JP3429072B2 - Filter material - Google Patents

Filter material

Info

Publication number
JP3429072B2
JP3429072B2 JP18308594A JP18308594A JP3429072B2 JP 3429072 B2 JP3429072 B2 JP 3429072B2 JP 18308594 A JP18308594 A JP 18308594A JP 18308594 A JP18308594 A JP 18308594A JP 3429072 B2 JP3429072 B2 JP 3429072B2
Authority
JP
Japan
Prior art keywords
particles
cross
molecular weight
polyethylene
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18308594A
Other languages
Japanese (ja)
Other versions
JPH0824536A (en
Inventor
清峰 谷口
達芳 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP18308594A priority Critical patent/JP3429072B2/en
Publication of JPH0824536A publication Critical patent/JPH0824536A/en
Application granted granted Critical
Publication of JP3429072B2 publication Critical patent/JP3429072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体粒子を含有する気
体中から固体粒子を分離する濾過材に関し、特に焼却炉
等から発生する高温排ガス中に含まれる煤塵その他の粒
子を捕集、除去し、清浄化された空気のみを外部に取り
出すのに良好で、且つ機械的強度に優れ、破損しにくい
濾過材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter material for separating solid particles from a gas containing solid particles, and in particular, it collects and removes dust and other particles contained in high temperature exhaust gas generated from an incinerator or the like. However, the present invention relates to a filter medium which is good for taking out only purified air to the outside, has excellent mechanical strength, and is not easily damaged.

【0002】[0002]

【従来の技術】工場の生産ラインや各種装置、乾燥機或
いは焼却炉や溶融炉等の高温炉から排出されるガス中に
は、煤塵その他の固体粒子が含まれており、環境上の問
題からそのままの状態で外部に廃棄することはできず、
集塵装置を用いて前記粒子を捕集、除去して清浄化され
た空気のみを外部に取り出している。
2. Description of the Related Art Gas discharged from factory production lines, various devices, dryers, or high-temperature furnaces such as incinerators and melting furnaces contains soot and other solid particles, which causes environmental problems. It cannot be disposed outside as it is,
Only the air that has been cleaned by removing and collecting the particles by using a dust collector is taken out to the outside.

【0003】集塵装置の濾過材は、集塵率が高く、濾過
後の清浄ガス中の含塵濃度が低いという濾過能力に優れ
るとともに、簡易製作ができ、材料費が低く、機械的強
度に優れることが望まれる。従来技術として、例えば特
公平2−39926号公報に記載される濾過材は、分子
量が中程度のポリエチレン粒子と、「巨大分子量のポリ
エチレン」、即ち分子量が数百万の超高分子量ポリエチ
レン粒子とを混合して、金型に充填し、加熱することに
得られる。この濾過材は、分子量が中程度のポリエチレ
ン粒子がバインダの役割を果たして濾過材としての形状
を維持するとともに、超高分子量ポリエチレン粒子は分
子量が中程度のポリエチレン粒子間に入り込んで、空隙
形成の役割を果している。含塵ガス中の固体粒子は、超
高分子量ポリエチレン粒子により形成される微細な空隙
を透過することができず捕集され、空気のみがこの微細
な空隙を透過することにより濾過が行われる。
The filter material of the dust collector has a high dust collection rate and a low dust concentration in the clean gas after filtration, and also has an excellent filtering ability, and can be easily manufactured, resulting in low material cost and mechanical strength. It is desired to be excellent. As a conventional technique, for example, a filter medium described in Japanese Patent Publication No. 2-39926 has polyethylene particles having a medium molecular weight and “macromolecular polyethylene”, that is, ultra-high molecular weight polyethylene particles having a molecular weight of several million. Obtained by mixing, filling the mold and heating. In this filter medium, polyethylene particles having a medium molecular weight act as a binder to maintain the shape as a filter medium, and ultra-high molecular weight polyethylene particles penetrate between polyethylene particles having a medium molecular weight to form voids. Is fulfilling. The solid particles in the dust-containing gas cannot be passed through the fine voids formed by the ultra-high molecular weight polyethylene particles and are collected, and only air passes through these fine voids to perform filtration.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
如く構成される濾過材は、分子量が中程度のポリエチレ
ン粒子は、バインダの役割を果たすために300μm程
度の大径で、しかも接触面積を大きくするために不定形
に形成されている。これに対し、超高分子量ポリエチレ
ン粒子は、空隙形成のために100〜150μm程度の
小径で、しかも球状となるように形状が制御されてい
る。そこで、これらの両粒子を混合したり、金型まで輸
送する際に、それぞれの形状の違いから両粒子が十分均
一に混合されることなく、金型に充填される場合があ
る。
However, in the filter medium constructed as described above, the polyethylene particles having a medium molecular weight have a large diameter of about 300 μm in order to function as a binder and have a large contact area. Therefore, it is formed in an irregular shape. On the other hand, the ultra-high molecular weight polyethylene particles are controlled to have a small diameter of about 100 to 150 μm and a spherical shape to form voids. Therefore, when these particles are mixed or transported to the mold, the particles may be filled in the mold without being sufficiently mixed due to the difference in shape.

【0005】そして、両粒子が不均一のまま金型中に充
填されて焼結されると、濾過材中に分子量が中程度のポ
リエチレン粒子に富む部分と、超高分子量ポリエチレン
粒子に富む部分とが混在することになる。ここで、超高
分子量ポリエチレン粒子は分子量が大きいために、著し
く流動性が低い。従って、濾過材形成時の焼結温度で
は、超高分子量ポリエチレン粒子同士は結合することが
なく、この超高分子量ポリエチレン粒子に富む部分は強
度的には欠陥部分となる。一方、分子量が中程度のポリ
エチレン粒子はバインダとして機能するために、焼結温
度において溶融して隣接する粒子同士は容易に結合し合
う。その結果、分子量が中程度のポリエチレン粒子に富
む部分では空隙のない、即ち濾過機能を持たない部分と
なってしまう。また、濾過材が良好な濾過性能および機
械的強度を有するには、加熱焼結する際、超高分子量ポ
リエチレン粒子と分子量が中程度のポリエチレン粒子と
の間に適度な相溶性が必要であるが、前記両粒子は融点
並びに流動性が著しく異なるために、適度な相溶性が発
現しない。
When both particles are nonuniformly filled in a mold and sintered, a portion rich in polyethylene particles having a medium molecular weight and a portion rich in ultrahigh molecular weight polyethylene particles are contained in the filter medium. Will be mixed. Here, since the ultra high molecular weight polyethylene particles have a large molecular weight, the fluidity is extremely low. Therefore, at the sintering temperature at the time of forming the filter medium, the ultra high molecular weight polyethylene particles are not bonded to each other, and the portion rich in the ultra high molecular weight polyethylene particles becomes a defective portion in terms of strength. On the other hand, since polyethylene particles having a medium molecular weight function as a binder, they are melted at the sintering temperature and adjacent particles are easily bonded to each other. As a result, a portion rich in polyethylene particles having a medium molecular weight has no void, that is, a portion having no filtering function. Further, in order for the filtration material to have good filtration performance and mechanical strength, it is necessary that, when it is heat-sintered, the ultra-high molecular weight polyethylene particles and the polyethylene particles having a medium molecular weight have an appropriate compatibility. However, since both the particles have remarkably different melting points and fluidity, appropriate compatibility is not exhibited.

【0006】以上のような構成粒子の形状や物性の違い
に起因する問題に加えて、超高分子量ポリエチレン粒子
は、分子量が数百万と大きいため、融点135℃を越え
ても溶融せず、従って添加剤を配合することができず、
濾過材に熱安定性、耐候性、帯電防止性等を付与した
り、着色を施したりすることが困難である。更に、超高
分子量ポリエチレン粒子は、高価であるという欠点も抱
えている。
In addition to the problems caused by the difference in the shape and physical properties of the constituent particles as described above, the ultra-high molecular weight polyethylene particles have a large molecular weight of several million, and therefore do not melt even when the melting point exceeds 135 ° C. Therefore, the additive cannot be blended,
It is difficult to impart heat stability, weather resistance, antistatic property, or the like to the filtering material, or to color the filtering material. Further, ultra-high molecular weight polyethylene particles also have the drawback of being expensive.

【0007】従って、本発明は上記問題点に鑑みてなさ
れたものであり、濾過性能に優れることは勿論のこと、
機械的強度にも優れ、熱安定性、耐候性、帯電防止性等
を良好に且つ簡便に付与でき、更に着色等加工性に富ん
だ濾過材を安価に提供することを目的とする。
Therefore, the present invention has been made in view of the above problems, and of course it is excellent in filtration performance.
It is an object of the present invention to provide a filter medium which is excellent in mechanical strength, can impart heat stability, weather resistance, antistatic property and the like satisfactorily and easily, and is also excellent in processability such as coloring at low cost.

【0008】[0008]

【課題を解決するための手段】本発明の目的は、ポリオ
レフィン粒子と架橋ポリオレフィン粒子とを加熱焼結し
てなる濾過材により達成することができる。
SUMMARY OF THE INVENTION It is an object of the present invention to provide polio.
This can be achieved by a filtering material obtained by heating and sintering the reffin particles and the crosslinked polyolefin particles.

【0009】本発明に使用されるポリオレフィンは、特
に限定されないが、例えばポリエチレン、塩素化ポリエ
チレン、ポリプロピレン、ポリ塩化ビニル、エチレン・
酢酸ビニル共重合体、エチレン・エチルアクリレート共
重合体が好ましい。これらポリオレフィンは、平均粒径
300μm程度の粒子に加工される。
The polyolefin used in the present invention is not particularly limited, but for example, polyethylene, chlorinated polyethylene, polypropylene, polyvinyl chloride, ethylene.
Vinyl acetate copolymer and ethylene / ethyl acrylate copolymer are preferred. These polyolefins are processed into particles having an average particle size of about 300 μm.

【0010】また、本発明に使用される架橋ポリオレフ
ィンは、特に限定されないが、例えば架橋ポリエチレ
ン、架橋塩素化ポリエチレン、架橋ポリプロピレン、架
橋ポリ塩化ビニル、架橋エチレン・酢酸ビニル共重合
体、架橋エチレン・エチルアクリレート共重合体等が好
ましい。これら架橋ポリオレフィンは、既に架橋された
ものを使用することができ、あるいは新たに架橋して調
製することもできる。そして、架橋ポリオレフィンは、
平均粒径100μm程度の粒子に加工される。
The crosslinked polyolefin used in the present invention
The resin is not particularly limited, but cross-linked polyethylene, cross-linked chlorinated polyethylene, cross-linked polypropylene, cross-linked polyvinyl chloride, cross-linked ethylene / vinyl acetate copolymer, cross-linked ethylene / ethyl acrylate copolymer and the like are preferable. As these crosslinked polyolefins , those already crosslinked can be used, or they can be newly crosslinked and prepared. And the cross-linked polyolefin is
It is processed into particles having an average particle size of about 100 μm.

【0011】架橋は、有機過酸化物による化学架橋、シ
ランカップリング剤によるシラン架橋、電子線照射によ
る放射線架橋等ケーブル、パイプ等に用いられている通
常の架橋方法を採用することができ、また必要に応じて
架橋助剤を樹脂に添加してもよい。また、架橋ポリオレ
フィンは架橋させる前は融点を超すと融解し、従って、
混練により各種充填材を添加することが可能であり、濾
過材に熱安定性、耐候性、帯電防止性等を付与すること
ができ、また顔料を添加することにより着色を施すこと
もできる。一方、架橋ポリオレフィンとして、既に架橋
された架橋ポリエチレン絶縁電力ケーブル等を用いる
と、廃棄物の再利用ができ、製品のコストを抑えること
ができるとともに、機械粉砕するだけで簡便に原料を調
製することができる。
The cross-linking can be carried out by the usual cross-linking methods used for cables, pipes, etc., such as chemical cross-linking with organic peroxides, silane cross-linking with silane coupling agents, and radiation cross-linking with electron beam irradiation. If necessary, a crosslinking aid may be added to the resin. Also, cross-linked polyolefin
The fins melt above the melting point before cross-linking, so
It is possible to add various fillers by kneading, to impart heat stability, weather resistance, antistatic property, etc. to the filter material, and to add coloring by adding a pigment. On the other hand, if a cross-linked polyethylene insulated power cable that has already been cross-linked is used as the cross-linked polyolefin , waste can be reused, the cost of the product can be suppressed, and the raw material can be prepared simply by mechanical grinding. You can

【0012】本発明に係る濾過材は、前記ポリオフィン
と前記ポリオレフィンとを粒子に加工したものを、前記
配合割合で混合して金型に充填し、加熱焼結することに
より得られる。この時のポリオレフィン粒子と架橋ポリ
オレフィン粒子との配合割合は、ポリオレフィン粒子が
20〜70重量%で、架橋ポリオレフィン粒子が30〜
80重量%とすることにより、濾過材の各性能をより良
好とすることができ好ましい。即ち、濾過材において
リオレフィン粒子はバインダーとしての役割を果たし、
一方架橋ポリオレフィン粒子は空隙形成材としての役割
を果たす。従って、ポリオレフィン粒子の配合割合が2
0重量%未満では、濾過材としての機械的強度に問題が
生じ、70重量%を越えると空隙が十分に形成されず、
濾過性能に問題を生じる。また、更に好ましい配合割合
は、30〜60重量%である。 一方、架橋ポリオレフ
ィン粒子の配合割合が30重量%未満では、形成される
空隙が不足して濾過性能に問題が生じ、80重量%を越
えると濾過材として十分な機械的強度が得られない。ま
た、更に好ましい配合割合は、40〜70重量%であ
る。
[0012] filtration material according to the present invention, obtained by the polio fins <br/> and those processed with the polyolefin particles, was filled in a mold and mixed with the mixing ratio, heated sintered To be At this time, polyolefin particles and cross-linked poly
The mixing ratio of olefin particles are polyolefin particles from 20 to 70 wt%, 30 to the cross-linked polyolefin particles
When the content is 80% by weight, each performance of the filter medium can be further improved, which is preferable. In other words, the port in the filtration material
Liolefin particles serve as a binder,
On the other hand, the crosslinked polyolefin particles serve as a void forming material. Therefore, the blending ratio of polyolefin particles is 2
If it is less than 0% by weight, the mechanical strength of the filter material may be poor, and if it exceeds 70% by weight, voids may not be sufficiently formed.
It causes a problem in filtration performance. Further, a more preferable blending ratio is 30 to 60% by weight. On the other hand, cross-linked polyolefin
If the proportion of the tin particles is less than 30% by weight, the voids formed will be insufficient to cause a problem in filtering performance, and if it exceeds 80% by weight, sufficient mechanical strength as a filtering material cannot be obtained. Further, a more preferable blending ratio is 40 to 70% by weight.

【0013】また、架橋ポリオレフィンのゲル分率は、
40%以上であることが好ましい。粉体分離装置の濾過
材として必要な通気度は、経験的に1cm3 /cm2
秒以上であることが知られており、前記ゲル分率が40
%未満の場合には前記通気度を達成できない。また、上
限値は特に制限されない。尚、このゲル分率は、樹脂を
適当な溶媒に浸漬して未架橋分を抽出し、抽出前の樹脂
と未架橋分との重量比から求められる。
The gel fraction of the crosslinked polyolefin is
It is preferably 40% or more. The air permeability required for the filter of the powder separator is empirically 1 cm 3 / cm 2 ·
It is known that the gel fraction is 40 seconds or more.
If it is less than%, the air permeability cannot be achieved. Moreover, the upper limit is not particularly limited. The gel fraction is obtained by immersing the resin in an appropriate solvent to extract the uncrosslinked component, and calculating the weight ratio between the resin and the uncrosslinked component before extraction.

【0014】ところで、架橋ポリオレフィンの分子量
は、架橋の程度により異なり、通常数万から数千万に亘
る広い分子量分布を有する。しかもその分子量分布は、
熱可塑性樹脂の分子量分布を包含する。従って、架橋
リオレフィンは、前記ポリオレフィンとの間に適度の相
溶性を有し、両樹脂からなる粒子を焼結した際に良好な
結合が得られ、濾過材とした場合に均一で、高い機械的
強度が得られる。特に、ポリオレフィン架橋ポリオレ
フィンとを同一種の樹脂で構成し、架橋および非架橋と
することにより、更に優れた相溶性が得られる。
By the way, the molecular weight of the crosslinked polyolefin varies depending on the degree of crosslinking, and usually has a wide molecular weight distribution ranging from tens of thousands to tens of millions. Moreover, its molecular weight distribution is
Includes the molecular weight distribution of thermoplastics. Therefore, cross-linked port
Liolefin has an appropriate compatibility with the above-mentioned polyolefin , a good bond is obtained when particles made of both resins are sintered, and it is uniform and has high mechanical strength when used as a filter medium. can get. In particular, polyolefins and cross-linked polyolefins
When the fin and the fin are made of the same type of resin and are crosslinked or non-crosslinked, further excellent compatibility can be obtained.

【0015】更に、ポリオレフィンおよび架橋ポリオレ
フィンを、機械粉砕により前記所定粒径の粒子となるよ
うに破砕することにより、両粒子とも不定形を呈するこ
ととなり、両粒子の混合性が向上して粒子の分離を抑制
することができる。
Furthermore, polyolefins and cross-linked polyolefins
By crushing the fins by mechanical pulverization to obtain the particles having the predetermined particle diameter, both particles have an irregular shape, the mixing property of both particles is improved, and the separation of the particles can be suppressed.

【0016】[0016]

【実施例】以下、実施例を基に本発明をより明確にする
ことができる。 ○実施例1 平均粒径140μm、ゲル分率85%の架橋ポリエチレ
ン粒子と平均粒径350μmのメルトフローレート1.
5g/10分の直鎖状低密度ポリエチレン粒子とを、混
合比率を表1に示す如く変えて2lV型ブレンダーにて
30分間混合した。この混合粒子を、高さ3mm、幅1
00mm、長さ150mmのキャビティを有する金型に
充填し、160℃の電気炉に1時間保持し、厚さ3m
m、幅100mm、長さ150mmの通気性多孔体を得
た。この通気性多孔体を、JIS L 1004に準拠
した通気性試験機((株)東洋精機製作所製)によって
通気度を測定した。また、通気性多孔体から、幅100
mm、長さ120mmの短冊状試験片を切取り、引張強
さを測定した。測定結果を表1に示した。
EXAMPLES The present invention can be clarified below based on Examples. Example 1 Cross-linked polyethylene particles having an average particle size of 140 μm and a gel fraction of 85% and a melt flow rate of 350 μm.
The linear low-density polyethylene particles of 5 g / 10 min were mixed for 30 minutes with a 21 V type blender while changing the mixing ratio as shown in Table 1. This mixed particle, height 3mm, width 1
It is filled in a mold having a cavity of 00 mm and a length of 150 mm, kept in an electric furnace at 160 ° C for 1 hour, and has a thickness of 3 m.
An air-permeable porous body having m, a width of 100 mm and a length of 150 mm was obtained. The air permeability of this air-permeable porous body was measured by a gas permeability tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.) according to JIS L 1004. Also, from the breathable porous body, the width 100
A strip-shaped test piece having a length of 120 mm and a length of 120 mm was cut out and the tensile strength was measured. The measurement results are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】粉体分離装置の濾過材として、通気度は少
なくとも1cm3 /cm2 ・秒が必要であることが経験
上知られており、表1に示す測定結果から架橋ポリエチ
レン粒子が30重量%以上、直鎖状低密度ポリエチレン
粒子が70重量%以下であると、通気度が充分であるこ
とが判った。また、粉体分離装置の濾過材として、引張
強さが0.2kg/mm2 以上必要であることが経験上
知られており、表1に示す測定結果から架橋ポリエチレ
ン粒子が80重量%以下、直鎖状低密度ポリエチレン粒
子が20重量%以上であると、機械的強度が充分である
ことが判った。なお、ゲル分率は、樹脂を120℃のキ
シレンに5時間浸漬して未架橋分を抽出し、抽出前の樹
脂と未架橋分との重量比から求めた。
It is empirically known that the filter material of the powder separating apparatus needs to have an air permeability of at least 1 cm 3 / cm 2 · sec. From the measurement results shown in Table 1, 30% by weight of crosslinked polyethylene particles is obtained. As described above, it was found that when the linear low-density polyethylene particles are 70% by weight or less, the air permeability is sufficient. Further, it is empirically known that a tensile strength of 0.2 kg / mm 2 or more is required as a filter material of a powder separation device, and from the measurement results shown in Table 1, the cross-linked polyethylene particles are 80% by weight or less, It was found that the mechanical strength was sufficient when the linear low density polyethylene particles were 20% by weight or more. The gel fraction was determined by immersing the resin in xylene at 120 ° C. for 5 hours to extract the uncrosslinked component, and calculating the weight ratio of the resin and the uncrosslinked component before extraction.

【0019】○実施例2 平均粒径が130μmで、表2に示す如くゲル分率の異
なる電子線照射架橋エチレン・酢酸ビニル共重合体(酢
酸ビニル含有量10%)粒子65重量%と、平均粒径2
90μmでメルトフローレート5.5g/10分のエチ
レン・酢酸ビニル共重合体(酢酸ビニル含有量10%)
粒子35重量%とを、2lV型ブレンダーにて30分間
混合した。なお、ゲル分率は、樹脂を120℃のキシレ
ンに5時間浸漬して未架橋分を抽出し、抽出前の樹脂と
未架橋分との重量比から求めた。この混合粒子を、実施
例1と同様な方法で通気性多孔体を得た。但し、130
℃の電気炉に1時間保持した。この通気性多孔体を、J
IS L 1004に準拠した通気性試験機((株)東
洋精機製作所製)によって通気度を測定した。測定結果
を表2に示した。
Example 2 65% by weight of electron beam irradiation crosslinked ethylene / vinyl acetate copolymer (vinyl acetate content 10%) particles having an average particle diameter of 130 μm and different gel fractions as shown in Table 2, Particle size 2
Ethylene / vinyl acetate copolymer with a melt flow rate of 5.5 g / 10 min at 90 μm (vinyl acetate content 10%)
35% by weight of particles were mixed for 30 minutes in a 2 LV type blender. The gel fraction was determined by immersing the resin in xylene at 120 ° C. for 5 hours to extract the uncrosslinked component, and calculating the weight ratio of the resin and the uncrosslinked component before extraction. An air-permeable porous body was obtained from the mixed particles in the same manner as in Example 1. However, 130
It was kept in an electric furnace at ℃ for 1 hour. This breathable porous body is
The air permeability was measured by an air permeability tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.) according to IS L 1004. The measurement results are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】表2より、架橋エチレン・酢酸ビニル共重
合体(酢酸ビニル含有量10%)のゲル分率が40%以
上であると、通気度が粉体分離装置の濾過材として必要
な1cm3 /cm2 ・秒以上となることが判った。
From Table 2, when the gel fraction of the cross-linked ethylene / vinyl acetate copolymer (vinyl acetate content 10%) is 40% or more, the air permeability is 1 cm 3 required as a filter material for the powder separating apparatus. / Cm 2 · sec or more was found.

【0022】○実施例3 真比重0.922、平均粒径140μm、ゲル分率85
%の架橋ポリエチレン粒子50重量%と、カーボンブラ
ック1%を混練・添加した黒色の真比重0.910、平
均粒径330μmのポリプロピレン粒子50重量%と
を、2lV型ブレンダーにて30分間混合したところ、
両粒子が混じり合った灰色の混合粒子が得られた。この
混合粒子100mlを300ml三角フラスコに採り、
小型シェーカーNW−DR型(宮本理研工業製)にて振
幅45mm、振盪数200回/分にて30分振盪した
後、粒子の分離の有無を観察したが、認められなかっ
た。これに対し、真比重0.935、平均粒径110μ
mの超高分子量ポリエチレン粒子50重量%と、カーボ
ンブラック1%を混練・添加した黒色の真比重0.90
5、平均粒径330μmのポリプロピレン粒子50重量
%とを、2lV型ブレンダーにて30分間混合したとこ
ろ、両粒子が混じり合った灰色の混合粒子が得られた。
この混合粒子を同様の条件で振盪して観察した結果、上
部に黒色層(ポリプロピレン粒子に富んだ層)、下部に
白色層(超高分子量ポリエチレン粒子に富んだ層)の2
層に分離しているのが認められた。各混合粒子の構成粒
子の比重差の違いを考慮しても、架橋ポリエチレン粒子
とポリプロピレン粒子との混合粒子の方が、超高分子量
ポリエチレン粒子とポリプロピレン粒子との混合粒子に
比べて混合状態が良好であることが判る。
Example 3 True specific gravity 0.922, average particle size 140 μm, gel fraction 85
% 50% by weight of crosslinked polyethylene particles and 50% by weight of polypropylene particles having a black true specific gravity of 0.910 and an average particle size of 330 μm kneaded and added with 1% of carbon black were mixed for 30 minutes with a 21V type blender. ,
A gray mixed particle in which both particles were mixed was obtained. Take 100 ml of this mixed particle in a 300 ml Erlenmeyer flask,
After shaking with a small shaker NW-DR type (manufactured by Miyamoto Riken Kogyo) at an amplitude of 45 mm and a shaking rate of 200 times / min for 30 minutes, the presence or absence of separation of particles was observed, but not observed. On the other hand, true specific gravity is 0.935, average particle size is 110μ
50% by weight of ultra-high molecular weight polyethylene particles of m and 1% of carbon black were kneaded and added to give a black true specific gravity of 0.90.
When 50% by weight of polypropylene particles having an average particle diameter of 330 μm and 50% by weight were mixed for 30 minutes with a 2 LV type blender, gray mixed particles in which both particles were mixed were obtained.
As a result of observing the mixed particles by shaking under the same conditions, it was found that a black layer (a layer rich in polypropylene particles) in the upper part and a white layer (a layer rich in ultra high molecular weight polyethylene particles) in the lower part were 2
It was observed that the layers were separated. Even considering the difference in specific gravity of the constituent particles of each mixed particle, the mixed particles of the crosslinked polyethylene particles and the polypropylene particles have a better mixed state than the mixed particles of the ultrahigh molecular weight polyethylene particles and the polypropylene particles. It turns out that

【0023】○実施例4 使用済みの6KV架橋ポリエチレン絶縁電力ケーブルの
絶縁層から回収して平均粒径90μmに粉砕したゲル分
率87%の架橋ポリエチレン粒子3kgと、平均粒径3
10μmのメルトフローレート0.5g/10分の高圧
法低密度ポリエチレン粒子3kgとを、15lV型ブレ
ンダーにて30分間混合した。この混合粒子を、円筒状
のキャビティを有する金型に充填し、150℃の電気炉
に1時間保持し、厚さ5mm、外径60mm、内径50
mm、長さ500mmの円筒状の通気性多孔体を得た。
そして、図1に示すように、この円筒状通気性多孔体1
の下部を金属の蓋2で閉じた濾過材3とした。この濾過
材3を、図2に示した粉体分離装置10の天板11の固
定部材12に取り付け、濾過試験を行った。濾過試験
は、気体供給口13から粉体分離装置10内にJIS
Z 8901「試験用ダスト」で規定される第7種「関
東ローム」(中位径27〜31μm)を5g/Nm3
有する含塵ガスを導入するとともに、この含塵ガスを濾
過材3を通じて1m/分の通気速度で吸引して濾過し、
気体排出口14から排出される濾過ガスの1時間、24
時間及び120時間経過後の含塵濃度を測定したとこ
ろ、それぞれ2.5mg/Nm3 、0.5mg/Nm3
及び0.6mg/Nm3 であり、濾過材として有用であ
ることが判明した。
Example 4 3 kg of cross-linked polyethylene particles having a gel fraction of 87% recovered from the insulating layer of a used 6 KV cross-linked polyethylene insulated power cable and pulverized to an average particle size of 90 μm, and an average particle size of 3
A high-pressure method low-density polyethylene particle (3 kg) having a melt flow rate of 0.5 μm / 10 min of 10 μm was mixed for 30 minutes with a 15V type blender. The mixed particles were filled in a mold having a cylindrical cavity and held in an electric furnace at 150 ° C. for 1 hour to have a thickness of 5 mm, an outer diameter of 60 mm and an inner diameter of 50.
A cylindrical air-permeable porous body having a length of 500 mm and a length of 500 mm was obtained.
Then, as shown in FIG. 1, this cylindrical air-permeable porous body 1
A lower part of the filter was closed with a metal lid 2 to form a filter medium 3. The filtering material 3 was attached to the fixing member 12 of the top plate 11 of the powder separating apparatus 10 shown in FIG. The filtration test is conducted in accordance with JIS in the powder separating device 10 from the gas supply port 13.
A dust-containing gas containing 5 g / Nm 3 of the 7th type “Kanto Loam” (median diameter 27 to 31 μm) specified by Z 8901 “test dust” is introduced, and the dust-containing gas is passed through the filter medium 3. Suction at a ventilation rate of 1 m / min, filter,
24 hours of filtered gas discharged from the gas outlet 14
Was time and measuring the dust-containing concentration after 120 hours, respectively 2.5mg / Nm 3, 0.5mg / Nm 3
And 0.6 mg / Nm 3 , which proved to be useful as a filter medium.

【0024】上記の結果に示されるように、実施例1に
よりポリオレフィンと架橋ポリオレフィンとの混合比率
の適正範囲が、また実施例2により架橋ポリオレフィン
のゲル分率の最適範囲が、それぞれ判明した。また、実
施例3及び実施例4により、混合時における両粒子の分
離もなく、濾過材とした場合にも濾過性能に優れ、濾過
材として十分使用可能であることが確認された。一方、
実施例3の比較例からは、超高分子量ポリエチレン粒子
を使用した場合の混合性の悪さが確認された。
As shown in the above results, the proper range of the mixing ratio of the polyolefin and the crosslinked polyolefin is shown in Example 1, and the optimum range of the gel fraction of the crosslinked polyolefin is shown in Example 2. found. In addition, it was confirmed from Example 3 and Example 4 that both particles were not separated during mixing, and when used as a filtering material, the filtering performance was excellent and the particles could be sufficiently used as the filtering material. on the other hand,
From the comparative example of Example 3, poor mixing properties were confirmed when ultra-high molecular weight polyethylene particles were used.

【0025】[0025]

【発明の効果】本発明によれば、ポリオレフィン粒子と
架橋ポリオレフィン粒子とを組み合わせることにより、
原料となる前記両粒子の空気輸送や金型充填の際の分離
がなく、均一に混合できるとともに、加熱焼結時におけ
る前記両粒子の相溶性が適度に得られるため、濾過材は
均一構造となり、濾過材全体の機械的強度を高めること
ができる。また、濾過材に熱安定性、耐候性、帯電防止
性等を付与したり、あるいは着色を施すことが可能とな
る。更に、架橋ポリオレフィン粒子として、廃棄処分さ
れる架橋ポリエチレン絶縁電力ケーブルから回収した架
橋ポリエチレンの活用により、原料コストの低減を図る
ことができるととに、資源の再利用の観点からも好ま
しい。
According to the present invention, by combining polyolefin particles and crosslinked polyolefin particles,
There is no separation at the time of air transportation or mold filling of the both particles as a raw material, and it is possible to mix uniformly, and since the compatibility of the both particles at the time of heating and sintering can be appropriately obtained, the filtering material has a uniform structure. The mechanical strength of the entire filter material can be increased. Further, it becomes possible to impart heat stability, weather resistance, antistatic property, or the like to the filtering material, or to color the filtering material. Further, as a crosslinking polyolefin particles, by utilizing the recovered cross-linked polyethylene crosslinked polyethylene insulated power cables disposal, as well as to be able to reduce the material cost, preferable from the viewpoint of recycling of resources.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例4において作製した濾過材を示す斜視図
である。
FIG. 1 is a perspective view showing a filter medium manufactured in Example 4.

【図2】実施例4において使用した粉体分離装置を示す
要部断面図である。
FIG. 2 is a cross-sectional view of essential parts showing a powder separation device used in Example 4.

【符号の説明】[Explanation of symbols]

1 通気性多孔体 2 蓋 3 濾過材 10 粉体分離装置 11 天板 12 固定部材 13 気体供給口 14 気体排出口 1 Breathable porous body 2 lid 3 Filter material 10 Powder separation device 11 Top plate 12 fixing members 13 Gas supply port 14 Gas outlet

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01D 39/00 - 39/20 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) B01D 39/00-39/20

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリオレフィン粒子と架橋ポリオレフィ
粒子とを加熱焼結してなることを特徴とする濾過材。
1. A polyolefin particles and the cross-linking polyolefin
A filter material, which is obtained by heating and sintering carbon particles.
【請求項2】 前記ポリオレフィン粒子が20〜70重
量%であり、前記架橋ポリオレフィン粒子が30〜80
重量%であることを特徴とする請求項1記載の濾過材。
2. The polyolefin particles are 20 to 70% by weight, and the crosslinked polyolefin particles are 30 to 80%.
The filtering material according to claim 1, wherein the filtering material is wt%.
【請求項3】 前記架橋ポリオレフィン粒子のゲル分率
が、40%以上であることを特徴とする請求項1または
2記載の濾過材。
3. The filter medium according to claim 1, wherein the gel fraction of the crosslinked polyolefin particles is 40% or more.
JP18308594A 1994-07-13 1994-07-13 Filter material Expired - Fee Related JP3429072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18308594A JP3429072B2 (en) 1994-07-13 1994-07-13 Filter material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18308594A JP3429072B2 (en) 1994-07-13 1994-07-13 Filter material

Publications (2)

Publication Number Publication Date
JPH0824536A JPH0824536A (en) 1996-01-30
JP3429072B2 true JP3429072B2 (en) 2003-07-22

Family

ID=16129504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18308594A Expired - Fee Related JP3429072B2 (en) 1994-07-13 1994-07-13 Filter material

Country Status (1)

Country Link
JP (1) JP3429072B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3948512B2 (en) 2001-10-29 2007-07-25 日鉄鉱業株式会社 Heat resistant filter element and manufacturing method thereof
CN107537242A (en) * 2017-07-27 2018-01-05 秦诗发 Filter and processing mold are burnt in one-shot forming modeling
CN107537244A (en) * 2017-07-27 2018-01-05 秦诗发 Screen pipe and processing mold are burnt in one-shot forming modeling

Also Published As

Publication number Publication date
JPH0824536A (en) 1996-01-30

Similar Documents

Publication Publication Date Title
JP3429072B2 (en) Filter material
US8520210B2 (en) Separation of cenospheres from fly ash
KR20200002907A (en) Iron ore pellets
JP4101638B2 (en) Filter element and manufacturing method thereof
KR100307933B1 (en) A Separate processing method of a ruined electric wire and a ruined correspondent cable
KR102641812B1 (en) Briquettes and method for manufacturing the same
JP2008126185A (en) Calcined object and its manufacturing method
JP2022532538A (en) Manufacturing method and additive composition of additives for bitumen conglomerate with high mechanical performance
JP3212055B2 (en) Plastic sintered filter
JP3403481B2 (en) Antistatic filter element and method of manufacturing the same
JP7100602B2 (en) Incinerator ash treatment method and treatment equipment
FR2603884A1 (en) Process for the manufacture of a material with cellular structure of high permeability, material obtained
JP2002516379A (en) Equipment and method for separating residual substances from waste heat treatment equipment
JP5172196B2 (en) Incineration ash particle sorting method
KR101888829B1 (en) Adsorption carrier using silica fume and calcium hydroxide, and method of manufacturing there of
Sekito et al. Study on composition and particle characteristics of shredded municipal waste for the improvement of separation efficiency in a municipal bulky waste processing facility
RU2183190C2 (en) Method of carbon electrode making
JP2002239319A (en) Filter element and manufacturing method therefor
JP4118720B2 (en) Antistatic breathable porous material
JPH0885797A (en) Production of refuse-solidified fuel
JP2002239320A (en) Porous filter element and manufacturing method therefor
Lee et al. Electrostatic beneficiation of coal fly ash utilizing triboelectric charging with subsequent electrostatic separation
JP2003300760A (en) Method for reutilizing casting dust
JPH1126220A (en) Porcelain material composition collected from incineration ash of municipal refuse
JPH08323327A (en) Method for granulating steelmaking dust

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees