electrode chamber 5, the water in the drain side electrode chamber 5 permeates the electrolytic diaphragm 3 to discharge the water. It will not be mixed in the electrode chamber 4.
【0037】このようにこの第2の実施例では、電解隔
膜3を透過して排水側電極室5から吐水側電極室4に水
が混入することを防止する手段を、吐水側電極室4の水
の流出量と排水側電極室5の水の流出量の比である出口
流量比と、吐水側電極室4の水の流入量と排水側電極室
5の水の流入量の比である入口流量比との関係が、出口
流量比≦入口流量比になるよう流入量と流出量を調整す
るために吐水側電極室4や排水側電極室5の少なくとも
一方の流入口6,8や流出口7,9の少なくとも一方に
設けられたオリフィス10,11によって構成するよう
にしたものである。As described above, in the second embodiment, a means for preventing water from permeating the electrolytic diaphragm 3 and mixing from the drainage side electrode chamber 5 into the water discharge side electrode chamber 4 is provided in the water discharge side electrode chamber 4. The outlet flow rate ratio, which is the ratio of the outflow amount of water to the outflow amount of water of the drain side electrode chamber 5, and the inlet, which is the ratio of the inflow amount of water of the discharge side electrode chamber 4 and the inflow amount of water of the drain side electrode chamber 5. In order to adjust the inflow amount and the outflow amount so that the relationship with the flow rate ratio is the outlet flow rate ratio ≦ inlet flow rate ratio, at least one of the inflow port 6, 8 and the outflow port of the discharge side electrode chamber 4 and the drain side electrode chamber 5 The orifices 10 and 11 are provided in at least one of the nozzles 7 and 9.
【0038】この図3の実施例について、流入量と流出
量について具体的数値の一例を挙げて説明する。流入口
6から吐水側電極室4に流入する流入量が3.3リット
ル/分、流入口8から排水側電極室5に流入する流入量
が0.7リットル/分であると、入口流量比は3.3/
0.7≒4.7となる。また吐水側電極室4の流出口7
から流出する流出量が3.0リットル/分、排水側電極
室5の流出口9から流出する流出量が1.0リットル/
分であると、出口流量比は3.0/1.0=3となり、
出口流量比≦入口流量比となる。そしてこの場合、吐水
側電極室4においては流出量が流入量よりも多いために
吐水側電極室4内の水圧が高く、排水側電極室5におい
ては流出量が流入量よりも少ないために排水側電極室5
内の水圧が低く、流出量と流入量の差の0.3リットル
/分の水が電解隔膜3を透過して吐水側電極室4から排
水側電極室5へ移動することになる。The embodiment of FIG. 3 will be described by giving an example of concrete numerical values for the inflow amount and the outflow amount. If the inflow rate from the inflow port 6 to the water discharge side electrode chamber 4 is 3.3 liters / minute and the inflow rate from the inflow port 8 to the drainage side electrode chamber 5 is 0.7 liters / minute, the inlet flow rate ratio is Is 3.3 /
0.7≈4.7. In addition, the outlet 7 of the water discharge side electrode chamber 4
Outflow rate from the outlet 9 of the drain-side electrode chamber 5 is 1.0 liter / min.
Minutes, the outlet flow rate ratio is 3.0 / 1.0 = 3,
Outlet flow rate ratio ≦ inlet flow rate ratio. In this case, since the outflow amount in the water discharge side electrode chamber 4 is larger than the inflow amount, the water pressure in the water discharge side electrode chamber 4 is high, and the outflow amount in the drainage side electrode chamber 5 is smaller than the inflow amount. Side electrode chamber 5
The water pressure inside is low, and 0.3 liter / min of the difference between the outflow amount and the inflow amount permeates the electrolytic diaphragm 3 and moves from the water discharge side electrode chamber 4 to the drain side electrode chamber 5.
【0039】[0039]
【発明の効果】以上のように本発明の請求項1に係る連
続式イオン整水器は、電解隔膜で分離された吐水側電極
室と排水側電極室とを有し、吐水側電極室には原水の流
入口及び吐水パイプへ接続される流出口を、排水側電極
室には原水の流入口及び排水パイプへ接続される流出口
をそれぞれ設けると共に、吐水側電極室内と排水側電極
室内に電解隔膜を介して対向配置される電極を設けて形
成される電解槽を具備した連続式イオン整水器におい
て、電解隔膜を透過して排水側電極室から吐水側電極室
に水が混入することを防止する手段を設けたので、排水
側電極室の水が吐水側電極室の水に混入することがなく
なるものであり、吐水側電極室を陰極室としてアルカリ
イオン水を生成する際に、排水側電極室が陽極室となっ
て生成される酸性イオン水が吐水側電極室のアルカリイ
オン水に混入することを防ぐことができ、トリハロメタ
ンが生成されることを防いで安全な飲料水を提供するこ
とができると共に、吐水側電極室を陽極室として酸性イ
オン水を生成する際に、排水側電極室が陰極室となって
生成されるアルカリイオン水が吐水側電極室の酸性イオ
ン水に混入することを防ぐことができ、pHがアルカリ
表示されない弱い酸性イオン水すなわちアストリンゼン
ト効果のあるイオン水を提供することができるものであ
る。 As described above, the connection according to claim 1 of the present invention is as follows.
The continuous ion water regulator has a discharge side electrode chamber and a drain side electrode chamber that are separated by an electrolytic diaphragm, and the discharge side electrode chamber is provided with a raw water inlet and an outlet connected to a water discharge pipe. The side electrode chamber is provided with an inlet for raw water and an outlet for connecting to a drainage pipe, respectively, and an electrode formed oppositely to the discharge side electrode chamber and the drainage side electrode chamber via an electrolytic diaphragm. In a continuous ion water regulator equipped with a tank, a means was provided to prevent water from entering the discharge side electrode chamber from the drain side electrode chamber through the electrolytic diaphragm, so that the water in the drain side electrode chamber was discharged. It is not mixed with the water in the side electrode chamber, and when generating alkaline ionized water using the water discharge side electrode chamber as the cathode chamber, the acidic ionized water generated by the drainage side electrode chamber acting as the anode chamber is discharged. Do not mix with alkaline ionized water in the side electrode chamber. It is possible to prevent the generation of trihalomethane and provide safe drinking water, and at the same time, when the acidic ionized water is generated using the discharge side electrode chamber as the anode chamber, the drain side electrode chamber becomes the cathode. It is possible to prevent the alkaline ionized water generated as a chamber from being mixed with the acidic ionized water in the discharge side electrode chamber, and to provide weak acidic ionized water whose pH is not displayed as alkaline, that is, ionized water having an astringent effect. It is possible .
【0040】しかも請求項1の発明は上記の電解隔膜を
透過して排水側電極室から吐水側電極室に水が混入する
ことを防止する手段を、吐水側電極室及び排水側電極室
での水の流入量に対して等量分流出するよう流入量と流
出量を調整するために吐水側電極室や排水側電極室の少
なくとも一方の流入口や流出口の少なくとも一方に設け
られたオリフィスと、吐水側電極室を流れる水の圧力勾
配と排水側電極室を流れる水の圧力勾配とが等しくなる
よう調整された吐水側電極室の電極と電解隔膜との間の
隙間距離及び排水側電極室の電極と電解隔膜との間の隙
間距離とから構成するようにしたので、吐水側電極室と
排水側電極室との間の水の圧力差をなくして、排水側電
極室から吐水側電極室に水が電解隔膜を透過して混入す
ることを防ぐことができるものである。Further, the invention of claim 1 is a means for preventing water from being mixed into the discharge side electrode chamber from the discharge side electrode chamber by permeating through the electrolytic diaphragm in the discharge side electrode chamber and the discharge side electrode chamber. An orifice provided in at least one of the inlet and the outlet of at least one of the water discharge side electrode chamber and the drainage side electrode chamber in order to adjust the inflow amount and the outflow amount so as to flow out in the same amount with respect to the inflow amount of water. A gap distance between the electrode of the discharge-side electrode chamber and the electrolytic diaphragm and the drain-side electrode chamber adjusted so that the pressure gradient of water flowing through the discharge-side electrode chamber and the pressure gradient of water flowing through the drain-side electrode chamber are equal Since it is configured by the gap distance between the electrode and the electrolytic membrane, the pressure difference of water between the water discharge side electrode chamber and the drainage side electrode chamber is eliminated, and the drainage side electrode chamber to the water discharge side electrode chamber is eliminated. To prevent water from permeating the electrolytic diaphragm and mixing It is those that can be.
【0041】また本発明の請求項2に係る連続式イオン
整水器は、電解隔膜で分離された吐 水側電極室と排水側
電極室とを有し、吐水側電極室には原水の流入口及び吐
水パイプへ接続される流出口を、排水側電極室には原水
の流入口及び排水パイプへ接続される流出口をそれぞれ
設けると共に、吐水側電極室内と排水側電極室内に電解
隔膜を介して対向配置される電極を設けて形成される電
解槽を具備した連続式イオン整水器において、電解隔膜
を透過して排水側電極室から吐水側電極室に水が混入す
ることを防止する手段を設けたので、排水側電極室の水
が吐水側電極室の水に混入することがなくなるものであ
り、吐水側電極室を陰極室としてアルカリイオン水を生
成する際に、排水側電極室が陽極室となって生成される
酸性イオン水が吐水側電極室のアルカリイオン水に混入
することを防ぐことができ、トリハロメタンが生成され
ることを防いで安全な飲料水を提供することができると
共に、吐水側電極室を陽極室として酸性イオン水を生成
する際に、排水側電極室が陰極室となって生成されるア
ルカリイオン水が吐水側電極室の酸性イオン水に混入す
ることを防ぐことができ、pHがアルカリ表示されない
弱い酸性イオン水すなわちアストリンゼント効果のある
イオン水を提供することができるものである。 A continuous type ion according to claim 2 of the present invention
Water conditioner is draining side and ejection water side electrode chamber separated by electrolysis diaphragm
There is an electrode chamber, and the discharge side electrode chamber has an inlet and outlet for raw water.
Connect the outlet connected to the water pipe to the raw water in the drain side electrode chamber.
Inlet and outlet connected to the drain pipe respectively
Electrolysis in the water discharge side electrode chamber and drainage side electrode chamber
Electrodes formed by providing electrodes facing each other with a diaphragm in between.
In a continuous ionized water conditioner equipped with a dissolution tank, an electrolytic diaphragm
Water permeates through the drainage side electrode chamber into the discharge side electrode chamber.
Since there is a means to prevent this,
Does not mix with the water in the discharge side electrode chamber.
The alkaline ionized water is generated by using the discharge side electrode chamber as the cathode chamber.
When it is formed, the drain side electrode chamber is created as an anode chamber
Acidic ion water mixes with alkaline ionized water in the discharge side electrode chamber
Can be prevented and trihalomethane is generated
And can provide safe drinking water.
In addition, acidic ionized water is generated using the discharge side electrode chamber as the anode chamber.
When the drainage side electrode chamber is used as a cathode chamber,
Lucari ion water mixes with acidic ion water in the discharge side electrode chamber
Can be prevented and the pH is not displayed as alkaline
Weakly acidic ionized water, that is, with astringent effect
Ionic water can be provided.
【0042】しかも請求項2の発明は上記の電解隔膜を
透過して排水側電極室から吐水側電極室に水が混入する
ことを防止する手段を、吐水側電極室の水の流出量と排
水側電極室の水の流出量の比である出口流量比と、吐水
側電極室の水の流入量と排水側電極室の水の流入量の比
である入口流量比との関係が、出口流量比≦入口流量比
になるよう流入量と流出量を調整するために吐水側電極
室や排水側電極室の少なくとも一方の流入口や流出口の
少なくとも一方に設けられたオリフィスによって構成す
るようにしたので、吐水側電極室の内圧が排水側電極室
の内圧と等しいか若しくは高くなって、排水側電極室か
ら吐水側電極室に水が電解隔膜を透過して混入すること
を防ぐことができるものである。Further, the invention of claim 2 is a means for preventing water from permeating through the electrolytic diaphragm to mix into the discharge side electrode chamber from the discharge side electrode chamber, the amount of water flowing out from the discharge side electrode chamber and the drainage. The relationship between the outlet flow rate, which is the ratio of the outflow rate of water in the side electrode chamber, and the inlet flow rate, which is the ratio of the inflow rate of water in the discharge side electrode chamber and the inflow rate of water in the drain side electrode chamber, are In order to adjust the inflow rate and the outflow rate so that the ratio ≦ the inlet flow rate ratio, it is constituted by an orifice provided in at least one of the inlet and the outlet of the discharge side electrode chamber and the drainage side electrode chamber. Therefore, the internal pressure of the water discharge side electrode chamber is equal to or higher than the internal pressure of the drainage side electrode chamber, and it is possible to prevent water from permeating the electrolytic diaphragm and mixing into the water discharge side electrode chamber from the drainage side electrode chamber. Is.
【図1】本発明の第1実施例を模式的に示した断面図で
ある。FIG. 1 is a sectional view schematically showing a first embodiment of the present invention.
【図2】本発明の第1実施例の電解槽の各電極室を流れ
る水の圧力勾配を示すグラフである。FIG. 2 is a graph showing a pressure gradient of water flowing through each electrode chamber of the electrolytic cell according to the first embodiment of the present invention.
【図3】本発明の第2実施例を模式的に示した断面図で
ある。FIG. 3 is a sectional view schematically showing a second embodiment of the present invention.
【図4】本発明の第2実施例の電解槽の各電極室を流れ
る水の圧力勾配を示すグラフである。FIG. 4 Flows in each electrode chamber of the electrolytic cell of the second embodiment of the present invention
3 is a graph showing a pressure gradient of water .
1 電解槽 2a 吐水側電極室の電極 2b 排水側電極室の電極 3 電解隔膜 4 吐水側電極室 5 排水側電極室 6 吐水側電極室の流入口 7 吐水側電極室の流出口 8 排水側電極室の流入口 9 排水側電極室の流出口 10,11 オリフィス 1 electrolysis tank 2a Electrode of water discharge side electrode chamber 2b Electrodes in the drain side electrode chamber 3 Electrolytic diaphragm 4 Water discharge side electrode chamber 5 Drain side electrode chamber 6 Inlet of discharge side electrode chamber 7 Outlet of the discharge side electrode chamber 8 Inlet of drainage side electrode chamber 9 Outlet of drainage side electrode chamber 10,11 Orifice
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 源喜 大阪府門真市大字門真1048番地松下電工 株式会社内 (72)発明者 野口 弘之 大阪府門真市大字門真1048番地松下電工 株式会社内 (56)参考文献 特開 平6−269780(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/46 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Genki Nakano 1048, Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Works Co., Ltd. (72) Hiroyuki Noguchi, 1048, Kadoma, Kadoma City, Osaka Matsushita Electric Works, Ltd. (56 ) Reference JP-A-6-269780 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/46
Claims (2)
水側電極室とを有し、吐水側電極室には原水の流入口及
び吐水パイプへ接続される流出口を、排水側電極室には
原水の流入口及び排水パイプへ接続される流出口をそれ
ぞれ設けると共に、吐水側電極室内と排水側電極室内に
電解隔膜を介して対向配置される電極を設けて形成され
る電解槽を具備した連続式イオン整水器において、電解
隔膜を透過して排水側電極室から吐水側電極室に水が混
入することを防止する手段を有し、かつこの手段が、吐
水側電極室及び排水側電極室での水の流入量に対して等
量分流出するよう流入量と流出量を調整するために吐水
側電極室や排水側電極室の少なくとも一方の流入口や流
出口の少なくとも一方に設けられたオリフィスと、吐水
側電極室を流れる水の圧力勾配と排水側電極室を流れる
水の圧力勾配とが等しくなるよう調整された吐水側電極
室の電極と電解隔膜との間の隙間距離及び排水側電極室
の電極と電解隔膜との間の隙間距離から構成されて成る
ことを特徴とする連続式イオン整水器。1. A discharge side electrode chamber and a drain side electrode chamber, which are separated by an electrolytic diaphragm, wherein the discharge side electrode chamber is provided with an inlet for raw water and an outlet for connection to a discharge pipe. Is equipped with an inlet for raw water and an outlet for connection to a drain pipe, respectively, and an electrolytic cell formed by providing electrodes facing each other in the discharge-side electrode chamber and the drain-side electrode chamber through an electrolytic diaphragm. in the continuous ion water apparatus, have a means to prevent water from entering the water discharge side electrode chamber from the drain side electrode chamber through the electrolyte membrane, and this means, discharge failure
For the inflow amount of water in the water side electrode chamber and drainage side electrode chamber, etc.
Discharge to adjust the inflow and outflow to flow out
Side electrode chamber and / or drainage side electrode chamber
An orifice provided on at least one of the outlets and water discharge
Pressure gradient of water flowing in the side electrode chamber and flowing in the drain side electrode chamber
Water discharge side electrode adjusted so that the pressure gradient of water is equal
Distance between chamber electrode and electrolytic diaphragm and drain side electrode chamber
Continuous ionized water apparatus, characterized in forming Rukoto constructed with electrode from the gap distance between the electrolyte membrane and.
水側電極室とを有し、吐水側電極室には原水の流入口及
び吐水パイプへ接続される流出口を、排水側電極室には
原水の流入口及び排水パイプへ接続される流出口をそれ
ぞれ設けると共に、吐水側電極室内と排水側電極室内に
電解隔膜を介して対向配置される電極を設けて形成され
る電解槽を具備した連続式イオン整水器において、電解
隔膜を透過して排水側電極室から吐水側電極室に水が混
入することを防止する手段を有し、かつこの手段が、吐
水側電極室の水の流出量と排水側電極室の水の流出量の
比である出口流量比と、吐水側電極室の水の流入量と排
水側電極室の水の流入量の比である入口流量比との関係
が、出口流量比≦入口流量比になるよう流入量と流出量
を調整するために吐水側電極室や排水側電極室の少なく
とも一方の流入口や流出口の少なくとも一方に設けられ
たオリフィスによって構成されて成ることを特徴とする
連続式イオン整水器。2. A water discharge side electrode chamber and a drain which are separated by an electrolytic diaphragm.
It has a water side electrode chamber, and the discharge side electrode chamber has an inlet and outlet for raw water.
The outlet connected to the discharge pipe to the drain side electrode chamber.
The raw water inlet and outlet connected to the drainage pipe
Each of them is installed in the water discharge side electrode chamber and the drainage side electrode chamber.
Formed by providing electrodes facing each other with an electrolytic diaphragm
Electrolysis in a continuous ionized water device equipped with an electrolyzer
Water permeates through the diaphragm and mixes into the discharge side electrode chamber from the drain side electrode chamber.
Have means to prevent entry, and this means
The outflow amount of water in the water side electrode chamber and the outflow amount of water in the drain side electrode chamber
The ratio of outlet flow rate, which is the ratio, and the inflow and outflow of water in the discharge side electrode chamber.
Relation with the inlet flow rate, which is the ratio of the water inflow into the water-side electrode chamber
Is the flow rate at the outlet ≤ flow rate at the inlet
To adjust the water discharge side electrode chamber and drainage side electrode chamber
Both are installed at at least one of the inlet and outlet
Continuous ion water conditioner, characterized in that it is constituted by an orifice .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24807994A JP3430670B2 (en) | 1994-10-13 | 1994-10-13 | Continuous ion water conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24807994A JP3430670B2 (en) | 1994-10-13 | 1994-10-13 | Continuous ion water conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08108179A JPH08108179A (en) | 1996-04-30 |
JP3430670B2 true JP3430670B2 (en) | 2003-07-28 |
Family
ID=17172900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24807994A Expired - Fee Related JP3430670B2 (en) | 1994-10-13 | 1994-10-13 | Continuous ion water conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3430670B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4641040B2 (en) * | 2008-04-30 | 2011-03-02 | 博 田中 | Electrolytic reforming method of alcohol solution and electrolytic reforming apparatus thereof |
-
1994
- 1994-10-13 JP JP24807994A patent/JP3430670B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08108179A (en) | 1996-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2270199C (en) | Electrolytic cell and electrolyzed water generating device | |
WO2014006740A1 (en) | Device for producing water for preparing dialysate | |
KR20180015081A (en) | Method for producing hydrogen water | |
JP4751994B1 (en) | Electrolyzed water production apparatus having a diaphragm electrolytic cell and a non-diaphragm electrolytic cell | |
JP5188717B2 (en) | Electrolytic hypochlorite water production equipment | |
JP4597263B1 (en) | Electrolyzed water production apparatus and electrolyzed water production method using the same | |
JP3430670B2 (en) | Continuous ion water conditioner | |
JP2008178845A5 (en) | ||
JP4200118B2 (en) | Alkaline ion water conditioner | |
AU2021365682B2 (en) | Water treatment method and water treatment apparatus | |
JP4677993B2 (en) | Electrolyzed water generator | |
KR102361980B1 (en) | Electrolyzed Water Generating Device | |
JP4353159B2 (en) | Electrolyzed water generator | |
JPH06206074A (en) | Method and apparatus for producing sterilizing water | |
JP2005118629A (en) | Functional water production apparatus | |
JP3055746B2 (en) | Non-diaphragm type electrolytic cell for ion-rich water generation | |
JPH06328078A (en) | Alkaline water producing process | |
JP3455121B2 (en) | Aqueous solution for producing acidic electrolyzed water and method for producing acidic electrolyzed water | |
EP0885849A1 (en) | Method for sterilising water and device for realising the same | |
JPH06312189A (en) | Electrolytic sterilized water making apparatus | |
JP2605642B2 (en) | Electrolytic ionic water generating apparatus and electrolytic ionic water generating method | |
JP3055744B2 (en) | Non-diaphragm type electrolytic cell for ion-rich water generation | |
JP3196143B2 (en) | Electrolytic water purifier | |
JP3055743B2 (en) | Non-diaphragm type electrolytic cell for ion-rich water generation | |
JPH06339686A (en) | Non-diaphragm-type electrolytic cell for generating ion-rich water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030422 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080523 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090523 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090523 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100523 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100523 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |