JP3425621B2 - O-phase based Ti-22Al-27Nb alloy and method for producing the same - Google Patents

O-phase based Ti-22Al-27Nb alloy and method for producing the same

Info

Publication number
JP3425621B2
JP3425621B2 JP2000086671A JP2000086671A JP3425621B2 JP 3425621 B2 JP3425621 B2 JP 3425621B2 JP 2000086671 A JP2000086671 A JP 2000086671A JP 2000086671 A JP2000086671 A JP 2000086671A JP 3425621 B2 JP3425621 B2 JP 3425621B2
Authority
JP
Japan
Prior art keywords
phase
alloy
temperature
temperature range
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000086671A
Other languages
Japanese (ja)
Other versions
JP2001271131A (en
Inventor
聡 江村
益夫 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2000086671A priority Critical patent/JP3425621B2/en
Publication of JP2001271131A publication Critical patent/JP2001271131A/en
Application granted granted Critical
Publication of JP3425621B2 publication Critical patent/JP3425621B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この出願の発明は、O相基T
i−22Al−27Nb合金とその製造方法に関するもので
ある。さらに詳しくは、この出願の発明は、引張強さと
延性を高度にバランスよく合わせ持つO相基Ti−22A
l−27Nb合金とこれを製造するための製造方法に関す
るものである。
TECHNICAL FIELD The invention of this application is directed to an O phase group T
The present invention relates to an i-22Al-27Nb alloy and its manufacturing method. More specifically, the invention of this application discloses an O phase group Ti-22A having a highly balanced balance of tensile strength and ductility.
The present invention relates to a 1-27 Nb alloy and a manufacturing method for manufacturing the same.

【0002】[0002]

【従来の技術】Ti2AlNb(Ti−25mol%Al−25
mol%Nb)は、約10年前に発見されたチタン系の金
属間化合物である。その結晶構造は斜方晶で、O相と名
付けられる。このTi2AlNbは、既存のTiAl
(γ相)やTi3Al(α2相)に比べ、高温延性、クリ
ープ特性、及び高温引張り強さに優れており、ポストT
iAlを担う新しい軽量耐熱材料として注目されてい
る。現在、航空機、自動車等のエンジン部材等への適用
を目指し、実用化に向けての研究開発が進められてい
る。
2. Description of the Related Art Ti 2 AlNb (Ti-25 mol% Al-25
mol% Nb) is a titanium-based intermetallic compound discovered about 10 years ago. Its crystal structure is orthorhombic and is named O phase. This Ti 2 AlNb is based on the existing TiAl
Compared with (γ phase) and Ti 3 Al (α 2 phase), it is superior in high temperature ductility, creep characteristics and high temperature tensile strength.
It is attracting attention as a new lightweight heat-resistant material that bears iAl. At present, research and development toward practical use are underway, aiming at application to engine members of aircraft, automobiles and the like.

【0003】その一つに、高温相であるB2相(CsCl
型構造)若しくはβ相(bcc構造)を金属組織中に組み
入れ、室温延性、破壊靱性等を高めるという試みがあ
る。例えば、米国GE社は、各種の機械的特性をバラン
スよく有する、(O+B2/β)型のTi−22Al−27N
b(Ti−22mol%Al−27mol%Nb)合金を提案して
いる(R.G.Rowe: Microstructure/Property Relationsh
ips in Titanium Aluminides and Alloys, TMS, (199
1), pp.387-398)。
One of them is the high temperature B2 phase (CsCl
There is an attempt to improve room temperature ductility, fracture toughness, etc. by incorporating a (type structure) or β phase (bcc structure) into the metal structure. For example, GE Corp. of the United States of America has a well-balanced mechanical property of (O + B2 / β) type Ti-22Al-27N.
b (Ti-22 mol% Al-27 mol% Nb) alloy has been proposed (RGRowe: Microstructure / Property Relationsh
ips in Titanium Aluminides and Alloys, TMS, (199
1), pp.387-398).

【0004】[0004]

【発明が解決しようとする課題】だが、このO相基Ti
−22Al−27Nb合金も実用材料とするには、室温及び
高温での引張特性(具体的には、引張強さと延性)、高
サイクル及び低サイクル疲労特性、さらにクリープ特性
等の様々な特性値が高いことが要求される。一般に、こ
うした各特性の向上を単一の金属組織で達成することは
難しく、例えば、高温のB2/β単相領域からの徐冷によ
り形成されるいわゆるラメラ組織では、クリープ特性に
優れているものの引張特性に欠けるという結果が得られ
ている。
However, this O phase group Ti
In order to make -22Al-27Nb alloy a practical material, various characteristic values such as tensile properties at room temperature and high temperature (specifically, tensile strength and ductility), high cycle and low cycle fatigue properties, and creep properties are required. It is required to be expensive. Generally, it is difficult to achieve such improvement of each property with a single metal structure, for example, a so-called lamella structure formed by slow cooling from a high temperature B2 / β single phase region has excellent creep properties. Results have been obtained that lack tensile properties.

【0005】一方、Ti2AlNb以外の通常のチタン
合金については、各種特性にバランスのとれた金属組織
として、量比(体積比)が数〜30%程度の等軸α相と
α/βラメラ組織との組合せからなるいわゆるbi-modal
組織と呼ばれる混合組織が提案されている(M.Brun and
G.Shachanova: Titanium'95, The Institute of Mater
ials, (1996), pp.2421-2429)。
On the other hand, with respect to ordinary titanium alloys other than Ti 2 AlNb, equiaxed α phase and α / β lamella having a quantity ratio (volume ratio) of several to 30% are formed as a metallographic structure balanced with various characteristics. So-called bi-modal consisting of combination with organization
A mixed organization called an organization has been proposed (M. Brun and
G. Shachanova: Titanium'95, The Institute of Mater
ials, (1996), pp.2421-2429).

【0006】しかしながら、通常のチタン合金において
等軸α相を均一に分散させるには、材料をβ変態温度
(B2/β単相域の下限温度)以下のα+β2相温度域で
強加工を行い、次いでα+β2相温度域に保持してα相
を再結晶させなければならない。高度の加工が必要とな
っており、作業性、経済性の両面からみても実用的であ
るとは言いにくい。
However, in order to uniformly disperse the equiaxed α phase in a normal titanium alloy, the material is strongly worked in the α + β2 phase temperature range below the β transformation temperature (lower limit temperature of B2 / β single phase range), Next, the α phase must be recrystallized while maintaining it in the α + β2 phase temperature range. It requires a high degree of processing, and it is hard to say that it is practical in terms of workability and economy.

【0007】この出願の発明は、以上の通りの事情に鑑
みてなされたものであり、軽量耐熱材料として期待され
るO相基Ti−22Al−27Nb合金を実用材料とするべ
く、引張強さと延性を高度にバランスよく合わせ持つO
相基Ti−22Al−27Nb合金とこれを製造する製造方
法を提供することを目的としている。
The invention of this application has been made in view of the above circumstances, and in order to use the O-phase based Ti-22Al-27Nb alloy expected as a lightweight heat resistant material as a practical material, the tensile strength and the ductility O with a high balance
An object is to provide a phase base Ti-22Al-27Nb alloy and a manufacturing method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、針状のO相がβ相基質中
に析出したラメラ組織と、β相基質中に均一に分散析出
した等軸α2相とからなるbi-modal組織を有することを
特徴とするO相基Ti−22Al−27Nb合金(請求項
1)を提供する。
Means for Solving the Problems In order to solve the above-mentioned problems, the invention of the present application aims to provide a lamellar structure in which a needle-shaped O phase is precipitated in a β-phase matrix and a uniform dispersion precipitation in the β-phase matrix. Provided is an O-phase based Ti-22Al-27Nb alloy (claim 1) having a bi-modal structure composed of the equiaxed α 2 phase.

【0009】また、この出願の発明は、β変態温度以下
のα2+β2相温度域で圧延した後にこの温度域に保持
し、次いで毎秒1℃以下の冷却速度で徐冷することを特
徴とするTi−22Al−27Nb合金の製造方法を有する
ことを特徴とするO相基Ti−22Al−27Nb合金(請
求項2)をも提供する。
Further, the invention of this application is characterized in that after rolling in the α 2 + β 2 phase temperature region below the β transformation temperature, it is held in this temperature region and then gradually cooled at a cooling rate of 1 ° C. per second or less. There is also provided an O-phase based Ti-22Al-27Nb alloy (claim 2) characterized by having a method for producing a Ti-22Al-27Nb alloy.

【0010】[0010]

【発明の実施の形態】この出願の発明の発明者等は、O
相基Ti−22Al−27Nb合金に引張強さと延性を高度
にバランスよく合わせ持たせるために、通常のチタン合
金と同様にbi-modal組織を現出させることを試みた。
BEST MODE FOR CARRYING OUT THE INVENTION
In order to provide the phase-based Ti-22Al-27Nb alloy with a well-balanced tensile strength and ductility, it was attempted to develop a bi-modal structure similar to a normal titanium alloy.

【0011】Ti−22Al−27Nb合金のβ変態温度
は、組成の変動に左右されるが、およそ1050〜1075℃と
される。状態図上では、β変態温度以下1000℃程度まで
の温度範囲はα2+β2相域、これ以下の温度範囲はO
+β2相域とされている。そこで、この出願の発明の発
明者等は、α2+β2相温度域で圧延加工し、その後こ
の温度域に保持することを試みた。その結果、Ti−22
Al−27Nb合金において、等軸α2相がβ相基質中に
均一微細に分散した。また、このように等軸α2相が均
一微細に分散した材料を毎秒1℃以下の冷却速度で徐冷
すると、針状のO相がβ相基質中に析出し、いわゆるラ
メラ組織が形成され、等軸α2相とそのラメラ組織とか
らなるbi-modal組織が現出した。
The β-transformation temperature of the Ti-22Al-27Nb alloy depends on the compositional variation, but is set to approximately 1050 to 1075 ° C. In the phase diagram, the temperature range up to about 1000 ° C below the β transformation temperature is α 2 + β 2 phase region, and the temperature range below this is O 2.
It is considered to be the + β2 phase region. Therefore, the inventors of the invention of this application tried to perform rolling in the α 2 + β 2 phase temperature range and then hold it in this temperature range. As a result, Ti-22
In the Al-27Nb alloy, the equiaxed α 2 phase was uniformly and finely dispersed in the β phase matrix. Further, when the material in which the equiaxed α 2 phase is uniformly and finely dispersed as described above is gradually cooled at a cooling rate of 1 ° C. or less per second, a needle-shaped O phase is precipitated in the β phase matrix to form a so-called lamellar structure. , A bi-modal structure consisting of equiaxed α 2 phase and its lamellar structure appeared.

【0012】通常のチタン合金では、前記の通り、等軸
相(すなわち、α相)を析出させるには、材料に低温側
でかなりの強加工が必要とされるが、Ti−22Al−27
Nb合金では、圧延温度がβ変態温度以下のα2+β2
相温度域である限り、低圧下率でしかも一回の圧下毎に
再加熱するような加工度の低い圧延でも等軸α2相は均
一に分散する。また、この時の圧延加工はおよそ1000℃
以上という高温において行われるため、材料は軟化状態
にあり、したがって、圧延はきわめて容易であった。さ
らに、得られたbi-modal組織は、ラメラ組織のみと比較
し、引張強さ、延性ともに良好な値を示した。
In the ordinary titanium alloy, as described above, in order to precipitate the equiaxed phase (that is, the α phase), the material needs to undergo considerable heavy working on the low temperature side, but Ti-22Al-27 is used.
For Nb alloys, the rolling temperature is α 2 + β 2 below the β transformation temperature.
As long as it is in the phase temperature region, the equiaxed α 2 phase is uniformly dispersed even in the rolling with a low workability and a low workability such as reheating at each rolling. Also, the rolling process at this time is approximately 1000 ° C.
Since it is carried out at such a high temperature, the material is in a softened state, and therefore rolling was extremely easy. Furthermore, the obtained bi-modal structure showed good values in both tensile strength and ductility as compared with the lamella structure alone.

【0013】この出願の発明は、以上の知見に基づいて
完成されたものである。
The invention of this application has been completed based on the above findings.

【0014】この出願の発明において、圧延温度、
保持温度、及び冷却速度が上記の範囲に限定されるの
は以下の理由に基づいている。 圧延温度 β変態温度以上の単相域で圧延した材料は、その後α2
+β2相温度域に保持してもα2相が等軸状に析出せ
ず、圧延温度をα2+β2相温度域未満とすると、圧延
中にO相が析出してしまい、前記の通りのbi-modal組織
は得られない。 保持温度 保持温度をβ変態温度以上とすると、α2相が十分な量
で析出せず、α2+β2相温度域未満とすると、保持中
にO相が析出してしまい、前記の通りのbi-modal組織が
得られない。
In the invention of this application, the rolling temperature,
The holding temperature and the cooling rate are limited to the above ranges for the following reasons. Rolled material in a single phase region above the rolling temperature β transformation temperature, then alpha 2
+ Be held in .beta.2 phase temperature region not deposited on alpha 2 phase equiaxed and the rolling temperature is less than alpha 2 + .beta.2 phase temperature range, it would be O phase precipitates during rolling, bi street of the -No modal organization is available. Holding temperature If the holding temperature is above the β transformation temperature, the α 2 phase does not precipitate in a sufficient amount, and if it is below the α 2 + β 2 phase temperature range, the O phase precipitates during holding, and -Can't get modal organization.

【0015】なお、保持時間については特に制限されな
い。一般には、ある程度平衡な組織に達するまで温度保
持することが好ましく、1時間以上を目安とすることが
できる。 冷却速度 冷却速度が毎秒1℃を超えると、冷却中にO相がラメラ
状に析出せず、前記の通りのbi-modal組織は得られな
い。
The holding time is not particularly limited. In general, it is preferable to maintain the temperature until reaching a tissue that is equilibrium to some extent, and 1 hour or more can be a standard. Cooling rate When the cooling rate exceeds 1 ° C. per second, the O-phase does not precipitate in lamella during cooling, and the bi-modal structure as described above cannot be obtained.

【0016】以下実施例を示し、この出願の発明のO相
基Ti−22Al−27Nb合金とその製造方法についてさ
らに詳しく説明する。
The following will describe the O-phase group Ti-22Al-27Nb alloy of the present invention and the method for producing the same in more detail with reference to the following examples.

【0017】[0017]

【実施例】ガスアトマイズ法によって作製したTi−22
Al−27Nb合金粉末を熱間静水圧プレスにより成形
し、さらにα2+β2相温度域の1000℃において熱間溝
ロール圧延を行い、角棒を作製した。冷却後、この角棒
をα2+β2相温度域の1000〜1050℃に20時間保持し
た。
[Example] Ti-22 produced by gas atomization method
The Al-27Nb alloy powder was formed by hot isostatic pressing, and then hot groove roll rolling was performed at 1000 ° C in the α 2 + β 2 phase temperature range to produce a square bar. After cooling, the square bar was kept in the α 2 + β 2 phase temperature range of 1000 to 1050 ° C. for 20 hours.

【0018】図1<a><b><c>は、各々、温度保
持直後の金属組織を示した写真である。すなわち、図1
<a>は1050℃に20時間保持後氷水中に急冷したもの
であり、図1<b>は1030℃に20時間、図1<c>は
1000℃に20時間保持した後に氷水中に急冷したもので
ある。
FIGS. 1A, 1B, 1C are photographs showing the metal structure immediately after the temperature was maintained. That is, FIG.
<a> is the one that was kept at 1050 ° C for 20 hours and then rapidly cooled in ice water. Figure 1 <b> is at 1030 ° C for 20 hours, and Figure 1 <c> is
It was held at 1000 ° C for 20 hours and then rapidly cooled in ice water.

【0019】これら図1<a><b><c>に確認され
るように、α2+β2相温度域に保持することによりβ
相基質中に等軸α2相が均一に分散した金属組織が得ら
れる。また、等軸α2相は保持温度が高くなるにつれて
その量は減少し、α2相間隔は大きくなる。
As shown in FIGS. 1 (a), (b), and (c), by maintaining the temperature in the α 2 + β 2 phase temperature range, β
A metallic structure in which the equiaxed α 2 phase is uniformly dispersed in the phase matrix is obtained. Also, the equiaxed alpha 2 phase that amount as the holding temperature increases is reduced, alpha 2 phase spacing becomes larger.

【0020】比較のために、B2/β単相温度域の1150℃
において圧延して作製した角棒をα2+β2相温度域の1
030℃に20時間保持した後に氷水中に急冷した。得ら
れた金属組織を示したのが図2の写真である。この図2
に示したように、α2相は前β粒界を中心に偏析し、均
一な分散は得られなかった。
For comparison, the B2 / β single-phase temperature range of 1150 ° C.
The square rod rolled at 1 is in the α 2 + β 2 phase temperature range of 1
After holding at 030 ° C. for 20 hours, it was rapidly cooled in ice water. The photograph of FIG. 2 shows the obtained metallographic structure. This Figure 2
As shown in Fig. 2 , the α 2 phase was segregated around the pre-β grain boundary, and uniform dispersion was not obtained.

【0021】次に、α2+β2相温度域の1000℃で前記
の通りに圧延して作製した角棒をα2+β2相温度域の1
030℃に20時間保持した後に毎秒0.1若しくは0.03℃の
冷却速度で徐冷した。
[0021] Then, α 2 + β2 phase 1 of the temperature range the rolling angular rod fabricated by alpha 2 + .beta.2 phase temperature range as at 1000 ° C. of
After being kept at 030 ° C. for 20 hours, it was gradually cooled at a cooling rate of 0.1 or 0.03 ° C. per second.

【0022】図3<a><b>は、各々、徐冷後の金属
組織を示した写真である。図3<a>は毎秒0.1℃で徐
冷して得られた金属組織であり、図3<b>は毎秒0.03
℃で徐冷して得られた金属組織である。
FIGS. 3A and 3B are photographs showing the metal structure after slow cooling. Figure 3 <a> shows the metallographic structure obtained by slow cooling at 0.1 ° C per second, and Figure 3 <b> shows 0.03 per second.
It is a metal structure obtained by slow cooling at ℃.

【0023】徐冷後の金属組織は、温度保持中に析出し
た等軸α2相と、徐冷時に針状のO相がβ相基質中に析
出したラメラ組織とからなるbi-modal組織となった。図
3<a><b>の比較からは、冷却速度が速い方、すな
わち毎秒0.1℃の冷却速度の方がO/β相は微細となるこ
とが確認される。
The metal structure after gradual cooling is a bi-modal structure consisting of an equiaxed α 2 phase precipitated during temperature maintenance and a lamellar structure in which a needle-shaped O phase is precipitated in the β phase matrix during gradual cooling. became. From the comparison of FIGS. 3A and 3B, it is confirmed that the O / β phase becomes finer when the cooling rate is higher, that is, when the cooling rate is 0.1 ° C./sec.

【0024】また、この徐冷後のbi-modal組織を有する
O相基Ti−22Al−27Nb合金に対して、室温から80
0℃までにおいて真空中で引張試験を行った。その結果
を示したのが図4のグラフである。図4のグラフには、
B2/β単相温度域の1150℃で圧延した後に、B2/β単相温
度域の1150℃に1時間保持し、次いで毎秒0.03℃の冷却
速度で徐冷したTi−22Al−27Nb合金の引張試験の
結果も合わせて示した。後者のTi−22Al−27Nb合
金の金属組織は、図5に示した通りのラメラ組織のみで
あった。
In addition, for the O-phase based Ti-22Al-27Nb alloy having the bi-modal structure after the slow cooling, the room temperature to 80
Tensile tests were performed in vacuum up to 0 ° C. The result is shown in the graph of FIG. In the graph of Figure 4,
After rolling at 1150 ℃ in the B2 / β single-phase temperature range, holding at 1150 ℃ in the B2 / β single-phase temperature range for 1 hour, and then slowly cooling the Ti-22Al-27Nb alloy at a cooling rate of 0.03 ℃ per second The test results are also shown. The metal structure of the latter Ti-22Al-27Nb alloy was only the lamella structure as shown in FIG.

【0025】図4に確認されるように、bi-modal組織を
有するO相基Ti−22Al−27Nb合金は、ラメラ組織
のみのTi−22Al−27Nb合金に比べ、室温から650
℃までの温度範囲において0.2%耐力(図4図中の白抜
きマーク)、引張強さ(図4図中の黒塗りマーク)とも
に良好な値を示す。また、bi-modal組織を有するO相基
Ti−22Al−27Nb合金では、O/β相がより微細な
(冷却速度の速い)bi-modal組織の方がより高い引張特
性を示す。延性については、bi-modal組織を有するO相
基Ti−22Al−27Nb合金は、ラメラ組織のみのTi
−22Al−27Nb合金に比べ、800℃まで高い値を示
し、特に高温側で大きく上回っている。
As can be seen in FIG. 4, the O-phase based Ti-22Al-27Nb alloy having a bi-modal structure has room temperature to 650 ° C as compared with the Ti-22Al-27Nb alloy having only a lamellar structure.
In the temperature range up to ° C, 0.2% proof stress (white mark in Fig. 4) and tensile strength (black mark in Fig. 4) show good values. In addition, in the O-phase based Ti-22Al-27Nb alloy having a bi-modal structure, a bi-modal structure having a finer O / β phase (faster cooling rate) exhibits higher tensile properties. As for ductility, the O-phase based Ti-22Al-27Nb alloy having a bi-modal structure has a lamellar structure of Ti only.
Compared with the -22Al-27Nb alloy, it shows a high value up to 800 ° C, which is much higher especially at high temperatures.

【0026】以上の結果から、bi-modal組織を有するO
相基Ti−22Al−27Nb合金は、引張強さと延性を高
度にバランスよく合わせ持つことが理解される。
From the above results, O having a bi-modal structure
It is understood that the phase-based Ti-22Al-27Nb alloy has a highly balanced combination of tensile strength and ductility.

【0027】勿論、この出願の発明は、以上の実施形態
によって限定されるものではない。合金の組成、圧延の
方式及び条件、保持温度及び保持時間等の細部について
は様々な態様が可能であることは言うまでもない。
Of course, the invention of this application is not limited to the above embodiments. It goes without saying that various aspects are possible in details such as alloy composition, rolling method and conditions, holding temperature and holding time.

【0028】また、この出願の発明は、以上の3元系の
Ti−Al−Nb合金ばかりでなく、Ti−Al−Nb
−Mo等の4元系合金にも等しく適用可能であると考え
られる。
The invention of this application is not limited to the above-mentioned ternary Ti-Al-Nb alloy, but Ti-Al-Nb alloy.
It is considered that the method is equally applicable to quaternary alloys such as Mo.

【0029】[0029]

【発明の効果】以上詳しく説明した通り、この出願の発
明によって、引張強さと延性を高度にバランスよく合わ
せ持つO相基Ti−22Al−27Nb合金が実現される。
Ti−22Al−27Nb合金の実用化にきわめて有効とな
る。
As described in detail above, according to the invention of this application, an O-phase based Ti-22Al-27Nb alloy having a highly balanced balance of tensile strength and ductility is realized.
This is extremely effective for practical use of Ti-22Al-27Nb alloy.

【図面の簡単な説明】[Brief description of drawings]

【図1】<a><b><c>は、各々、α2+β2相温
度域で圧延した後にα2+β2相温度域に保持した直後
のTi−22Al−27Nb合金の金属組織を示した図面に
代わる写真である。
[1] <a><b><c> are each, showed metal structure of Ti-22Al-27Nb alloy immediately after holding the alpha 2 + .beta.2 phase temperature region after rolling with alpha 2 + .beta.2 phase temperature range It is a photograph replacing a drawing.

【図2】B2/β単相温度域で圧延し、次いでα2+β2相
温度域に保持した直後のTi−22Al−27Nb合金の金
属組織を示した図面に代わる写真である。
FIG. 2 is a photograph, instead of a drawing, showing the metal structure of a Ti-22Al-27Nb alloy immediately after rolling in a B2 / β single-phase temperature range and then holding it in an α 2 + β2 phase temperature range.

【図3】<a><b><c>は、各々、α2+β2相温
度域で圧延した後にα2+β2相温度域に保持し、次い
で毎秒1℃以下の徐冷速度で徐冷したTi−22Al−27
Nb合金の金属組織を示した図面に代わる写真である。
[Figure 3] <a><b><c> are each held in alpha 2 + .beta.2 phase temperature region after rolling with alpha 2 + .beta.2 phase temperature range, and then slowly cooled at per 1 ℃ less cooling rate Ti-22Al-27
It is a photograph substituted for the drawing which showed the metal structure of Nb alloy.

【図4】金属組織がbi-modal組織及びラメラ組織のみの
Ti−22Al−27Nb合金の室温から800℃までにおけ
る真空中での引張試験の結果を示したグラフである。
FIG. 4 is a graph showing the results of a tensile test in vacuum of a Ti-22Al-27Nb alloy having only a bi-modal structure and a lamella structure as a metal structure from room temperature to 800 ° C.

【図5】B2/β単相温度域で圧延した後にB2/β単相温度
域に保持し、次いで毎秒0.03℃の冷却速度で徐冷したT
i−22Al−27Nb合金の金属組織を示した図面に代わ
る写真である。
FIG. 5: Rolling in the B2 / β single-phase temperature range, holding in the B2 / β single-phase temperature range, and then slow cooling at a cooling rate of 0.03 ° C. per second
It is a photograph replacing a drawing showing a metallographic structure of an i-22Al-27Nb alloy.

フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 683 C22F 1/00 683 692 692A 693 693A 694 694B (56)参考文献 特開2001−152269(JP,A) 特開 平11−241131(JP,A) 特開 平5−214470(JP,A) 特開 平2−247345(JP,A) 特開 平11−80866(JP,A) 特開 平11−61298(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 14/00 C22F 1/00 - 3/02 Continuation of front page (51) Int.Cl. 7 Identification code FI C22F 1/00 683 C22F 1/00 683 692 692A 693 693A 694 694B (56) Reference JP-A 2001-152269 (JP, A) JP-A-11 -241131 (JP, A) JP 5-214470 (JP, A) JP 2-247345 (JP, A) JP 11-80866 (JP, A) JP 11-61298 (JP, A) ) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 14/00 C22F 1/00-3/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 針状のO相がβ相基質中に析出したラメ
ラ組織と、β相基質中に均一に分散析出した等軸α2
とからなるbi-modal組織を有することを特徴とするO相
基Ti−22Al−27Nb合金。
1. A bimodal structure in which an acicular O-phase has a lamella structure precipitated in a β-phase matrix and an equiaxed α 2 phase uniformly dispersed in the β-phase matrix. O-phase based Ti-22Al-27Nb alloy.
【請求項2】 β変態温度以下のα2+β2相温度域で
圧延した後にこの温度域に保持し、次いで毎秒1℃以下
の冷却速度で徐冷することを特徴とするO相基Ti−22
Al−27Nb合金の製造方法。
2. An O phase group Ti-22 characterized by being rolled in the α 2 + β 2 phase temperature range below the β transformation temperature, held in this temperature range, and then gradually cooled at a cooling rate of 1 ° C. or less per second.
Manufacturing method of Al-27Nb alloy.
JP2000086671A 2000-03-27 2000-03-27 O-phase based Ti-22Al-27Nb alloy and method for producing the same Expired - Lifetime JP3425621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000086671A JP3425621B2 (en) 2000-03-27 2000-03-27 O-phase based Ti-22Al-27Nb alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000086671A JP3425621B2 (en) 2000-03-27 2000-03-27 O-phase based Ti-22Al-27Nb alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001271131A JP2001271131A (en) 2001-10-02
JP3425621B2 true JP3425621B2 (en) 2003-07-14

Family

ID=18602798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000086671A Expired - Lifetime JP3425621B2 (en) 2000-03-27 2000-03-27 O-phase based Ti-22Al-27Nb alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3425621B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106917023B (en) * 2017-03-21 2019-05-24 西安交通大学 A kind of metal material of good mechanical performance and preparation method thereof
CN111636042B (en) * 2020-06-12 2021-05-18 无锡派克新材料科技股份有限公司 Method for improving malleability of intermetallic compound alloy

Also Published As

Publication number Publication date
JP2001271131A (en) 2001-10-02

Similar Documents

Publication Publication Date Title
AU627965B2 (en) Oxidation resistant low expansion superalloys
JP4467637B2 (en) Alloy based on titanium aluminum
US8734716B2 (en) Heat-resistant superalloy
JP4996468B2 (en) High heat resistance, high strength Co-based alloy and method for producing the same
US20140010701A1 (en) Titanium aluminide alloys
JP2001049371A (en) Al-Zn ALLOY EXCELLENT IN VIBRATION ABSORBING CAPACITY AND ITS PRODUCTION
WO2012026354A1 (en) Co-based alloy
JP2001316743A (en) TiAl ALLOY, ITS MANUFACTURING METHOD, AND MOVING BLADE USING IT
US5741376A (en) High temperature melting niobium-titanium-chromium-aluminum-silicon alloys
JPS63501883A (en) Aluminum-lithium alloy and method of manufacturing the same
JPH0754085A (en) Creep-resistant aluminized titanium alloy composition and investment casting made of said composition
US5167732A (en) Nickel aluminide base single crystal alloys
Imayev et al. Superplasticity and hot rolling of two-phase intermetallic alloy based on TiAl
JP3425621B2 (en) O-phase based Ti-22Al-27Nb alloy and method for producing the same
WO2017123186A1 (en) Tial-based alloys having improved creep strength by strengthening of gamma phase
JP3374553B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
US5282907A (en) Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures
JP3486670B2 (en) O-phase based Ti-Al-Nb-based alloy and manufacturing method thereof
JP3334246B2 (en) Method for producing TiAl-based thermostat forged alloy
JPH07173557A (en) Tial-based intermetallic compound alloy excellent in workability, toughness and high temperature strength
JP3409077B2 (en) High-temperature lightweight high-strength titanium alloy
JP2686020B2 (en) Superplastically deformable β + γTiAl-based intermetallic alloy and method for producing the same
JP7228124B2 (en) Method for manufacturing hot worked material
JP3331625B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
Frommeyer et al. Intermetallics of aluminum

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3425621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term