JP3428363B2 - Vehicle driving force control device - Google Patents

Vehicle driving force control device

Info

Publication number
JP3428363B2
JP3428363B2 JP11109497A JP11109497A JP3428363B2 JP 3428363 B2 JP3428363 B2 JP 3428363B2 JP 11109497 A JP11109497 A JP 11109497A JP 11109497 A JP11109497 A JP 11109497A JP 3428363 B2 JP3428363 B2 JP 3428363B2
Authority
JP
Japan
Prior art keywords
engine
force control
idling
load
driving force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11109497A
Other languages
Japanese (ja)
Other versions
JPH10297315A (en
Inventor
徹 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11109497A priority Critical patent/JP3428363B2/en
Priority to EP98107737A priority patent/EP0875414B1/en
Priority to DE69831031T priority patent/DE69831031T2/en
Priority to EP03014653A priority patent/EP1346871B1/en
Priority to US09/066,816 priority patent/US6199005B1/en
Priority to DE69839949T priority patent/DE69839949D1/en
Publication of JPH10297315A publication Critical patent/JPH10297315A/en
Application granted granted Critical
Publication of JP3428363B2 publication Critical patent/JP3428363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、駆動輪の空転を防
いで車両の安定性及び運転性を確保する駆動力制御装置
に関し、特に無段変速機を備えた駆動力制御装置の改良
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving force control device for preventing idling of driving wheels to ensure vehicle stability and drivability, and more particularly to improvement of a driving force control device provided with a continuously variable transmission. Is.

【0002】[0002]

【従来の技術】加速時等に駆動輪が空転して、加速性能
が低下するのを防止する駆動力制御装置(あるいはTC
S=トラクションコントロールシステム)としては、ア
クチュエータに駆動される第2スロットルの開度の低減
や燃料噴射カット、点火タイミングリタード制御などに
よりエンジン出力を抑制したり、制動装置を作動させる
ことで駆動輪の空転を抑制するものが従来から知られて
おり、さらに、無段変速機を備えた車両の駆動力制御装
置としては、例えば、特開平4−50440号公報等が
知られている。
2. Description of the Related Art A driving force control device (or TC for preventing acceleration performance from being lowered due to idling of driving wheels during acceleration or the like)
(S = traction control system), the engine output is suppressed by reducing the opening of the second throttle driven by the actuator, fuel injection cut, ignition timing retard control, etc. BACKGROUND ART A device that suppresses idling has been conventionally known, and as a driving force control device for a vehicle equipped with a continuously variable transmission, for example, Japanese Patent Laid-Open No. 4-50440 is known.

【0003】また、無段変速機としてはVベルト式やト
ロイダル式が従来から知られており、これら無段変速機
の変速制御は、検出した車速(≒駆動輪速)やスロット
ル開度(又はアクセルペダル踏み込み量)等の運転状態
から、予め設定した変速マップに基づいて目標変速比を
連続的に変化させている。
Further, as a continuously variable transmission, a V-belt type and a toroidal type have been conventionally known, and shift control of these continuously variable transmissions is performed by detecting a detected vehicle speed (≈driving wheel speed) or a throttle opening (or). The target gear ratio is continuously changed from an operating state such as the accelerator pedal depression amount) based on a preset gear shift map.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の車両用駆動力制御装置に無段変速機を組み合わせた
場合、燃料噴射カットのように、応答性の高い駆動力制
御を行った場合、無段変速機の変速応答性が駆動力制御
に追従できず、変速制御装置では無段変速機の出力軸回
転数(≒駆動輪速Vwr)と入力軸回転数の比を実際の
変速比とし、この実変速比を運転状態に応じた目標変速
比へ一致させるように制御するが、上記したように変速
制御の応答性が低いために、図9に示すようにハンチン
グを起こし、この変速比のハンチングによって駆動輪の
トルクも急変するため、車体に加わる前後方向の加速度
も急変し、車体に振動が加わって運転性及び安定性を損
なう場合があった。
However, when a continuously variable transmission is combined with the above-described conventional vehicle driving force control device, when a highly responsive driving force control such as a fuel injection cut is performed, there is no The speed change response of the multi-speed transmission cannot follow the driving force control, and the speed change control device sets the ratio of the output shaft speed (≈drive wheel speed Vwr) of the continuously variable transmission to the input shaft speed as the actual speed ratio. The actual gear ratio is controlled so as to match the target gear ratio according to the operating state. However, since the responsiveness of the gear shift control is low as described above, hunting occurs as shown in FIG. Since the torque of the drive wheels also suddenly changes due to the hunting, the longitudinal acceleration applied to the vehicle body also suddenly changes, and vibration may be applied to the vehicle body to impair drivability and stability.

【0005】また、駆動力制御装置で行うエンジン出力
制御のうち、燃料噴射カットは応答性が高いものの、そ
の制御が気筒単位となるため制御の分解能が低く、気筒
数の少ないエンジンでは駆動力の変動が大きいため、こ
のようなエンジンと無段変速機を組み合わせた場合で
は、駆動力制御時の駆動力の変動が過大となってしまう
という問題点があった。
In engine output control performed by the driving force control device, although the fuel injection cut has a high responsiveness, the control is performed on a cylinder-by-cylinder basis, so that the control resolution is low. Since the variation is large, there is a problem that the variation of the driving force during the driving force control becomes excessive when the engine and the continuously variable transmission are combined.

【0006】そこで本発明は、上記問題点に鑑みてなさ
れたもので、無段変速機を備えた車両の駆動力制御装置
が作動したときに、無段変速機の変速比のハンチングを
抑制することを目的とし、特に、小気筒数のエンジンに
無段変速機を組み合わせた場合でも円滑に駆動輪の空転
を抑制することを目的とする。
Therefore, the present invention has been made in view of the above problems, and suppresses the hunting of the gear ratio of the continuously variable transmission when the driving force control device of the vehicle having the continuously variable transmission is operated. In particular, it is an object of the present invention to smoothly suppress idling of drive wheels even when a continuously variable transmission is combined with an engine having a small number of cylinders.

【0007】[0007]

【課題を解決するための手段】第1の発明は、無段変速
機6を介してエンジン4に連結された駆動輪50と、車
両の運転状態に応じて前記無段変速機6の変速比を設定
する変速制御手段51と、前記駆動輪50の路面に対す
るスリップが所定値を超えたときに駆動輪50の空転を
判定する駆動力制御開始判定手段52と、前記駆動力制
御開始判定手段52が駆動輪の空転を判定したときに駆
動輪50の駆動力を低減する駆動力抑制手段53とを備
えた車両用駆動力制御装置において、前記駆動力制御手
段53は、エンジン4の負荷を検出する負荷検出手段5
4と、エンジン負荷が大きい場合には、エンジン出力を
低減させるとともに、無段変速機の伝達トルクを低減す
る変速比変動量を低減する高負荷時空転抑制手段55
と、エンジン負荷が小さい場合には、エンジン出力の低
減を禁止又は抑制するとともに、無段変速機6の伝達ト
ルクを低減させる低負荷時空転抑制手段56とを備えた
ことを特徴とする車両用駆動力制御装置。
A first aspect of the present invention is to provide a drive wheel 50 connected to an engine 4 via a continuously variable transmission 6 and a gear ratio of the continuously variable transmission 6 according to a driving state of a vehicle. , A drive force control start determining means 52 for determining idling of the drive wheel 50 when the slip of the drive wheel 50 on the road surface exceeds a predetermined value, and the drive force control start determining means 52. In the vehicle driving force control device, the driving force control unit 53 includes a driving force suppressing unit 53 that reduces the driving force of the driving wheels 50 when the idling of the driving wheels is determined by the driving force controlling unit 53. Load detection means 5
4. When the engine load is large, the engine output is reduced and the transmission torque of the continuously variable transmission is reduced.
High load idling suppression means 55 for reducing the gear ratio fluctuation amount
When the engine load is small, the engine output
A vehicle drive force control device comprising: a low-load idling suppression unit 56 that inhibits or suppresses a reduction in speed and reduces the transmission torque of the continuously variable transmission 6.

【0008】また、第2の発明は、前記第1の発明にお
いて、前記低負荷時空転抑制手段は、無段変速機の応答
速度を増大させる。
In a second aspect based on the first aspect, the low load idling suppression means increases the response speed of the continuously variable transmission.

【0009】また、第3の発明は、前記第1の発明にお
いて、前記高負荷時空転抑制手段は、エンジンの出力低
減ゲインを増大する。
In a third aspect based on the first aspect, the high load idling suppression means increases the output reduction gain of the engine.

【0010】また、第4の発明は、前記第1の発明にお
いて、前記負荷検出手段は、駆動輪の空転が検出された
ときのエンジン回転数に応じて負荷状態を検出する。
In a fourth aspect based on the first aspect, the load detecting means detects the load state according to the engine speed when the idling of the drive wheels is detected.

【0011】[0011]

【0012】また、第の発明は前記第1の発明におい
て、前記高負荷時空転抑制手段は、燃料噴射カット手段
を備える。
In a fifth aspect based on the first aspect, the high load idling suppressing means comprises a fuel injection cutting means.

【0013】[0013]

【発明の効果】したがって、第1の発明は、駆動輪が空
転を開始した場合、この空転時のエンジン負荷に応じて
高負荷時空転抑制手段と低負荷時空転抑制手段が選択的
に切り換えられ、エンジンの高負荷状態ではエンジン出
力を低減させることで、駆動輪の空転を速やかに収束さ
せる一方、エンジンの低負荷状態では、無段変速機の伝
達トルクを低減させることで、駆動輪の空転を滑らかに
収束させることができ、例えば、無段変速機のハンチン
グが発生しやすいエンジンの高負荷域では、燃料噴射カ
ット量を大きく設定してエンジンの出力低減を積極的に
行い、同時に無段変速機の変速比変動量を低減してハン
チングを防止することで、無段変速機を備えた駆動力制
御装置を円滑に作動させ、逆に、燃料噴射カットによる
エンジンの出力低減、駆動力の過大な変動となる低負荷
状態では、無段変速機の応答性を高めることで、無段変
速機の連続的なHi側への変速によって駆動輪の空転を
抑制することができ、エンジン4負荷状態にかかわら
ず、無段変速機を備えた車両の駆動力制御を常時円滑に
行うことが可能となり、特に、燃料噴射カットによって
低負荷域でエンジンの出力変動が過大になりやすい気筒
数の少ないエンジンと、無段変速機を組み合わせた場合
の、駆動力制御性能を前記従来例に比して大幅に向上さ
せることが可能となる。
Therefore, according to the first aspect of the invention, when the drive wheels start idling, the high-load idling suppressing means and the low-load idling suppressing means are selectively switched according to the engine load during idling. While the engine output is reduced under high engine load conditions, the idle rotation of the drive wheels is quickly converged, while under low engine load conditions, the transmission torque of the continuously variable transmission is reduced to reduce the idle rotation of the drive wheels. Can be smoothly converged, and for example, in the high load range of the engine where hunting of the continuously variable transmission is likely to occur, the fuel injection cut amount is set large to actively reduce the engine output and By reducing the amount of gear ratio variation of the transmission to prevent hunting, the drive force control device equipped with a continuously variable transmission operates smoothly, and conversely, the output of the engine is reduced due to fuel injection cut. In a low load state in which the driving force fluctuates excessively, the response of the continuously variable transmission can be enhanced to suppress the idling of the drive wheels by continuously shifting the continuously variable transmission to the Hi side. , Regardless of the load state of the engine 4, it becomes possible to always smoothly control the driving force of the vehicle equipped with the continuously variable transmission, and in particular, the output variation of the engine tends to be excessive in the low load region due to the fuel injection cut. It is possible to significantly improve the driving force control performance in the case of combining an engine having a small number of cylinders and a continuously variable transmission as compared with the conventional example.

【0014】また、第2の発明は、低負荷時空転抑制手
段は、無段変速機の応答速度を増大させて駆動輪の空転
に応じたHi側への変速を迅速かつ滑らかに行って、駆
動輪への伝達トルクを迅速に低減して空転を抑制するこ
とができ、高負荷状態のスリップ時では応答速度を増大
しないため、駆動力制御時の変速比の防止できる。
According to a second aspect of the present invention, the low load idling suppression means increases the response speed of the continuously variable transmission to quickly and smoothly perform the gear shifting to the Hi side according to the idling of the drive wheels. The torque transmitted to the drive wheels can be quickly reduced to suppress idling, and the response speed does not increase during slip in a high load state, so that the gear ratio during drive force control can be prevented.

【0015】また、第3の発明は、高負荷時空転抑制手
段は、エンジンの出力低減ゲインを増大させて、駆動輪
の空転の抑制を高い応答性で行うことができ、例えば、
出力低減ゲインとしては、エンジンの燃料噴射カット気
筒数を増大することでこのゲインを増大できる。
According to a third aspect of the present invention, the high load idling suppressing means can increase the output reduction gain of the engine to suppress idling of the drive wheels with high responsiveness.
As the output reduction gain, this gain can be increased by increasing the number of fuel injection cut cylinders of the engine.

【0016】また、第4の発明は、エンジンの負荷状態
を駆動輪の空転が検出されたときのエンジン回転数に応
じて検出するため、特別な演算を要することなく容易か
つ迅速に負荷状態を正確に検出できる。
Further, according to the fourth aspect of the present invention, the load condition of the engine is detected according to the engine speed when the idling of the drive wheels is detected, so that the load condition can be determined easily and quickly without any special calculation. Can be accurately detected.

【0017】[0017]

【0018】また、第の発明は、高負荷時空転抑制手
段を燃料噴射カットにより行うことで、エンジン出力の
低減を高い応答性で行うとともに、燃料噴射カット気筒
数を変更することで、エンジン出力低減ゲインの変更を
容易に行うことができる。
The fifth aspect of the present invention is to reduce the engine output with high responsiveness by performing the high load idling suppression means by fuel injection cut, and by changing the number of fuel injection cut cylinders. The output reduction gain can be easily changed.

【0019】[0019]

【発明の実施の形態】以下、本発明の一実施形態を添付
図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0020】図1において、駆動力制御装置はマイクロ
コンピュータ等から構成されたTCSコントローラ1を
主体として、TCSコントローラ1の駆動力制御指令信
号Fhに応じてエンジン4へ燃料噴射カット制御を行う
エンジンコントローラ2と、TCSコントローラ1の駆
動力低減指令Fhに応じて変速制御の一次遅れ定数Kr
を変化させるCVTコントローラ3から構成した場合を
示す。
In FIG. 1, the driving force control device is mainly composed of a TCS controller 1 composed of a microcomputer or the like, and an engine controller for controlling fuel injection cut to the engine 4 in response to a driving force control command signal Fh of the TCS controller 1. 2 and the primary delay constant Kr of the shift control according to the driving force reduction command Fh of the TCS controller 1.
It shows a case where the CVT controller 3 is configured to change the.

【0021】無段変速機6に連結されたエンジン4は、
エンジンコントローラ2によって燃料噴射量や点火時期
等を運転状態に応じて制御されており、前記従来例と同
様にエンジンコントローラ2は、通常の運転時ではエン
ジン回転数Neやスロットル開度センサ11が検出した
スロットル開度TVO(又はアクセルペダル踏み込み
量)等に応じた制御を行っている。
The engine 4 connected to the continuously variable transmission 6 is
The fuel injection amount, the ignition timing, etc. are controlled by the engine controller 2 in accordance with the operating state. The engine controller 2 detects the engine speed Ne and the throttle opening sensor 11 during normal operation as in the conventional example. The control is performed according to the throttle opening TVO (or the accelerator pedal depression amount) and the like.

【0022】無段変速機6は駆動輪としての後輪RR、
RLに連結されており、CVTコントローラ3が決定し
た目標変速比RTOとなるよう実際の変速比(以下、実
変速比)を変更するもので、CVTコントローラ3は、
スロットル開度センサ11が検出したスロットル開度T
VOと、車速センサ5が検出した車速VSP等の運転状
態に応じて、図示しない変速マップから目標変速比RT
Oを演算する。
The continuously variable transmission 6 includes rear wheels RR as driving wheels,
The CVT controller 3 is connected to the RL and changes the actual gear ratio (hereinafter, the actual gear ratio) so that the target gear ratio RTO determined by the CVT controller 3 is achieved.
Throttle opening T detected by the throttle opening sensor 11
According to the operating conditions such as VO and the vehicle speed VSP detected by the vehicle speed sensor 5, a target gear ratio RT is calculated from a gear shift map (not shown).
Calculate O.

【0023】なお、無段変速機6は後輪RR、RLと連
結されるFR式を構成しており、以下、左右後輪RL、
RRを駆動輪とし、左右前輪FL、FRを従動輪とす
る。
The continuously variable transmission 6 is of the FR type connected to the rear wheels RR and RL.
RR is a driving wheel and left and right front wheels FL and FR are driven wheels.

【0024】TCSコントローラ1には、各車輪または
車軸の回転速度を検出する車輪速センサ12FR、12
FL、12RR、12RLの検出信号がそれぞれ入力さ
れ、TCSコントローラ1は、これら各車輪速VWFR
WFL、VWRR、VWRLに基づいて駆動輪RR、RLの空
転を検出し、駆動輪RR、RLが空転した場合には、エ
ンジンコントローラ2へ駆動力制御指令信号Fhを送出
し、前記従来例のように燃料噴射カットを行ってエンジ
ン4の出力を抑制するとともに、さらにTCSコントロ
ーラ1はCVTコントローラ3へも駆動力制御指令信号
Fhを送出する。
The TCS controller 1 includes wheel speed sensors 12FR, 12 for detecting the rotational speed of each wheel or axle.
FL, 12RR, and 12RL detection signals are respectively input, and the TCS controller 1 causes the wheel speeds V WFR ,
Based on V WFL , V WRR , and V WRL , the idling of the drive wheels RR and RL is detected, and when the drive wheels RR and RL are idling, a drive force control command signal Fh is sent to the engine controller 2 and As in the example, the fuel injection is cut to suppress the output of the engine 4, and the TCS controller 1 also sends the driving force control command signal Fh to the CVT controller 3.

【0025】そして、CVTコントローラ3はこのTC
Sコントローラ1からの駆動力制御指令信号Fhに応じ
て、後述するように、実変速比を目標変速比RTOへ近
づけるための一次遅れの時定数Krを変更して、無段変
速機6の変速比を制御する。
Then, the CVT controller 3 uses this TC
In accordance with the driving force control command signal Fh from the S controller 1, as will be described later, the time constant Kr of the first-order lag for bringing the actual speed ratio closer to the target speed ratio RTO is changed to change the speed of the continuously variable transmission 6. Control the ratio.

【0026】なお、車速センサ5は無段変速機6の出力
軸回転数を検出し、これに所定の定数を乗じたものを車
速VSPとして用いる。
The vehicle speed sensor 5 detects the output shaft speed of the continuously variable transmission 6 and multiplies it by a predetermined constant to use as the vehicle speed VSP.

【0027】ここで、TCSコントローラ1及びCVT
コントローラ3で行われる駆動力制御及び変速制御の一
例を図2のフローチャートに示し、以下、このフローチ
ャートを参照しながら駆動力制御と変速制御について詳
述する。なお、このフローチャートに基づく制御は所定
時間毎、例えば、10msec毎等に実行されるものであ
る。
Here, the TCS controller 1 and the CVT
An example of the driving force control and the shift control performed by the controller 3 is shown in the flowchart of FIG. 2, and the driving force control and the shift control will be described in detail below with reference to this flowchart. The control based on this flowchart is executed every predetermined time, for example, every 10 msec.

【0028】ステップS1〜S6、S9、S10はTC
Sコントローラ1で行われる制御を示し、ステップS
8、S11〜S14はTCSコントローラ1の指令に応
じてCVTコントローラ3で行われる制御を示す。
Steps S1 to S6, S9 and S10 are TC
The control performed by the S controller 1 is shown in step S
8, S11 to S14 represent controls performed by the CVT controller 3 in response to commands from the TCS controller 1.

【0029】ステップS1では、TCSコントローラ1
が各車輪速センサ12FR〜12RLの出力を読み込ん
で、各車輪の速度VWFR、VWFL、VWRR、VWRLを求める
とともに、エンジンコントローラ2からエンジン4の回
転数Neを読み込む。
In step S1, the TCS controller 1
Reads the outputs of the wheel speed sensors 12FR to 12RL to obtain the speeds V WFR , V WFL , V WRR , and V WRL of the wheels, and reads the rotation speed Ne of the engine 4 from the engine controller 2.

【0030】そして、ステップS2では、従動輪の平均
速度Vwfを、左右前輪FR、FLの車輪速VWFR、V
WFLの平均値より求め、ステップS3では、同様にして
駆動輪の平均速度Vwrを左右後輪RR、RLの車輪速
WRR、VWRLから求める。
Then, in step S2, the average speed Vwf of the driven wheels is set to the wheel speeds V WFR , V of the left and right front wheels FR, FL.
From the average value of WFL , in step S3, the average speed Vwr of the driving wheels is similarly calculated from the wheel speeds V WRR and V WRL of the left and right rear wheels RR and RL.

【0031】次に、ステップS4では、駆動輪の空転を
検出するとともに、駆動力制御の目標値となる駆動輪速
の目標値Vwsを、現在の車速を代表する従動輪平均速
Vwfに所定値αを加算して求める。
Next, in step S4, the idling of the drive wheels is detected, and the target value Vws of the drive wheel speed which is the target value of the driving force control is set to a predetermined value of the driven wheel average speed Vwf representing the current vehicle speed. Calculated by adding α.

【0032】Vws=Vwf+α ここで、目標駆動輪速Vwsの設定は、例えば、従動輪
平均速Vwfに所定値α(例えば、2〜5Km/h)を加算
した値となる。
Vws = Vwf + α Here, the target drive wheel speed Vws is set to, for example, a value obtained by adding a predetermined value α (for example, 2 to 5 km / h) to the driven wheel average speed Vwf.

【0033】ステップS5では、駆動輪平均速Vwrが
目標駆動輪速Vwsを超えたか否かを判定することで駆
動輪の空転を検出し、駆動輪平均速Vwrが目標駆動輪
速Vwsを超えたときには、駆動輪が空転したと判定し
てステップS6の処理へ進む一方、駆動輪平均速Vwr
が目標駆動輪速Vws以下の場合には、通常走行中であ
ると判定してステップS12以降の処理へ進む。
In step S5, idling of the drive wheels is detected by determining whether the drive wheel average speed Vwr exceeds the target drive wheel speed Vws, and the drive wheel average speed Vwr exceeds the target drive wheel speed Vws. In some cases, it is determined that the drive wheels have idled, and the process proceeds to step S6, while the drive wheel average speed Vwr
Is equal to or lower than the target drive wheel speed Vws, it is determined that the vehicle is normally traveling, and the process proceeds to step S12 and thereafter.

【0034】次に、駆動輪の空転が検出されたステップ
S6では、現在のエンジン4の負荷が大きいか否かをエ
ンジン回転数Neに基づいて判定する。すなわち、エン
ジン回転数Neが所定値N1よりも大きい高回転数領域
の場合には高負荷状態と判定する一方、エンジン回転数
Neが所定値N1以下の低回転数領域の場合には低負荷
状態と判定し、エンジン回転数Neが所定値N1以下の
低回転数領域にある場合では、ステップS7へ進んで駆
動力制御指令信号Fhに0を設定した後、ステップS8
へ進む。
Next, in step S6 in which the idling of the drive wheels is detected, it is determined based on the engine speed Ne whether the current load on the engine 4 is large. That is, when the engine speed Ne is in the high rotation speed region larger than the predetermined value N1, it is determined as a high load state, while when the engine rotation speed Ne is the predetermined rotation speed N1 or less, the low load state. If it is determined that the engine speed Ne is in the low speed region of the predetermined value N1 or less, the process proceeds to step S7, where 0 is set to the driving force control command signal Fh, and then step S8 is performed.
Go to.

【0035】駆動力制御指令信号Fh=0となるステッ
プS8では、CVTコントローラ3は読み込んだ駆動力
制御指令信号Fh=0より、変速制御に用いる一次遅れ
時定数Krを、図3に示すような予め設定したマップに
基づいて、上記エンジン回転数Neに対応する値に設定
した後に、ステップS9へ進む。
In step S8 when the driving force control command signal Fh = 0, the CVT controller 3 uses the read driving force control command signal Fh = 0 to determine the first-order delay time constant Kr used for the shift control as shown in FIG. After setting a value corresponding to the engine speed Ne based on a preset map, the process proceeds to step S9.

【0036】一方、上記ステップS6へ進んで、エンジ
ン回転数Neが所定値N1を超える高負荷状態にある場
合では、ステップS10で、駆動力制御指令信号Fhに
1を設定した後、ステップS11へ進む。
On the other hand, if the engine speed Ne exceeds the predetermined value N1 and the engine is in a high load state in step S6, the driving force control command signal Fh is set to 1 in step S10, and then step S11 is performed. move on.

【0037】駆動力制御指令信号Fh=1となるステッ
プS11では、CVTコントローラ3は読み込んだ駆動
力制御指令信号Fh=1より、変速制御に用いる一次遅
れ時定数Krを、図3に示すような予め設定したマップ
に基づいて、所定値K1に固定した後に、ステップS9
へ進む。
In step S11 where the driving force control command signal Fh = 1, the CVT controller 3 uses the read driving force control command signal Fh = 1 to determine the first-order delay time constant Kr used for the shift control as shown in FIG. After fixing to a predetermined value K1 based on a preset map, step S9
Go to.

【0038】なお、図3に示した、一次遅れの時定数K
rのマップは、車両の特性に応じて予め設定したもので
あり、エンジン回転数Neが所定値N1以下の低回転数
領域では、エンジン回転数Neが0からN1へ向けて増
大するにつれて、時定数Krは所定値K0から所定値K
1まで漸増するよう設定される一方、エンジン回転数N
eがN1を超えると、時定数Krは所定値K1に固定す
るよう設定され、これら所定値はK0<K1の関係に設
定される。
The time constant K of the first-order lag shown in FIG.
The map of r is set in advance according to the characteristics of the vehicle, and in the low engine speed region where the engine speed Ne is equal to or lower than the predetermined value N1, the engine speed Ne increases as the engine speed Ne increases from 0 to N1. The constant Kr is a predetermined value K0 to a predetermined value K
The engine speed N is set while gradually increasing to 1.
When e exceeds N1, the time constant Kr is set to be fixed to the predetermined value K1, and these predetermined values are set to the relationship of K0 <K1.

【0039】こうして、上記ステップS7、8又はステ
ップS10、11で、エンジン回転数Neの大小に応じ
て駆動力制御指令信号Fhと時定数Krを設定した後に
は、ステップS10でTCSコントローラ1は、駆動輪
のスリップ状態に応じてエンジンコントローラ2へ駆動
力制御指令信号Fhに応じて、エンジン4の出力の低減
要求を行う。
After setting the driving force control command signal Fh and the time constant Kr in accordance with the magnitude of the engine speed Ne in steps S7 and S8 or S10 and S11, the TCS controller 1 operates in step S10. According to the driving force control command signal Fh, the engine controller 2 is requested to reduce the output of the engine 4 according to the slip state of the driving wheels.

【0040】すなわち、駆動力制御指令信号Fhが0、
すなわち、低回転数領域の場合、燃料噴射カット量の最
大値を図4に示すように、Fc1とする一方、Fh=
1、すなわち、高回転数領域の場合には燃料噴射カット
量の最大値を図5に示すように、低回転数領域のFc1
よりも大きいFc2設定して、駆動輪のスリップ率Sの
大きさに応じて燃料噴射カット量Fcを可変制御し、エ
ンジン4の出力低減ゲインを各最大値Fc1、Fc2ま
での間で変更可能とする。
That is, the driving force control command signal Fh is 0,
That is, in the low rotation speed region, the maximum value of the fuel injection cut amount is set to Fc1 as shown in FIG. 4, while Fh =
1, that is, the maximum value of the fuel injection cut amount in the high rotation speed region is Fc1 in the low rotation speed region as shown in FIG.
The fuel injection cut amount Fc is variably controlled according to the size of the slip ratio S of the driving wheels, and the output reduction gain of the engine 4 can be changed between the maximum values Fc1 and Fc2. To do.

【0041】なお、スリップ率Sは、 S=Vwr/Vwf で表され、TCSコントローラ1は、このスリップ率S
が大きいほど、燃料噴射カット量Fcを増大してエンジ
ン4の出力を低減させ、駆動輪の空転を迅速に抑制し、
この駆動力制御処理に続いてステップS13で目標変速
比RTOの演算を行う。
The slip ratio S is represented by S = Vwr / Vwf, and the TCS controller 1 determines the slip ratio S
Is larger, the fuel injection cut amount Fc is increased, the output of the engine 4 is reduced, and idling of the drive wheels is quickly suppressed.
Subsequent to this driving force control processing, the target gear ratio RTO is calculated in step S13.

【0042】また、上記ステップS5で通常走行中であ
ると判定された場合には、ステップS12へ進んで、変
速制御に用いる一次遅れ時定数Kr=K1に固定した
後、駆動力制御を行うことなくステップS13へ進む。
If it is determined in step S5 that the vehicle is normally traveling, the process proceeds to step S12, where the driving force control is performed after fixing the primary delay time constant Kr = K1 used for the shift control. No, the process proceeds to step S13.

【0043】次に、ステップS13では、上記ステップ
S8、S11、S12のいずれかで設定された一次遅れ
時定数Krとスロットル開度TVO及び車速センサ5が
検出した車速VSPに基づいて、目標変速比RTOを演
算してから、実際に無段変速機6へ出力する実変速比R
RTOを演算した後、ステップS12で無段変速機6へ
指令する。
Next, in step S13, the target gear ratio is set based on the first-order lag time constant Kr set in any of steps S8, S11, and S12, the throttle opening TVO, and the vehicle speed VSP detected by the vehicle speed sensor 5. The actual gear ratio R that is actually output to the continuously variable transmission 6 after calculating the RTO
After calculating the RTO, the continuously variable transmission 6 is instructed in step S12.

【0044】すなわち、ステップS12では、まず、予
め設定された図示しない変速マップより、車速VSPと
スロットル開度TVOに応じた目標変速比RTOを求め
る。
That is, in step S12, first, a target gear ratio RTO corresponding to the vehicle speed VSP and the throttle opening TVO is obtained from a preset gear shift map (not shown).

【0045】そして、S8又はS11、S12で設定さ
れた一次遅れ時定数Kr、上記目標変速比RTO、前回
制御時の実目標変速比RRTOoldより、次式に基づい
て一次遅れの実目標変速比RRTOを演算する。
Then, based on the following equation, the actual target speed ratio RRTO of the primary delay is obtained from the primary delay time constant Kr set in S8 or S11, S12, the target speed ratio RTO, and the actual target speed ratio RRTOold in the previous control. Is calculated.

【0046】 RRTO=(RTO+RRTOold×Kr)/(Kr+1) ……(1) したがって、目標変速比RTOと実目標変速比RRTO
の関係は、図6に示すようになり、エンジン回転数Ne
に応じて設定された一次遅れ時定数Krに応じた変速速
度で、実目標変速比RRTOはマップ値RTOに向けて
徐々に変化するのである。なお、図6では、Hi側から
Lo側へ変速する場合を示したが、逆の場合でも、同様
に徐々に実目標変速比RRTOが変化する。
RRTO = (RTO + RRTOold × Kr) / (Kr + 1) (1) Therefore, the target gear ratio RTO and the actual target gear ratio RRTO
The relationship is as shown in FIG. 6, and the engine speed Ne
The actual target speed ratio RRTO gradually changes toward the map value RTO at the speed change speed corresponding to the first-order lag time constant Kr set in accordance with the above. Although FIG. 6 shows the case where the shift is performed from the Hi side to the Lo side, the actual target gear ratio RRTO gradually changes in the opposite case as well.

【0047】上記ステップS1〜ステップS14の処理
を所定時間毎に行うことにより、駆動輪RR又はRLが
空転を開始して駆動輪速Vwrがしきい値Vwsを超え
るスリップ状態になると、TCSコントローラ1はエン
ジン回転数Neからエンジン4の負荷状態を検出し、エ
ンジン回転数Neが所定値N1を超える高回転数領域
(高負荷領域)では、図3に示すように、変速制御で用
いられる一次遅れの時定数Krは、通常走行中と同様の
時定数K1に固定されて、時間tの経過に応じて実変速
比が緩やかに変化するよう設定される一方、駆動力制御
は燃料噴射カット量Fcの最大値を最も大きなFc2と
して、燃料噴射カットを積極的に行って駆動輪の空転を
抑制する。
When the driving wheel RR or RL starts idling and the driving wheel speed Vwr becomes a slip state in which the driving wheel speed Vwr exceeds the threshold value Vws by performing the processing of steps S1 to S14 at predetermined time intervals, the TCS controller 1 Detects the load state of the engine 4 from the engine speed Ne, and in the high speed region (high load region) where the engine speed Ne exceeds the predetermined value N1, as shown in FIG. The time constant Kr of is fixed to the time constant K1 similar to that during normal traveling, and is set so that the actual gear ratio gradually changes with the passage of time t, while the driving force control is performed by the fuel injection cut amount Fc. The maximum value of Fc2 is set to the maximum value, and fuel injection is actively cut to suppress idling of the drive wheels.

【0048】一方、エンジン回転数Neが所定値N1以
下の低回転数領域(低負荷領域)では、図3に示すよう
に、変速制御で用いられる一次遅れの時定数Krは、通
常走行中の時定数K1以下の小さな値に設定されるた
め、無段変速機6の変速速度は通常走行中又は上記高負
荷時のスリップ状態に比して高く設定され、駆動輪の空
転に伴う実変速比の変動に応じて迅速に変速比が変化す
るよう設定される一方、駆動力制御は燃料噴射カット量
Fcの最大値を上記高負荷時のFc2よりも小さなFc
1として、燃料噴射カットによるエンジン出力の抑制を
低減する。
On the other hand, in the low rotation speed region (low load region) in which the engine rotation speed Ne is equal to or lower than the predetermined value N1, as shown in FIG. Since the value is set to a small value equal to or less than the time constant K1, the speed change speed of the continuously variable transmission 6 is set higher than in the slip state during normal traveling or at the time of the high load, and the actual speed ratio accompanying the idling of the drive wheels Of the fuel injection cut amount Fc, the maximum value of the fuel injection cut amount Fc is smaller than Fc2 at the time of high load.
1, the suppression of engine output due to fuel injection cut is reduced.

【0049】すなわち、低負荷時では、図4に示すよう
に、時間t0で駆動輪が空転してスリップ状態が検出さ
れると、燃料噴射カット量Fcの最大値は、上記高負荷
時よりも小さいFc1に設定されて、エンジン出力の低
減を抑制する一方、一次遅れの時定数Krはエンジン回
転数Neに応じてK1以下の小さな値に設定されるた
め、時定数Krの減少に応じて無段変速機6の変速速度
は大となり、かつ、駆動輪RR、RLの空転によって検
出した車速VSPが大きくなるため、図7のマップより
目標変速比RTOはHi側へ変化し、このHi側への変
速を迅速に行うことで、駆動輪への伝達トルクを減少さ
せて、緩やかに駆動輪の空転を抑制することができ、燃
料噴射カット量Fcの抑制によって、エンジン4の出力
変動を抑制して、無段変速機6の連続的な変速比制御に
よって駆動輪の空転を抑制することができるのである。
That is, when the load is low, as shown in FIG. 4, when the drive wheels run idle at time t0 and a slip state is detected, the maximum value of the fuel injection cut amount Fc is higher than that at the time of high load. While the reduction of the engine output is suppressed by setting to a small Fc1, the time constant Kr of the first-order lag is set to a small value of K1 or less according to the engine speed Ne, so that there is no decrease according to the decrease of the time constant Kr. Since the shift speed of the stepped transmission 6 is high and the vehicle speed VSP detected by the idling of the drive wheels RR and RL is high, the target speed ratio RTO changes from the map of FIG. 7 to the Hi side, and toward this Hi side. The transmission torque to the drive wheels can be reduced by performing the gear shift quickly, and the idling of the drive wheels can be gently suppressed. By suppressing the fuel injection cut amount Fc, the output fluctuation of the engine 4 is suppressed. Nothing It is possible to suppress the idle rotation of the driving wheels by a continuous transmission ratio control of the transmission 6.

【0050】一方、負荷時では、図に示すように、
時間t0で駆動輪が空転してもスリップ状態が検出され
ると、燃料噴射カット量Fcの最大値は、上記低負荷時
よりも大きいFc2に設定されて、エンジン出力の低減
を積極的に行って駆動輪の空転を抑制し、さらに、一次
遅れ時定数Krは通常走行中と同じくK1に固定される
ため、無段変速機6の変速速度(感度)は小さくなっ
て、前記従来例のようなハンチングを防止することがで
きる。
On the other hand, in the high load, as shown in FIG. 5,
When the slip state is detected even if the drive wheels idle at time t0, the maximum value of the fuel injection cut amount Fc is set to Fc2 which is larger than that at the time of the low load, and the engine output is actively reduced. As a result, the idle speed of the drive wheels is suppressed, and the first-order lag time constant Kr is fixed to K1 as during normal traveling. Therefore, the speed change speed (sensitivity) of the continuously variable transmission 6 becomes small, which is different from the conventional example. Hunting can be prevented.

【0051】こうして、無段変速機6のハンチングが発
生しやすいエンジン4の高負荷域では、燃料噴射カット
量を大きく設定してエンジン4の出力低減を積極的に行
い、同時に無段変速機6の変速比変動量を低減してハン
チングを防止することで、無段変速機6を備えた駆動力
制御装置を円滑に作動させ、逆に、燃料噴射カットによ
るエンジン4の出力低減が、駆動力の過大な変動となる
低負荷域では、無段変速機6の一次遅れの時定数Krを
小さく設定することで変速速度を増大し、無段変速機6
の連続的なHi側への変速によって駆動輪の空転を抑制
することができ、エンジン4の負荷状態にかかわらず、
無段変速機6を備えた車両の駆動力制御を常時円滑に行
うことが可能となり、特に、燃料噴射カットによって低
負荷域でエンジン4の出力変動が過大になりやすい気筒
数の少ないエンジン4と、無段変速機6を組み合わせた
場合の、駆動力制御性能を前記従来例に比して大幅に向
上させることが可能となるのである。
Thus, in the high load region of the engine 4 where hunting of the continuously variable transmission 6 is likely to occur, the fuel injection cut amount is set to a large amount to actively reduce the output of the engine 4, and at the same time, the continuously variable transmission 6 is also reduced. By reducing the amount of change in the gear ratio and preventing hunting, the drive force control device equipped with the continuously variable transmission 6 operates smoothly, and conversely, the output reduction of the engine 4 due to the fuel injection cut reduces the drive force. In the low load region where the fluctuation of the variable speed of the continuously variable transmission 6 becomes large, the speed change speed is increased by setting the time constant Kr of the first-order lag of the continuously variable transmission 6 to be small.
It is possible to suppress the idling of the drive wheels by continuously shifting to the Hi side, and regardless of the load state of the engine 4,
It becomes possible to smoothly and smoothly control the driving force of the vehicle equipped with the continuously variable transmission 6, and particularly, the output variation of the engine 4 in the low load region is likely to be excessive due to the fuel injection cut. The driving force control performance in the case of combining the continuously variable transmission 6 can be significantly improved as compared with the conventional example.

【0052】図8は第2の実施形態を示し、前記第1実
施形態のステップS9で行う駆動力制御処理を、エンジ
ン4の高負荷時のみ行うようにしたもので、その他の構
成は前記第1実施形態と同様である。
FIG. 8 shows a second embodiment, in which the driving force control process performed in step S9 of the first embodiment is performed only when the engine 4 is under a heavy load, and other configurations are the same as those of the first embodiment. This is similar to that of the first embodiment.

【0053】この場合では、駆動輪のスリップが検出さ
れて、ステップS6のエンジン回転数Neの判定で、高
負荷状態のときのみステップS9へ進んで燃料噴射カッ
トによるエンジン出力の低減が迅速に行われ、駆動輪の
空転を速やかに収束させることができる。
In this case, the slip of the drive wheels is detected, and the engine speed Ne is determined in step S6, the process proceeds to step S9 only when the engine is in a high load state, and the engine output is quickly reduced by cutting the fuel injection. Therefore, the idle rotation of the drive wheels can be promptly converged.

【0054】一方、低負荷状態のスリップ時には、燃料
噴射カットによるエンジン出力の低減が禁止される一
方、無段変速機6の時定数Krが小さく設定されて、無
段変速機6のHi側への迅速なシフトのみによって駆動
輪への伝達トルクを低減して、駆動輪の空転を滑らかに
収束させることができ、エンジン4の負荷状態に応じて
スリップの抑制を行う手段を切り換えることで、特に、
小気筒数のエンジン4と無段変速機6を組み合わせた場
合に、低負荷状態での燃料噴射カットを禁止すること
で、負荷状態にかかわらず駆動力制御装置の作動を円滑
に行って、車両の運転性及び安定性を向上させることが
できる。
On the other hand, at the time of slip in the low load state, reduction of the engine output due to fuel injection cut is prohibited, while the time constant Kr of the continuously variable transmission 6 is set to a small value to the Hi side of the continuously variable transmission 6. The transmission torque to the drive wheels can be reduced only by a quick shift of the drive wheels, and the idling of the drive wheels can be smoothly converged. By switching the means for suppressing the slip according to the load state of the engine 4, ,
When the engine 4 having a small number of cylinders and the continuously variable transmission 6 are combined, the fuel injection cut under the low load condition is prohibited to smoothly operate the driving force control device regardless of the load condition. It is possible to improve drivability and stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示す駆動力制御装置の概
略図。
FIG. 1 is a schematic diagram of a driving force control device showing an embodiment of the present invention.

【図2】同じくTCSコントローラ及びCVTコントロ
ーラで行われる制御の一例を示すフローチャート。
FIG. 2 is a flowchart showing an example of control similarly performed by the TCS controller and the CVT controller.

【図3】同じく一次遅れ時定数Krとエンジン回転数N
eの関係を示すマップである。
[FIG. 3] Similarly, first-order lag time constant Kr and engine speed N
It is a map which shows the relationship of e.

【図4】低負荷状態で駆動輪が空転したときの駆動力抑
制制御の様子を示すグラフで、各車輪速と変速比及び燃
料噴射カット量Fcの関係を示すグラフである。
FIG. 4 is a graph showing a state of driving force suppression control when a drive wheel spins in a low load state, and is a graph showing a relationship between each wheel speed, a gear ratio, and a fuel injection cut amount Fc.

【図5】負荷状態で駆動輪が空転したときの駆動力抑
制制御の様子を示すグラフで、各車輪速と変速比及び燃
料噴射カット量Fcの関係を示すグラフである。
FIG. 5 is a graph showing a state of driving force suppression control when a drive wheel spins in a high load state, and is a graph showing a relationship between each wheel speed, a gear ratio, and a fuel injection cut amount Fc.

【図6】一次遅れ定数Krに応じた実目標変速比RRT
Oの変化の様子を示すグラフである。
FIG. 6 is an actual target gear ratio RRT according to a first-order delay constant Kr.
It is a graph which shows a mode of change of O.

【図7】スロットル開度TVOをパラメータとする車速
VSPに応じた目標入力軸回転数tNtのマップであ
る。
FIG. 7 is a map of a target input shaft rotation speed tNt according to a vehicle speed VSP with a throttle opening TVO as a parameter.

【図8】第2の実施形態を示し、TCSコントローラ及
びCVTコントローラで行われる制御の一例を示すフロ
ーチャート。
FIG. 8 is a flowchart showing the second embodiment and showing an example of control performed by a TCS controller and a CVT controller.

【図9】従来例を示し、加速スリップ状態における変速
比のハンチングの様子を示し、車速VSPとスロットル
開度TVOの関係を示す。
FIG. 9 shows a conventional example, shows a state of gear ratio hunting in an acceleration slip state, and shows a relationship between a vehicle speed VSP and a throttle opening TVO.

【図10】第1ないし第6の発明に対応するクレーム対
応図。
FIG. 10 is a claim correspondence diagram corresponding to the first to sixth inventions.

【符号の説明】[Explanation of symbols]

1 TCSコントローラ 2 エンジンコントローラ 3 CVTコントローラ 4 エンジン 5 車速センサ 6 無段変速機 11 スロットル開度センサ 12FR、12FL、12RR、12RL 車輪速セン
サ 51 変速制御手段 52 駆動力制御開始判定手段 53 駆動力抑制手段 54 負荷検出手段 55 高負荷時空転抑制手段 56 低負荷時空転抑制手段
DESCRIPTION OF SYMBOLS 1 TCS controller 2 Engine controller 3 CVT controller 4 Engine 5 Vehicle speed sensor 6 Continuously variable transmission 11 Throttle opening sensor 12FR, 12FL, 12RR, 12RL Wheel speed sensor 51 Shift control means 52 Driving force control start determination means 53 Driving force suppressing means 54 load detection means 55 high load idling suppression means 56 low load idling suppression means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F02D 29/02 311 F02D 29/02 311A F16H 61/00 F16H 61/00 // F16H 59:42 59:42 63:06 63:06 (56)参考文献 特開 昭63−270950(JP,A) 特開 平2−144233(JP,A) 特開 平1−136834(JP,A) 特開 平3−99945(JP,A) 特開 平7−166907(JP,A) 特開 平5−86918(JP,A) 特開 平5−296071(JP,A) 特開 平3−202646(JP,A) (58)調査した分野(Int.Cl.7,DB名) B60K 28/16 B60K 41/12 F02D 29/00 F02D 29/02 311 F16H 61/00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI F02D 29/02 311 F02D 29/02 311A F16H 61/00 F16H 61/00 // F16H 59:42 59:42 63:06 63: 06 (56) Reference JP-A 63-270950 (JP, A) JP-A 2-144233 (JP, A) JP-A 1-136834 (JP, A) JP-A 3-99945 (JP, A) JP-A-7-166907 (JP, A) JP-A-5-86918 (JP, A) JP-A-5-296071 (JP, A) JP-A-3-202646 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B60K 28/16 B60K 41/12 F02D 29/00 F02D 29/02 311 F16H 61/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】無段変速機を介してエンジンに連結された
駆動輪と、 車両の運転状態に応じて前記無段変速機の変速比を設定
する変速制御手段と、 前記駆動輪の路面に対するスリップが所定値を超えたと
きに駆動輪の空転を判定する駆動力制御開始判定手段
と、 前記駆動力制御開始判定手段が駆動輪の空転を判定した
ときに駆動輪の駆動力を低減する駆動力抑制手段とを備
えた車両用駆動力制御装置において、 前記駆動力制御手段は、 エンジンの負荷を検出する負荷検出手段と、 エンジン負荷が大きい場合には、エンジン出力を低減さ
せるとともに、無段変速機の伝達トルクを低減する変速
比変動量を低減する高負荷時空転抑制手段と、 エンジン負荷が小さい場合には、エンジン出力の低減を
禁止又は抑制するとともに、無段変速機の伝達トルクを
低減させる低負荷時空転抑制手段とを備えたことを特徴
とする車両用駆動力制御装置。
1. A drive wheel connected to an engine through a continuously variable transmission, a shift control means for setting a gear ratio of the continuously variable transmission according to a driving state of a vehicle, and a drive wheel with respect to a road surface. A drive force control start determination means for determining idling of the drive wheels when the slip exceeds a predetermined value, and a drive for reducing the drive force of the drive wheels when the drive force control start determination means determines the idling of the drive wheels In a vehicle driving force control device including force suppressing means, the driving force controlling means detects load of an engine, and when the engine load is large, reduces the engine output and continuously Shifting to reduce transmission torque of transmission
High load idling suppression means to reduce the amount of ratio fluctuation , and engine output reduction when the engine load is small.
A drive force control device for a vehicle, comprising: a low load idling suppression means for inhibiting or suppressing , and reducing a transmission torque of a continuously variable transmission.
【請求項2】前記低負荷時空転手段は、無段変速機の応
答速度を増大させることを特徴とする請求項1に記載の
車両用駆動力制御装置。
2. The vehicle drive force control device according to claim 1, wherein the low load idling means increases the response speed of the continuously variable transmission.
【請求項3】前記高負荷時空転抑制手段は、エンジンの
出力低減ゲインを増大することを特徴とする請求項1
たは2に記載の車両用駆動力制御装置。
Wherein said high-load idling suppression means according to claim 1, characterized in that to increase the output reduction gain of the engine or
Or the driving force control device for a vehicle according to item 2 .
【請求項4】前記負荷検出手段は、駆動輪の空転が検出
されたときのエンジン回転数に応じて負荷状態を検出す
ることを特徴とする請求項1から3のいずれか一つに記
載の車両用駆動力制御装置。
4. The load detecting means detects the load state according to the engine speed when the idling of the drive wheels is detected, according to any one of claims 1 to 3 . Vehicle driving force control device.
【請求項5】前記高負荷時空転制御手段は、燃料噴射カ
ット手段を備えたことを特徴とする請求項1から4のい
ずれか一つに記載の車両用駆動力制御装置。
Wherein said high-load idling control means, claim 1, characterized in that with a fuel injection cut means 4 Neu
The driving force control device for a vehicle according to claim 1.
JP11109497A 1997-04-28 1997-04-28 Vehicle driving force control device Expired - Fee Related JP3428363B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11109497A JP3428363B2 (en) 1997-04-28 1997-04-28 Vehicle driving force control device
EP98107737A EP0875414B1 (en) 1997-04-28 1998-04-28 Vehicle drive force control device
DE69831031T DE69831031T2 (en) 1997-04-28 1998-04-28 Traction control system of a vehicle
EP03014653A EP1346871B1 (en) 1997-04-28 1998-04-28 Vehicle drive force control device
US09/066,816 US6199005B1 (en) 1997-04-28 1998-04-28 Vehicle drive force control device
DE69839949T DE69839949D1 (en) 1997-04-28 1998-04-28 Traction control system of a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11109497A JP3428363B2 (en) 1997-04-28 1997-04-28 Vehicle driving force control device

Publications (2)

Publication Number Publication Date
JPH10297315A JPH10297315A (en) 1998-11-10
JP3428363B2 true JP3428363B2 (en) 2003-07-22

Family

ID=14552241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11109497A Expired - Fee Related JP3428363B2 (en) 1997-04-28 1997-04-28 Vehicle driving force control device

Country Status (1)

Country Link
JP (1) JP3428363B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349686A (en) * 2001-05-28 2002-12-04 Mazda Motor Corp Slip controller for vehicle, and integrated controller for continuous variable transmission
JP6318491B2 (en) * 2013-07-26 2018-05-09 株式会社アドヴィックス Vehicle traction control device

Also Published As

Publication number Publication date
JPH10297315A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
JP3284852B2 (en) Transmission control device for continuously variable transmission
US5813936A (en) Driving force controller in vehicle for forcibly upshifting in response to a driving force traction controller and a vehicle stopped detection means
EP0875414B1 (en) Vehicle drive force control device
JP3536523B2 (en) Driving force control device for vehicles
KR100262696B1 (en) Drive Power Control Method for Vehicle
JP3428363B2 (en) Vehicle driving force control device
US6282465B1 (en) Driving force control for automotive vehicle
US5409433A (en) Running control apparatus for engine-driven vehicles
JP3230422B2 (en) Transmission control device for continuously variable transmission
JP3575223B2 (en) Driving force control device for vehicles
JP3228094B2 (en) Transmission control device for continuously variable transmission
JP3147741B2 (en) Transmission control device for continuously variable transmission
JP3204079B2 (en) Vehicle driving force control device
JP3465445B2 (en) Transmission control device for continuously variable transmission
JPH1191410A (en) Vehicular output torque control device
JP3564862B2 (en) Driving force control device for vehicles
JPH11280880A (en) Vehicular drive force control device
JP3323819B2 (en) Air conditioner control method
JP2929396B2 (en) Automatic transmission control device for vehicles
JP2917076B2 (en) Control device for automatic transmission of four-wheel drive vehicle
JP3319278B2 (en) Vehicle driving force control device
JPH07108631B2 (en) Vehicle drive force control device
JP3465492B2 (en) Shift pressure control device for automatic transmission
JP3307015B2 (en) Integrated control system for lean burn engine and continuously variable transmission
JP3353390B2 (en) Transmission control device for automatic transmission

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees