JP3426597B1 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3426597B1
JP3426597B1 JP2002368698A JP2002368698A JP3426597B1 JP 3426597 B1 JP3426597 B1 JP 3426597B1 JP 2002368698 A JP2002368698 A JP 2002368698A JP 2002368698 A JP2002368698 A JP 2002368698A JP 3426597 B1 JP3426597 B1 JP 3426597B1
Authority
JP
Japan
Prior art keywords
oxide film
cleaning
semiconductor device
silicon oxide
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002368698A
Other languages
Japanese (ja)
Other versions
JP2003209066A (en
Inventor
昌宏 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2002368698A priority Critical patent/JP3426597B1/en
Application granted granted Critical
Publication of JP3426597B1 publication Critical patent/JP3426597B1/en
Publication of JP2003209066A publication Critical patent/JP2003209066A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【要約】 【課題】 基板表面に付着する有機物を効率的に除去し
てシリコン酸化膜の絶縁耐圧特性を向上させた半導体装
置の製造方法を提供する。 【解決手段】 シリコン酸化膜上にポリシリコン膜を形
成する半導体装置の製造方法において、前記シリコン酸
化膜が形成された半導体基板を、硫酸と過酸化水素とを
含む洗浄液又は超純水にオゾンを添加したオゾン添加洗
浄水に浸漬してから、前記シリコン酸化膜上にポリシリ
コン膜を形成することを特徴とする半導体装置の製造方
法。
An object of the present invention is to provide a method of manufacturing a semiconductor device in which an organic substance adhering to a substrate surface is efficiently removed to improve a withstand voltage characteristic of a silicon oxide film. SOLUTION: In a method of manufacturing a semiconductor device in which a polysilicon film is formed on a silicon oxide film, the semiconductor substrate on which the silicon oxide film is formed is treated with ozone in a cleaning solution containing sulfuric acid and hydrogen peroxide or ultrapure water. A method of manufacturing a semiconductor device, comprising: immersing in an added ozone-added cleaning water, and then forming a polysilicon film on the silicon oxide film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に関し、特に、ゲート電極としてポリシリコン電極
を用いる半導体装置の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device using a polysilicon electrode as a gate electrode.

【0002】[0002]

【従来の技術】ポリシリコン電極をゲート電極として用
いる半導体装置の製造は、図7に示すように、ゲート酸
化前洗浄において、基板の表面を超純水により洗浄して
表面に付着する塵や埃などの汚染物を取除いてから、ゲ
ート酸化において約850℃においてパイロジェニック
酸化により基板表面を酸化してゲート酸化膜を形成した
後、表面にポリシリコンから成るゲート電極層を形成
し、ゲート電極層にリンを拡散してP型としてから、パ
ターンニングを行うことによりなされる。
2. Description of the Related Art As shown in FIG. 7, a semiconductor device using a polysilicon electrode as a gate electrode is manufactured by cleaning the surface of a substrate with ultrapure water in cleaning before gate oxidation to attach dust or dirt to the surface. After removing contaminants such as gate oxide, the substrate surface is oxidized by pyrogenic oxidation at about 850 ° C. to form a gate oxide film, and then a gate electrode layer made of polysilicon is formed on the surface. This is done by diffusing phosphorus into the layer to make it P-type and then patterning.

【0003】一般に、ポリシリコンから成るゲート電極
は、図8に示すような構成のポリシリコン電極形成装置
(縦型LPCVD)により形成されている。このポリシ
リコン電極形成装置は、ヒータ10により内部温度が調
整されるポリシリコン形成炉12と、複数のウエハがチ
ャージされ、ウエハチャージ部分がポリシリコン形成炉
12内に装填されたときにポリシリコン形成炉12内を
密閉するボート14と、ポリシリコン形成炉12内に予
め定めた種類のガスを導入する雰囲気調整手段16とを
備えている。
Generally, a gate electrode made of polysilicon is formed by a polysilicon electrode forming apparatus (vertical LPCVD) having a structure as shown in FIG. This polysilicon electrode forming apparatus forms a polysilicon when a polysilicon forming furnace 12 whose internal temperature is adjusted by a heater 10 and a plurality of wafers are charged and a wafer charging portion is loaded into the polysilicon forming furnace 12. A boat 14 for sealing the inside of the furnace 12 and an atmosphere adjusting means 16 for introducing a gas of a predetermined type into the polysilicon forming furnace 12 are provided.

【0004】表面にゲート酸化膜が形成された基板は、
清浄度を保った状態でボート14にチャージされて、N
2 ガスが充填されたポリシリコン形成炉12内に挿入さ
れる。ボート14が完全にポリシリコン形成炉12内に
挿入されて炉12内を密閉すると、雰囲気調整手段16
により1.0×10-3Torr程度の真空吸引を行い、
600℃〜700℃程度の温度に調整してからSiH4
ガスを導入して、ポリシリコンをゲート酸化膜上に堆積
させ、ポリシリコン膜を形成する。その後、ボート14
を炉12内から取り出して図示しない拡散炉内に搬送
し、拡散炉においてリンを拡散させた後、図示しないパ
ターニング装置によりパターニングが施されてゲート電
極とされる。
A substrate having a gate oxide film formed on its surface is
Charged to the boat 14 while maintaining cleanliness, N
It is inserted into the polysilicon forming furnace 12 filled with 2 gas. When the boat 14 is completely inserted into the polysilicon forming furnace 12 and the inside of the furnace 12 is sealed, the atmosphere adjusting means 16
Vacuum suction of about 1.0 × 10 -3 Torr
After adjusting the temperature to about 600 ℃ -700 ℃, SiH 4
A gas is introduced to deposit polysilicon on the gate oxide film to form a polysilicon film. Then boat 14
Is taken out of the furnace 12 and conveyed into a diffusion furnace (not shown). After diffusing phosphorus in the diffusion furnace, patterning is performed by a patterning device (not shown) to form a gate electrode.

【0005】[0005]

【発明が解決しようとする課題】以上のすべての工程は
清浄度を高く調整したクリーンルーム内で行うが、ゲー
ト酸化前洗浄における超純水の水質の劣化や、基板の搬
送中に、例えば、クリーンルームの通気テスト剤である
フタル酸エステルや、装置やカセットやボックス等を構
成する可塑剤の一種であるDBP(dibutylph
thalate)や、ウエハケースを構成する可塑剤の
一種であるBHT(butylhydroxytolu
ene)等の有機物が基板表面に付着してしまう場合が
ある。
All of the above steps are carried out in a clean room in which the cleanliness is adjusted to a high level. Phthalate ester, which is an aeration test agent for air, and DBP (dibutylph), which is a type of plasticizer that constitutes equipment, cassettes, boxes, etc.
or BHT (Butyl Hydroxytolu), which is a type of plasticizer that constitutes the wafer case.
Organic substances such as ene) may adhere to the surface of the substrate.

【0006】図9及び図10は、有機物汚染を受けた基
板の表面に付着する有機物についてウエハ加熱脱離GC
−MSにより測定した結果を示している。ウエハ加熱脱
離GC−MSは基板を加熱したときに基板表面から脱離
したガスをクロマトグラフィーにかける構成の装置であ
り、図9及び図10のそれぞれにおいて、縦軸は相対強
度、横軸は時間を示しており、相対強度が高いほど有機
物の付着量が多く、同じ時間に検出されたものは同じ種
類の物質であることを示している。
FIG. 9 and FIG. 10 show a wafer thermal desorption GC for organic substances adhering to the surface of a substrate that has been contaminated with organic substances.
-Shows the result measured by MS. The wafer thermal desorption GC-MS is an apparatus configured to subject the gas desorbed from the substrate surface to chromatography when the substrate is heated. In each of FIGS. 9 and 10, the vertical axis represents relative intensity and the horizontal axis represents The time is shown, and the higher the relative intensity, the larger the amount of organic substances attached, indicating that the substances detected at the same time are the same type of substance.

【0007】図9はゲート酸化膜形成前の超純水による
洗浄後のシリコン基板の表面に付着する有機物量を測定
した結果であり、図10はゲート酸化膜形成後のシリコ
ン基板の表面に付着する有機物量を測定した結果であ
る。図9と図10とを比較すると、超純水による洗浄後
のシリコン基板の表面に比べてゲート酸化後のシリコン
基板の表面の方が付着している有機物量は減っているも
のの、ゲート酸化によってシリコン基板の表面に付着す
る有機物は完全には除去されてないことがわかる。
FIG. 9 shows the result of measuring the amount of organic substances adhering to the surface of the silicon substrate after cleaning with ultrapure water before forming the gate oxide film, and FIG. 10 shows the result of adhering to the surface of the silicon substrate after forming the gate oxide film. It is the result of measuring the amount of organic matter. Comparing FIG. 9 and FIG. 10, although the amount of organic substances adhering to the surface of the silicon substrate after gate oxidation is smaller than that of the surface of the silicon substrate after cleaning with ultrapure water, It can be seen that the organic substances attached to the surface of the silicon substrate are not completely removed.

【0008】水質の劣化した超純水による洗浄によりシ
リコン基板の表面に付着した有機物や、基板の装置間の
搬送中にシリコン基板の表面に付着した有機物はベンゼ
ン環を有しているものが多く、ベンゼン環を持つ有機物
のうちゲート酸化時にシリコン酸化膜と反応したものは
燃焼しにくくなってしまい、ゲート酸化後もシリコン基
板の表面に残留してしまう。このようなシリコン基板の
表面に残留した有機物はゲート酸化膜の絶縁耐圧特性を
悪化させる原因となっている。
Many of the organic substances attached to the surface of the silicon substrate by washing with ultrapure water with deteriorated water quality and the organic substances attached to the surface of the silicon substrate during the transportation of the substrate between the devices have a benzene ring. Of the organic substances having a benzene ring, those that react with the silicon oxide film during gate oxidation become difficult to burn, and remain on the surface of the silicon substrate even after gate oxidation. Such organic substances remaining on the surface of the silicon substrate cause deterioration of the dielectric strength characteristics of the gate oxide film.

【0009】そこで本発明は、基板表面に付着する有機
物を効率的に除去してシリコン酸化膜の絶縁耐圧特性を
向上させた半導体装置を得ることを目的としている。
Therefore, it is an object of the present invention to obtain a semiconductor device in which organic substances adhering to the surface of a substrate are efficiently removed to improve the dielectric strength characteristics of a silicon oxide film.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明の半導体装置の製造方法は、シリコ
ン酸化膜上にポリシリコン膜を形成する際、前記シリコ
ン酸化膜が形成された半導体基板を、硫酸と過酸化水素
とを含む洗浄液又は超純水にオゾンを添加したオゾン添
加洗浄水に浸漬してから、前記シリコン酸化膜上にポリ
シリコン膜を形成することを特徴とする。
In order to achieve the above object, in the method of manufacturing a semiconductor device according to the invention of claim 1, when the polysilicon film is formed on the silicon oxide film, the silicon oxide film is formed. The semiconductor substrate is immersed in a cleaning liquid containing sulfuric acid and hydrogen peroxide or ozone-added cleaning water in which ozone is added to ultrapure water, and then a polysilicon film is formed on the silicon oxide film. .

【0011】請求項1の発明では、半導体基板にポリシ
リコン電極層用のシリコン酸化膜を形成した後に、当該
半導体基板を硫酸と過酸化水素とを含む洗浄液又はオゾ
ン添加洗浄水に浸漬し、この浸漬によりシリコン酸膜表
面に付着している有機物が除去された状態で、ポリシリ
コン膜を形成するので、シリコン酸化膜の絶縁耐圧特性
が向上した半導体装置が得られる。
According to the first aspect of the present invention, after the silicon oxide film for the polysilicon electrode layer is formed on the semiconductor substrate, the semiconductor substrate is immersed in a cleaning solution containing sulfuric acid and hydrogen peroxide or ozone-added cleaning water. Since the polysilicon film is formed in a state where the organic substances adhering to the surface of the silicon oxide film have been removed by the immersion, a semiconductor device in which the dielectric strength characteristics of the silicon oxide film are improved can be obtained.

【0012】このように、請求項2の発明の半導体装置
の製造方法は、請求項1に記載の半導体装置の製造方法
において、前記洗浄により、シリコン酸化膜上に存在す
る有機物が酸化されて取り除かれることを特徴とする。
As described above, in the method for manufacturing a semiconductor device according to a second aspect of the present invention, in the method for manufacturing a semiconductor device according to the first aspect, the cleaning removes organic substances existing on the silicon oxide film by oxidation. It is characterized by being

【0013】また、請求項3の発明の半導体装置の製造
方法のように、前記硫酸と前記過酸化水素とを含む洗浄
液は、前記硫酸と前記過酸化水素が9対1の割合で混合
されていることがよい。
Further, as in the method for manufacturing a semiconductor device according to the third aspect of the present invention, the cleaning liquid containing the sulfuric acid and the hydrogen peroxide is obtained by mixing the sulfuric acid and the hydrogen peroxide in a ratio of 9: 1. It is good to be

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図1
〜図6を参照して説明する。なお、ウエハ加熱脱離GC
ーMSにより測定した結果を示すすべての線図につい
て、縦軸は相対強度、横軸は時間を示し、相対強度が高
いほど有機物の付着量が多く、同じ時間に検出されたも
のは同じ種類の物質であることを示している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIG.
~ It demonstrates with reference to FIG. Wafer thermal desorption GC
-In all the diagrams showing the results measured by MS, the vertical axis represents relative intensity and the horizontal axis represents time. The higher the relative intensity, the greater the amount of organic substances attached, and those detected at the same time are of the same type. It is a substance.

【0015】(第1の実施形態)図1〜図6を参照して
第1の実施形態を説明する。まず、図1に示すように、
表面にパターンを形成したシリコン基板を、超純水によ
り洗浄して(ゲート酸化前洗浄)からパイロジェニック
酸化によりゲート酸化膜を形成(ゲート酸化)する。次
に、得られた複数のシリコン基板を125℃に温度調整
され、硫酸と過酸化水素とが9対1の割合で混合された
SPM(Surfic Peroxidemixtur
e)洗浄液に5分程度浸漬する。このとき、シリコン基
板表面に付着する有機物がSPM洗浄液により酸化され
て取除かれる。
(First Embodiment) The first embodiment will be described with reference to FIGS. First, as shown in FIG.
A silicon substrate having a pattern formed on its surface is washed with ultrapure water (cleaning before gate oxidation), and then a gate oxide film is formed by pyrogenic oxidation (gate oxidation). Next, the temperature of the obtained plurality of silicon substrates was adjusted to 125 ° C., and SPM (Surfic Peroxide mixture) in which sulfuric acid and hydrogen peroxide were mixed at a ratio of 9: 1.
e) Immerse in the cleaning liquid for about 5 minutes. At this time, the organic substances attached to the surface of the silicon substrate are oxidized and removed by the SPM cleaning liquid.

【0016】その後、前述した縦型LPCVDのボート
に複数のシリコン基板をチャージしたのち、炉内温度を
620℃程度に調整したポリシリコン形成炉内に挿入
し、SiH4 ガスをポリシリコン形成炉内に導入してポ
リシリコン膜の形成を開始し、予め定めた厚さにシリコ
ン膜が形成されたらリンを拡散してP型としてから、パ
ターンニングを行ってポリシリコン電極を得る。
After that, a plurality of silicon substrates are charged in the vertical LPCVD boat described above, and then inserted into a polysilicon forming furnace in which the temperature inside the furnace is adjusted to about 620 ° C., and SiH 4 gas is introduced into the polysilicon forming furnace. Is started to form a polysilicon film, and when a silicon film is formed to a predetermined thickness, phosphorus is diffused to form a P type, and then patterning is performed to obtain a polysilicon electrode.

【0017】ここで、シリコン基板の有機物量をウエハ
加熱脱離GC−MSで測定した結果を図2に示す。図2
において、試料1は超純水により洗浄後のシリコン基板
表面の有機物量、試料2はゲート酸化後のシリコン基板
表面の有機物量、試料3はSPM洗浄後のシリコン基板
表面の有機物量を測定した結果である。図2より明らか
なように、SPM洗浄を行うことによってシリコン基板
表面に強固に付着していた有機物は殆ど除去されている
ことがわかる。
FIG. 2 shows the results of measuring the amount of organic substances in the silicon substrate by the wafer thermal desorption GC-MS. Figure 2
In Table 1, Sample 1 is the result of measuring the amount of organic substances on the silicon substrate surface after cleaning with ultrapure water, Sample 2 is the amount of organic substances on the silicon substrate surface after gate oxidation, and Sample 3 is the result of measuring the amount of organic substances on the silicon substrate surface after SPM cleaning. Is. As is apparent from FIG. 2, it is found that most of the organic substances strongly adhered to the surface of the silicon substrate are removed by performing the SPM cleaning.

【0018】得られたゲート電極におけるゲート酸化膜
の絶縁耐性を調べた結果を図3に示す。なお、比較のた
め、ゲート酸化後にSPM洗浄を行わずにポリシリコン
膜を形成して得たゲート電極におけるゲート酸化膜の絶
縁耐性を調べた結果を図4に、また、基板表面に有機物
の付着の無い基板を用い、ゲート酸化後にSPM洗浄を
行ってポリシリコン膜を形成して得たゲート電極におけ
るゲート酸化膜の絶縁耐性を調べた結果を図5に、基板
表面に有機物の付着の無い基板を用い、ゲート酸化後に
SPM洗浄を行わずにポリシリコン膜を形成して得たゲ
ート電極におけるゲート酸化膜の絶縁耐性を調べた結果
を図6にそれぞれ示す。
The results of examining the insulation resistance of the gate oxide film in the obtained gate electrode are shown in FIG. For comparison, FIG. 4 shows the results of examining the insulation resistance of the gate oxide film in the gate electrode obtained by forming the polysilicon film without performing SPM cleaning after the gate oxidation, and also shows the adhesion of organic substances to the substrate surface. FIG. 5 shows the results of examining the insulation resistance of the gate oxide film in the gate electrode obtained by forming a polysilicon film by performing SPM cleaning after gate oxidation using a substrate without a substrate. FIG. 6 shows the results of examining the insulation resistance of the gate oxide film in the gate electrode obtained by forming a polysilicon film without performing SPM cleaning after the gate oxidation using.

【0019】図5及び図6に示すように、基板表面に有
機物の付着の無い基板を用いた場合は、SPM洗浄を行
ってもSPM洗浄を行わなくても同様に良好な絶縁耐性
を有するものとなっている。これに対し、図4に示すよ
うに、基板表面に有機物の付着がある場合、SPM洗浄
を行わないでポリシリコン膜を形成して得たゲート電極
におけるゲート酸化膜の絶縁耐性は非常に悪くなってい
るのがわかる。
As shown in FIGS. 5 and 6, when a substrate having no organic substance adhered to the substrate surface is used, it has good insulation resistance whether SPM cleaning is performed or not. Has become. On the other hand, as shown in FIG. 4, when an organic substance is attached to the surface of the substrate, the insulation resistance of the gate oxide film in the gate electrode obtained by forming the polysilicon film without SPM cleaning is very poor. I understand.

【0020】すなわち、図3に示したように本第1の実
施形態で得られたゲート電極におけるゲート酸化膜は、
図5及び図6とほぼ同様に良好な絶縁耐性を有するもの
となっており、基板表面に有機物が付着するシリコン基
板をSPM洗浄を行わないゲート電極を形成した場合と
比較しても絶縁耐性が向上していることがわかる。
That is, as shown in FIG. 3, the gate oxide film in the gate electrode obtained in the first embodiment is
Similar to FIGS. 5 and 6, it has a good insulation resistance, and the insulation resistance is better than that of the case where a gate electrode without SPM cleaning is formed on a silicon substrate on which organic substances adhere to the substrate surface. You can see that it is improving.

【0021】以上述べた第1の実施形態では、硫酸と過
酸化水素とが9対1の割合で混合されたSPM洗浄液を
用いる場合を挙げたが、SPM洗浄液として用いられる
ものであれば硫酸と過酸化水素との割合がどのような割
合であってもよい。
In the above-described first embodiment, the case where the SPM cleaning liquid in which sulfuric acid and hydrogen peroxide are mixed at a ratio of 9: 1 is used is described. However, if it is used as the SPM cleaning liquid, sulfuric acid is used. The ratio with hydrogen peroxide may be any ratio.

【0022】また、SPM洗浄液の代わりにオゾンが添
加されて酸化性を強くされた超純水であるオゾン添加洗
浄水を用いてもよい。この場合も洗浄後のシリコン基板
表面の有機物量や、得られたゲート電極におけるゲート
酸化膜の絶縁耐性については、上述した第1の実施形態
とほぼ同様の結果が得られたので図示は省略する。
Further, instead of the SPM cleaning liquid, ozone-added cleaning water which is ultrapure water to which ozone is added to enhance the oxidizing property may be used. Also in this case, the amount of organic substances on the surface of the silicon substrate after cleaning and the insulation resistance of the gate oxide film in the obtained gate electrode are almost the same as those in the above-described first embodiment, and therefore the illustration is omitted. .

【0023】なお、ゲート洗浄後の洗浄液として上記第
1の実施形態ではSPM洗浄液とオゾン添加洗浄水とを
挙げたが、これらに限らず、シリコン基板をエッチング
しない性質の洗浄液であれば用いることができる。
Although the SPM cleaning liquid and the ozone-added cleaning water have been described as the cleaning liquid after the gate cleaning in the first embodiment, the cleaning liquid is not limited to these and any cleaning liquid that does not etch the silicon substrate may be used. it can.

【0024】なお、以上述べた第1の実施形態において
は、すべてゲート電極におけるゲート酸化膜の絶縁耐性
を向上させる場合について述べたが、本発明はその他の
シリコン酸化膜の絶縁耐性を向上させる場合にも適用で
きる。
In the first embodiment described above, the case of improving the insulation resistance of the gate oxide film in the gate electrode has been described. However, the present invention improves the insulation resistance of other silicon oxide films. Can also be applied to.

【0025】[0025]

【発明の効果】以上説明したように、請求項1〜4の発
明によれば、シリコン基板の表面に強固に付着する有機
物を殆ど除去できるため、シリコン酸化膜の絶縁耐圧特
性を向上させた半導体装置を製造できる、という効果を
達成する。
As described above, according to the first to fourth aspects of the present invention, most of the organic substances strongly adhered to the surface of the silicon substrate can be removed, so that the semiconductor having improved dielectric strength characteristics of the silicon oxide film. The effect that a device can be manufactured is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態を簡単に示すフロー図
である。
FIG. 1 is a flow chart briefly showing a first embodiment of the present invention.

【図2】ゲート酸化前洗浄におけるシリコン基板の表面
に付着する有機物量と、ゲート酸化後のシリコン基板の
表面に付着する有機物量と、SPM洗浄後のシリコン基
板の表面に付着する有機物量とを表す測定図である。
FIG. 2 shows the amount of organic substances adhering to the surface of a silicon substrate during pre-gate oxidation cleaning, the amount of organic substances adhering to the surface of a silicon substrate after gate oxidation, and the amount of organic substances adhering to the surface of a silicon substrate after SPM cleaning. FIG.

【図3】第2の実施形態で得られたゲート電極における
ゲート酸化膜の絶縁耐性を示すヒストグラムである。
FIG. 3 is a histogram showing insulation resistance of a gate oxide film in a gate electrode obtained in the second embodiment.

【図4】ゲート酸化後にSPM洗浄を行わずにポリシリ
コン膜を形成して得たゲート電極におけるゲート酸化膜
の絶縁耐性を示すヒストグラムである。
FIG. 4 is a histogram showing insulation resistance of a gate oxide film in a gate electrode obtained by forming a polysilicon film without performing SPM cleaning after gate oxidation.

【図5】基板表面に有機物の付着の無い基板を用い、ゲ
ート酸化後にSPM洗浄を行ってポリシリコン膜を形成
して得たゲート電極におけるゲート酸化膜の絶縁耐性を
示すヒストグラムである。
FIG. 5 is a histogram showing the insulation resistance of a gate oxide film in a gate electrode obtained by forming a polysilicon film by performing SPM cleaning after gate oxidation using a substrate on the surface of which no organic substance is attached.

【図6】基板表面に有機物の付着の無い基板を用い、ゲ
ート酸化後にSPM洗浄を行わずにポリシリコン膜を形
成して得たゲート電極におけるゲート酸化膜の絶縁耐性
を示すヒストグラムである。
FIG. 6 is a histogram showing the insulation resistance of the gate oxide film in a gate electrode obtained by forming a polysilicon film without performing SPM cleaning after gate oxidation using a substrate on the surface of which no organic substance is attached.

【図7】従来のゲート電極を形成する工程を簡単に示す
フロー図である。
FIG. 7 is a flow chart briefly showing a step of forming a conventional gate electrode.

【図8】縦型LPCVDの構成を簡単に示す説明図であ
る。
FIG. 8 is an explanatory view briefly showing the configuration of vertical LPCVD.

【図9】ゲート酸化膜形成前の超純水による洗浄後のシ
リコン基板の表面に付着する有機物量を表す測定図であ
る。
FIG. 9 is a measurement diagram showing the amount of organic substances attached to the surface of a silicon substrate after cleaning with ultrapure water before forming a gate oxide film.

【図10】ゲート酸化膜形成後のシリコン基板の表面に
付着する有機物量を表す測定図である。
FIG. 10 is a measurement diagram showing the amount of organic substances adhering to the surface of a silicon substrate after forming a gate oxide film.

【符号の説明】[Explanation of symbols]

10 ヒータ 12 ポリシリコン形成炉 14 ボート 16 雰囲気調整手段 10 heater 12 Polysilicon forming furnace 14 boats 16 Atmosphere adjusting means

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリコン酸化膜上にポリシリコン膜を形
成する半導体装置の製造方法において、 前記シリコン酸化膜が形成された半導体基板を、硫酸と
過酸化水素とを含む洗浄液又は超純水にオゾンを添加し
たオゾン添加洗浄水に浸漬してから、前記シリコン酸化
膜上にポリシリコン膜を形成することを特徴とする半導
体装置の製造方法。
1. A method of manufacturing a semiconductor device in which a polysilicon film is formed on a silicon oxide film, wherein the semiconductor substrate on which the silicon oxide film is formed is cleaned with a cleaning liquid containing sulfuric acid and hydrogen peroxide or ultrapure water and ozone. A method of manufacturing a semiconductor device, comprising: forming a polysilicon film on the silicon oxide film after immersing the cleaning film in ozone-added cleaning water.
【請求項2】 前記洗浄により、シリコン酸化膜上に存
在する有機物が酸化されて取り除かれることを特徴とす
る請求項1に記載の半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the cleaning removes organic substances existing on the silicon oxide film by oxidation.
【請求項3】 前記硫酸と前記過酸化水素とを含む洗浄
液は、前記硫酸と前記過酸化水素が9対1の割合で混合
されていることを特徴とする請求項1又は2に記載の半
導体装置の製造方法。
3. The semiconductor according to claim 1, wherein the cleaning liquid containing the sulfuric acid and the hydrogen peroxide contains the sulfuric acid and the hydrogen peroxide mixed in a ratio of 9: 1. Device manufacturing method.
JP2002368698A 2002-12-19 2002-12-19 Method for manufacturing semiconductor device Expired - Fee Related JP3426597B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368698A JP3426597B1 (en) 2002-12-19 2002-12-19 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368698A JP3426597B1 (en) 2002-12-19 2002-12-19 Method for manufacturing semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP09036698A Division JP3426494B2 (en) 1998-04-02 1998-04-02 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP3426597B1 true JP3426597B1 (en) 2003-07-14
JP2003209066A JP2003209066A (en) 2003-07-25

Family

ID=27606870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368698A Expired - Fee Related JP3426597B1 (en) 2002-12-19 2002-12-19 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3426597B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100641060B1 (en) 2005-07-22 2006-11-01 삼성전자주식회사 Method of manufacturing a gate structure and method of manufacturing a semiconductor device using the same

Also Published As

Publication number Publication date
JP2003209066A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
Okorn-Schmidt Characterization of silicon surface preparation processes for advanced gate dielectrics
Hattori et al. Contamination Removal by Single‐Wafer Spin Cleaning with Repetitive Use of Ozonized Water and Dilute HF
US20050260827A1 (en) Ozone vapor clean method
EP2398044A2 (en) Method for passivating a silicon surface
KR101378519B1 (en) Improved process for preparing cleaned surfaces of strained silicon
US6416586B1 (en) Cleaning method
KR100659632B1 (en) Fabrication process for semiconductor device
US5803980A (en) De-ionized water/ozone rinse post-hydrofluoric processing for the prevention of silicic acid residue
JP3160205B2 (en) Semiconductor device manufacturing method and its manufacturing apparatus
JP3426597B1 (en) Method for manufacturing semiconductor device
JP2984348B2 (en) Semiconductor wafer processing method
JP3426494B2 (en) Method for manufacturing semiconductor device
US20040219802A1 (en) Method of fabricating dielectric layer
JP3481613B2 (en) Semiconductor manufacturing equipment
JPH06216377A (en) Manufacture of mos semiconductor device
JP3193533B2 (en) Method for manufacturing semiconductor device
KR100914606B1 (en) Method for manufacturing gate oxide film on semiconductor wafer by wet process
JP2002289612A (en) Method for forming oxide film on semiconductor substrate surface and method for manufacturing semiconductor device
JPH0992636A (en) Washing liquid and washing method using it
EP0767487A1 (en) Improvements in or relating to semiconductor device fabrication
JP2000091291A (en) Washing method of silicon wafer
Edholm et al. Reliability Evaluation of Manufacturing Processes for Bipolar and MOS Devices on Silicon‐on‐Diamond Materials
JP2000208469A (en) Method of evaluating quality of semiconductor wafer
JP2005019944A (en) Method of forming tunnel oxide film in semiconductor device
Osaka et al. Contamination removal by single-wafer spin cleaning with repetitive use of ozonated water in dilute HF

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees