JP3424518B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine

Info

Publication number
JP3424518B2
JP3424518B2 JP20791497A JP20791497A JP3424518B2 JP 3424518 B2 JP3424518 B2 JP 3424518B2 JP 20791497 A JP20791497 A JP 20791497A JP 20791497 A JP20791497 A JP 20791497A JP 3424518 B2 JP3424518 B2 JP 3424518B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
combustion
fuel
homogeneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20791497A
Other languages
Japanese (ja)
Other versions
JPH1150887A (en
Inventor
成章 柿崎
幹雄 松本
大羽  拓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP20791497A priority Critical patent/JP3424518B2/en
Priority to US09/109,044 priority patent/US6161530A/en
Priority to EP98112398A priority patent/EP0889221B1/en
Priority to DE69838885T priority patent/DE69838885T2/en
Priority to DE69822712T priority patent/DE69822712T2/en
Priority to EP03026572A priority patent/EP1396627B1/en
Priority to KR1019980026991A priority patent/KR100308223B1/en
Publication of JPH1150887A publication Critical patent/JPH1150887A/en
Application granted granted Critical
Publication of JP3424518B2 publication Critical patent/JP3424518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、運転条件に応じて
成層リーン燃焼と、均質リーン燃焼と、空燃比を理論空
燃比にフィードバック制御する均質ストイキ燃焼と、を
切り換えると共に、所定の運転条件で蒸発燃料のパージ
を行う内燃機関の制御装置に関し、特に、成層リーン燃
焼時の空燃比制御精度を高めた技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention switches between stratified lean combustion, homogeneous lean combustion, and homogeneous stoichiometric combustion in which the air-fuel ratio is feedback-controlled to the stoichiometric air-fuel ratio, according to operating conditions, and at a predetermined operating condition. The present invention relates to a control device for an internal combustion engine that purges evaporated fuel, and more particularly to a technique for improving air-fuel ratio control accuracy during stratified lean combustion.

【0002】[0002]

【従来の技術】従来、燃料タンク内の蒸発燃料を所定の
運転条件で吸気系にパージして処理する装置を備え内燃
機関において、パージによる空燃比制御への影響を考慮
して均質ストイキ燃焼時に空燃比の学習をパージの有無
に応じて独立して行うようにしたものがある(特開平5
−202816号公報) 。
2. Description of the Related Art Conventionally, in an internal combustion engine equipped with a device for purging evaporated fuel in a fuel tank into an intake system under a predetermined operating condition and treating the same, a homogeneous stoichiometric combustion is considered in consideration of the influence of the purge on the air-fuel ratio control. There is one in which learning of the air-fuel ratio is independently performed according to the presence or absence of purge (Japanese Patent Application Laid-Open No. Hei 5 (1999))
-202816).

【0003】また、近年では排気エミッション及び燃費
改善のため、理論空燃比よりリーンな均質混合気を生成
して燃焼を行わせるようにした(均質リーン燃焼) もの
があり、このものでは、均質ストイキ燃焼時に行った空
燃比の学習値を均質リーン燃焼時に用いて空燃比精度を
高めるようにしている。この場合、前記パージ中の学習
値を使用すると、蒸発燃焼濃度が濃いときには学習値は
空燃比を薄くする方向に更新されるため、燃焼の安定限
界までリーン化を進めている均質リーン燃焼では、空燃
比学習値により空燃比がよりリーン化されていまうと失
火してしまうことがある。そこで、パージの有無に応じ
た2種類の学習値のうち、値が大きく空燃比を濃くする
方の学習値を選択して使用するようにしたものがある。
Further, in recent years, in order to improve exhaust emission and fuel consumption, there is a homogenous mixture which is made leaner than the stoichiometric air-fuel ratio and is burned (homogeneous lean combustion). The learned value of the air-fuel ratio obtained during combustion is used during homogeneous lean combustion to improve the air-fuel ratio accuracy. In this case, when the learning value during purging is used, the learning value is updated in the direction of decreasing the air-fuel ratio when the evaporative combustion concentration is high, so in the homogeneous lean combustion in which leaning is advanced to the combustion stable limit, If the air-fuel ratio becomes leaner due to the air-fuel ratio learning value, misfire may occur. Therefore, there is a method in which a learning value having a larger value and a higher air-fuel ratio is selected and used from the two kinds of learning values depending on the presence or absence of purging.

【0004】一方、ごく最近はガソリン機関で燃焼室に
直接燃料を噴射し、圧縮行程で燃料噴射して点火栓周り
に層状混合気を形成して成層燃焼を行わせて、排気エミ
ッション及び燃費の改善を図ったものがある。但し、該
成層燃焼を行なう機関でも、限られたシリンダ容積で要
求トルクを確保するために、燃料を吸気行程で噴射して
均質燃焼(均質リーン燃焼,均質ストイキ燃焼) を行う
必要があるので、運転状態に応じてこれら燃焼を切り換
えるようにしている。
On the other hand, most recently, in a gasoline engine, fuel is directly injected into a combustion chamber, and fuel is injected in a compression stroke to form a stratified mixture around the ignition plug to perform stratified combustion, thereby reducing exhaust emissions and fuel consumption. There are some improvements. However, even in the engine that performs the stratified charge combustion, in order to secure the required torque with a limited cylinder volume, it is necessary to inject fuel in the intake stroke to perform homogeneous combustion (homogeneous lean combustion, homogeneous stoichiometric combustion). These combustions are switched according to the operating state.

【0005】[0005]

【発明が解決しようとする課題】上記成層リーン燃焼を
行う機関で、均質リーン燃焼と区別なくリーン燃焼時は
一律に空燃比を濃くする方向の学習値を用いて空燃比制
御を行うと、成層リーン燃焼は、点火栓周りの空燃比を
濃くしているため、さらに空燃比を濃くするとリッチ失
火を招きやすくなるという問題が発生する。
When the air-fuel ratio control is performed by using the learned value in the direction of uniformly increasing the air-fuel ratio in the lean combustion without distinction from the homogeneous lean combustion in the engine which performs the stratified lean combustion, the stratified combustion is performed. In lean combustion, since the air-fuel ratio around the spark plug is made dense, further increasing the air-fuel ratio causes a problem that rich misfire tends to occur.

【0006】本発明は、このような従来の問題に鑑みな
されたもので、成層リーン燃焼でも安定した燃焼を確保
しつつ蒸発燃料のパージ処理を行うことができるように
した内燃機関の制御装置を提供することを目的とする。
The present invention has been made in view of the above conventional problems, and provides a control device for an internal combustion engine capable of performing a purge process of evaporated fuel while ensuring stable combustion even in stratified lean combustion. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】このため、請求項1に係
る発明は、機関運転条件に応じて、成層リーン燃焼と、
均質リーン燃焼と、空燃比を理論空燃比にフィードバッ
ク制御する均質ストイキ燃焼と、を切り換えると共に、
所定の運転条件で蒸発燃料を吸気系にパージする内燃機
関において、前記均質ストイキ燃焼時に前記蒸発燃料パ
ージの有無により独立して空燃比のフィードバック補正
値を学習して該フィードバック補正値を基準値近傍に維
持する学習値を得ると共に、前記成層リーン燃焼時と均
質リーン燃焼時とで該2種類の学習値を個別に参照して
空燃比制御を行うことを特徴とする。
For this reason, the invention according to claim 1 is directed to stratified lean combustion depending on engine operating conditions.
While switching between homogeneous lean combustion and homogeneous stoichiometric combustion in which the air-fuel ratio is feedback-controlled to the stoichiometric air-fuel ratio,
In an internal combustion engine that purges evaporative fuel into an intake system under predetermined operating conditions, an air-fuel ratio feedback correction value is independently learned by the presence or absence of the evaporative fuel purge during the homogeneous stoichiometric combustion, and the feedback correction value is near a reference value. In addition to obtaining the learning value maintained at, the air-fuel ratio control is performed by individually referring to the two kinds of learning values during the stratified lean combustion and the homogeneous lean combustion.

【0008】また、請求項2に係る発明は、図1に示す
ように、機関運転条件に応じて、成層リーン燃焼と、均
質リーン燃焼と、空燃比を理論空燃比にフィードバック
制御する均質ストイキ燃焼と、を切り換える燃焼切換手
段を備えると共に、所定の運転条件で蒸発燃料を吸気系
にパージする蒸発燃料パージ手段を備えた内燃機関にお
いて、前記均質ストイキ燃焼時に前記蒸発燃料パージの
有無により独立して空燃比のフィードバック補正値を学
習して該フィードバック補正値を基準値近傍に維持する
学習値を得るパージ有無別学習手段と、前記成層リーン
燃焼時と均質リーン燃焼時とでそれぞれ前記2種類の学
習値を個別に参照して空燃比制御を行う成層リーン燃焼
時空燃比制御手段と、均質リーン燃焼時空燃比制御手段
と、を含んで構成したことを特徴とする。
Further, according to a second aspect of the present invention, as shown in FIG. 1, stratified lean combustion, homogeneous lean combustion, and homogeneous stoichiometric combustion in which the air-fuel ratio is feedback-controlled to the stoichiometric air-fuel ratio according to engine operating conditions. In the internal combustion engine, which is equipped with a combustion switching means for switching between and, and an evaporative fuel purging means for purging the evaporative fuel into the intake system under a predetermined operating condition, independently of the presence or absence of the evaporative fuel purge during the homogeneous stoichiometric combustion. The learning means for each purge presence / absence for learning the feedback correction value of the air-fuel ratio to obtain the learning value for maintaining the feedback correction value in the vicinity of the reference value, and the two types of learning respectively in the stratified lean combustion and the homogeneous lean combustion. Constituting stratified lean combustion air-fuel ratio control means for performing air-fuel ratio control by individually referring to values, and homogeneous lean combustion air-fuel ratio control means Characterized in that was.

【0009】これらの発明によれば、均質ストイキ燃焼
時にパージの有無に応じて独立に行われた空燃比学習の
2種類の学習値に対し、成層リーン燃焼時と均質リーン
燃焼時とで個別に学習値を参照して空燃比制御を行う。
この結果、成層リーン燃焼と均質リーン燃焼という失火
しやすくなる空燃比の傾向が逆である各燃焼に対して、
それぞれ適した学習値を参照しながら、最適な空燃比制
御を行うことができる。
According to these aspects of the invention, the two types of learning values of the air-fuel ratio learning independently performed according to the presence / absence of the purge during the homogeneous stoichiometric combustion are separately performed for the stratified lean combustion and the homogeneous lean combustion. Air-fuel ratio control is performed by referring to the learned value.
As a result, for each combustion that has the opposite tendency of the air-fuel ratio that facilitates misfire, such as stratified lean combustion and homogeneous lean combustion,
The optimum air-fuel ratio control can be performed with reference to each suitable learning value.

【0010】また、請求項3に係る発明は、成層リーン
燃焼時には、蒸発燃料のパージ流量を制限すると共に、
前記2種類の学習値のうち、空燃比が薄くなる側の学習
値を参照して空燃比制御を行い、均質燃焼時には、前記
2種類の学習値のうち、空燃比が濃くなる側の学習値を
参照して空燃比制御を行うことを特徴とする。
The invention according to claim 3 limits the purge flow rate of evaporated fuel during stratified lean combustion, and
Of the two types of learning values, the air-fuel ratio control is performed with reference to the learning value on the side where the air-fuel ratio becomes thin, and during homogeneous combustion, the learning value on the side where the air-fuel ratio becomes darker among the two types of learning values. Is performed to control the air-fuel ratio.

【0011】このようにすれば、成層リーン燃焼時は、
蒸発燃料のパージ流量を制限しつつ、非パージ中の空燃
比学習値とパージ中の空燃比学習値とのうち、空燃比が
薄くなる側の学習値を参照することにより、空燃比リッ
チ化による失火を防止でき、また、均質リーン燃焼時
は、非パージ中の空燃比学習値とパージ中の空燃比学習
値とのうち、空燃比が濃くなる側の学習値を参照するこ
とにより、空燃比リーン化による失火を防止できる。
In this way, during stratified lean combustion,
By limiting the purge flow rate of the evaporated fuel and referring to the learning value on the side where the air-fuel ratio becomes thinner, of the learning value of the air-fuel ratio during non-purging and the learning value of the air-fuel ratio during purging, the air-fuel ratio becomes rich. It is possible to prevent misfire, and at the time of homogeneous lean combustion, refer to the learning value on the side where the air-fuel ratio becomes richer among the learning value of the air-fuel ratio during non-purging and the learning value of the air-fuel ratio during purging. Can prevent misfire due to leaning.

【0012】また、請求項4に係る発明は、燃焼室内に
直接燃料を噴射することを特徴とする。直噴式によって
噴射時期の設定で成層燃焼と均質燃焼とを容易に切り換
えることができる。
The invention according to claim 4 is characterized in that the fuel is directly injected into the combustion chamber. With the direct injection type, it is possible to easily switch between stratified combustion and homogeneous combustion by setting the injection timing.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態を図に基
づいて説明する。図2は実施の一形態を示す内燃機関の
システム図である。先ず、これについて説明する。車両
に搭載される内燃機関1の各気筒の燃焼室には、エアク
リーナ2から吸気通路3により、電制スロットル弁4の
制御を受けて、空気が吸入される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a system diagram of an internal combustion engine showing an embodiment. First, this will be described. Air is sucked into a combustion chamber of each cylinder of an internal combustion engine 1 mounted on a vehicle from an air cleaner 2 through an intake passage 3 under the control of an electronically controlled throttle valve 4.

【0014】そして、燃焼室内に燃料を直接噴射するよ
うに、電磁式の燃料噴射弁5が設けられている。燃料噴
射弁5は、後述するコントロールユニット20から機関
回転に同期して吸気行程又は圧縮行程にて出力される噴
射パルス信号によりソレノイドに通電されて開弁し、所
定圧力に調圧された燃料を噴射するようになっている。
そして、噴射された燃料は、吸気行程噴射の場合は燃焼
室内に拡散して均質な混合気を形成し、また圧縮行程噴
射の場合は点火栓6回りに集中的に層状の混合気を形成
し、後述するコントロールユニット20からの点火信号
に基づき、点火栓6により点火されて、燃焼(均質燃焼
又は成層燃焼)する。尚、燃焼方式は、空燃比制御との
組合わせで、理論空燃比での均質ストイキ燃焼、均質リ
ーン燃焼(空燃比20〜30)、成層リーン燃焼(空燃
比40程度)に分けられる(図4参照) 。
An electromagnetic fuel injection valve 5 is provided so as to directly inject the fuel into the combustion chamber. The fuel injection valve 5 is opened by energizing a solenoid by an injection pulse signal output from a control unit 20 described later in synchronization with the engine rotation in an intake stroke or a compression stroke to open the fuel and regulate the fuel to a predetermined pressure. It is designed to jet.
Then, the injected fuel diffuses into the combustion chamber in the case of the intake stroke injection to form a homogeneous air-fuel mixture, and in the case of the compression stroke injection, forms a concentrated layered air-fuel mixture around the spark plug 6. Based on an ignition signal from a control unit 20 which will be described later, the ignition plug 6 ignites and combusts (homogeneous combustion or stratified combustion). Combustion methods can be divided into homogeneous stoichiometric combustion at the theoretical air-fuel ratio, homogeneous lean combustion (air-fuel ratio 20 to 30), and stratified lean combustion (air-fuel ratio of about 40) in combination with air-fuel ratio control (Fig. 4). See).

【0015】機関1からの排気は排気通路7より排出さ
れ、排気通路7には排気浄化用の触媒8が介装されてい
る。また、燃料タンク9から発生する蒸発燃料を処理す
べく、蒸発燃料処理装置としてのキャニスタ10が設け
られている。キャニスタ10は、密閉容器内に活性炭な
どの吸着剤11を充填したもので、燃料タンク9からの
蒸発燃料導入管12が接続されている。従って、機関1
の停止中に燃料タンク9にて発生した蒸発燃料は、蒸発
燃料導入管12を通って、キャニスタ10に導かれ、こ
こに吸着される。
Exhaust gas from the engine 1 is discharged from an exhaust passage 7, and an exhaust purification catalyst 8 is interposed in the exhaust passage 7. Further, a canister 10 as an evaporated fuel processing device is provided in order to process the evaporated fuel generated from the fuel tank 9. The canister 10 is an airtight container filled with an adsorbent 11 such as activated carbon, and an evaporated fuel introduction pipe 12 from a fuel tank 9 is connected to the canister 10. Therefore, institution 1
The evaporated fuel generated in the fuel tank 9 while the fuel cell is stopped is guided to the canister 10 through the evaporated fuel introducing pipe 12 and adsorbed there.

【0016】キャニスタ10にはまた、新気導入口13
が形成されると共に、パージ通路14が導出されてい
る。パージ通路14はパージ制御弁15を介して吸気通
路3のスロットル弁4下流(吸気マニホールド)に接続
されている。パージ制御弁15は、後述するコントロー
ルユニット20から機関1の運転中に所定の条件で出力
される信号により開弁するようになっている。従って、
機関1が始動され、その後の運転中に、パージ許可条件
が成立すると、パージ制御弁15が開き、機関1の吸入
負圧がキャニスタ10に作用する結果、新気導入口13
から導入される空気によってキャニスタ10の吸着剤1
1に吸着されていた蒸発燃料が脱離され、この脱離した
蒸発燃料を含むパージガスがパージ通路14を通って吸
気通路3のスロットル弁4下流に吸入され、この後、機
関1の燃焼室内で燃焼処理される。
The canister 10 also has a fresh air introduction port 13
Is formed and the purge passage 14 is led out. The purge passage 14 is connected to a downstream side of the throttle valve 4 (intake manifold) in the intake passage 3 via a purge control valve 15. The purge control valve 15 is opened by a signal output from a control unit 20 described later under a predetermined condition while the engine 1 is operating. Therefore,
If the purge permission condition is satisfied during the subsequent operation of the engine 1 and the subsequent operation, the purge control valve 15 is opened and the suction negative pressure of the engine 1 acts on the canister 10, resulting in the fresh air introduction port 13
The adsorbent 1 of the canister 10 by the air introduced from the
The evaporated fuel adsorbed on the fuel cell 1 is desorbed, and the purge gas containing the desorbed fuel is sucked through the purge passage 14 to the downstream side of the throttle valve 4 of the intake passage 3, and thereafter, in the combustion chamber of the engine 1. Burned.

【0017】コントロールユニット20は、CPU、R
OM、RAM、A/D変換器及び入出力インターフェイ
ス等を含んで構成されるマイコンを備え、各種センサか
らの入力信号を受け、これに基づいて演算処理して、燃
料噴射弁5、点火栓6及びパージ制御弁15などの作動
を制御する。前記各種センサとしては、機関1のクラン
ク軸又はカム軸回転を検出するクランク角センサ21,
22が設けられている。これらのクランク角センサ2
1,22は、気筒数をnとすると、クランク角720°
/n毎に、予め定めたクランク角位置(例えば圧縮上死
点前110°)で基準パルス信号REFを出力すると共
に、1〜2°毎に単位パルス信号POSを出力するもの
で、基準パルス信号REFの周期などから機関回転速度
Neを算出可能である。
The control unit 20 includes a CPU and R
The microcomputer is provided with an OM, a RAM, an A / D converter, an input / output interface, and the like, receives input signals from various sensors, performs arithmetic processing based on the signals, and injects the fuel injection valve 5 and the spark plug 6. And controlling the operation of the purge control valve 15 and the like. As the various sensors, a crank angle sensor 21, which detects the rotation of the crankshaft or the camshaft of the engine 1,
22 is provided. These crank angle sensors 2
1 and 22 have a crank angle of 720 °, where n is the number of cylinders.
For each / n, the reference pulse signal REF is output at a predetermined crank angle position (for example, 110 ° before compression top dead center), and the unit pulse signal POS is output every 1 to 2 °. The engine rotation speed Ne can be calculated from the REF cycle or the like.

【0018】この他、吸気通路3のスロットル弁4上流
で吸入空気流量Qaを検出するエアフローメータ23、
アクセルペダルの踏込み量(アクセル開度)ACCを検
出するアクセルセンサ24、スロットル弁4の開度TV
Oを検出するスロットルセンサ25(スロットル弁4の
全閉位置でONとなるアイドルスイッチを含む)、機関
1の冷却水温Twを検出する水温センサ26、排気通路
7にて排気空燃比のリッチ・リーンに応じた信号を出力
するO2 センサ27、車速VSPを検出する車速センサ
28などが設けられている。
In addition to this, an air flow meter 23 for detecting the intake air flow rate Qa upstream of the throttle valve 4 in the intake passage 3,
Accelerator sensor 24 for detecting the accelerator pedal depression amount (accelerator opening) ACC, throttle valve 4 opening TV
A throttle sensor 25 that detects O (including an idle switch that is turned on when the throttle valve 4 is fully closed), a water temperature sensor 26 that detects the cooling water temperature Tw of the engine 1, and a rich / lean exhaust air-fuel ratio in the exhaust passage 7. An O 2 sensor 27 that outputs a signal corresponding to the vehicle speed, a vehicle speed sensor 28 that detects the vehicle speed VSP, and the like are provided.

【0019】次に、第1の実施形態に係る空燃比制御及
びパージ制御を、図3に示したフローチャートに従って
説明する。ステップ1では、目標当量比TFBYA,基
本燃料噴射量Tp,目標パージ制御弁開度TEVPを読
み込む。ここで、目標当量比TFBYAは、アクセル開
度ACCと機関回転速度Neとに基づいて直接マップか
らの検索等により算出し、又はアクセル開度ACCと機
関回転速度Neから求めた目標トルクtTeと機関回転
速度Neとによりマップからの検索等により算出する。
基本燃料噴射量Tpは、エアフロメータから検出した吸
入空気量Qaと機関回転速度Neとにより求まるシリン
ダ吸入空気量Qに対し、理論空燃比相当の基準当量比
(=1) における燃料噴射量として算出する。目標パー
ジ制御弁開度TEVPは、機関回転速度Neと機関負荷
例えば基本燃料噴射量Tp等に基づいてマップからの検
索等により算出する(図5参照) 。
Next, the air-fuel ratio control and purge control according to the first embodiment will be described with reference to the flow chart shown in FIG. In step 1, the target equivalence ratio TFBYA, the basic fuel injection amount Tp, and the target purge control valve opening TEVP are read. Here, the target equivalent ratio TFBYA is calculated by a direct search or the like based on the accelerator opening ACC and the engine speed Ne, or the target torque tTe and the engine obtained from the accelerator opening ACC and the engine speed Ne. It is calculated by a search from a map or the like with the rotation speed Ne.
The basic fuel injection amount Tp is calculated as a fuel injection amount at a reference equivalent ratio (= 1) corresponding to the theoretical air-fuel ratio with respect to the cylinder intake air amount Q obtained from the intake air amount Qa detected from the air flow meter and the engine rotation speed Ne. To do. The target purge control valve opening degree TEVP is calculated by searching a map or the like based on the engine speed Ne and the engine load such as the basic fuel injection amount Tp (see FIG. 5).

【0020】ステップ2では、前記目標当量比TFBY
Aに対応した燃料噴射量であって、後述する空燃比学習
値のマップ検索に用いる燃料噴射量Tibを次式により
算出する。 Tib=TFBYA×Tp ステップ3では、機関回転速度Ne及びリーンフラグF
LEANを読み込む。
In step 2, the target equivalent ratio TFBY is
A fuel injection amount Tib, which is a fuel injection amount corresponding to A and is used for a map search of an air-fuel ratio learning value described later, is calculated by the following equation. Tib = TFBYA × Tp In step 3, the engine speed Ne and the lean flag F
Read LEAN.

【0021】ステップ4では、前記リーンフラグFLE
ANの値を判別する。ステップ5で蒸発燃料パージ中の
空燃比学習値を記憶したマップから学習値を検索するよ
うに、マップヘッダMAPHDに定数LRNALPをセ
ットし、ステップ6で機関回転速度Neと燃料噴射量T
ibとに基づいて、前記パージ中の空燃比学習値を記憶
したマップから学習値KLBLRCを検索し、該学習値
KLBLRCをKLBLRC0としてセットする。
In step 4, the lean flag FLE is set.
Determine the value of AN. In step 5, a constant LRNALP is set in the map header MAPHD so that the learned value is retrieved from the map that stores the learned value of the air-fuel ratio during the evaporative fuel purge, and in step 6, the engine speed Ne and the fuel injection amount T
Based on ib, the learning value KLBLRC is searched from the map storing the air-fuel ratio learning value during the purge, and the learning value KLBLRC is set as KLBLRC0.

【0022】次いでステップ7で蒸発燃料非パージ中の
空燃比学習値を記憶したマップから学習値を検索するよ
うに、マップヘッダMAPHDに定数BSALPをセッ
トし、ステップ8で機関回転速度Neと燃料噴射量Ti
bとに基づいて、前記非パージ中の空燃比学習値を記憶
したマップから学習値KLBLRCを検索し、該学習値
KLBLRCをKLBLRC1としてセットする。
Next, in step 7, a constant BSALP is set in the map header MAPHD so that the learned value is retrieved from the map storing the learned value of the air-fuel ratio during non-purging of the evaporated fuel, and in step 8, the engine rotation speed Ne and the fuel injection are set. Amount Ti
Based on b and b, the learning value KLBLRC is searched from the map storing the air-fuel ratio learning value during non-purging, and the learning value KLBLRC is set as KLBLRC1.

【0023】そして、ステップ9で成層燃焼切換フラグ
FSTRの値によって成層リーン燃焼,均質リーン燃焼
を判別し、成層リーン燃焼中と判定されたときはステッ
プ10で出力補正係数KHEVPを1未満の所定値CST
REVにセットしてパージ流量を制限する補正を行った
後、ステップ12へ進み、均質リーン燃焼中と判定された
ときはステップ11で出力補正係数KHEVPを1.0と
してパージ流量を制限する補正を行わず、ステップ13へ
進む。
In step 9, stratified lean combustion or homogeneous lean combustion is discriminated by the value of the stratified combustion switching flag FSTR. When it is determined that stratified lean combustion is in progress, in step 10, the output correction coefficient KHEVP is set to a predetermined value less than 1. CST
After making a correction to limit the purge flow rate by setting it to REV, the process proceeds to step 12, and when it is determined that the homogeneous lean combustion is being performed, the output correction coefficient KHEVP is set to 1.0 in step 11 to make a correction to limit the purge flow rate. No, go to step 13.

【0024】ステップ12では、前記パージ中の学習値K
LBLRC0と非パージ中の学習値KLBLRC1とを
比較し、KLBLRC1<KLBLRC0と判定された
ときは、ステップ14へ進んで非パージ中の学習値KLB
LRC1を学習値KLBLRCとしてセットし、そうで
ない場合(KLBLRC1≧KLBLRC0) はステッ
プ15へ進んでパージ中の学習値KLBLRC0を学習値
KLBLRCとしてセットする。
In step 12, the learned value K during the purge is set.
LBLRC0 is compared with the learning value KLBLRC1 during non-purging, and when it is determined that KLBLRC1 <KLBLRC0, the routine proceeds to step 14 and the learning value KLB during non-purging.
LRC1 is set as the learning value KLBLRC, and if not (KLBLRC1 ≧ KLBLRC0), the process proceeds to step 15 and the learning value KLBLRC0 during purging is set as the learning value KLBLRC.

【0025】すなわち、成層リーン燃焼時は、パージ
中,非パージ中の学習値のうち、小さい方の学習値つま
り空燃比を薄くする方向の学習値を選択する。一方、ス
テップ13でも同様に前記パージ中の学習値KLBLRC
0と非パージ中の学習値KLBLRC1とを比較する
が、KLBLRC1<KLBLRC0と判定されたとき
は、ステップ15へ進んでパージ中の学習値KLBLRC
0を学習値KLBLRCとしてセットし、そうでない場
合(KLBLRC1≧KLBLRC0) はステップ14へ
進んで非パージ中の学習値KLBLRC1を学習値KL
BLRCとしてセットする。
That is, during the stratified lean combustion, the smaller learning value among the learning values during purging and non-purging, that is, the learning value in the direction of decreasing the air-fuel ratio is selected. On the other hand, similarly in step 13, the learning value KLBLRC during the purge is similarly set.
0 is compared with the learning value KLBLRC1 during non-purging, but when it is determined that KLBLRC1 <KLBLRC0, the routine proceeds to step 15 and the learning value KLBLRC during purging.
0 is set as the learning value KLBLRC, and if not (KLBLRC1 ≧ KLBLRC0), the process proceeds to step 14 and the learning value KLBLRC1 during non-purging is set to the learning value KL.
Set as BLRC.

【0026】すなわち、均質リーン燃焼時は、パージ
中,非パージ中の学習値のうち、大きい方の学習値つま
り空燃比を濃くする方向の学習値を選択する。次いでス
テップ16では、前記のようにして選択して検索された学
習値KLBLRCを用いて、燃料噴射量Tiを次式によ
り算出する。 Ti=Tib×KLBLRC×COEF+Ts COEFは冷却水温等に基づいて定まる各種補正係数,
Tsはバッテリ電圧によって定まる無効噴射分である。
That is, at the time of homogeneous lean combustion, the larger learning value among the learning values during purging and non-purging, that is, the learning value in the direction of increasing the air-fuel ratio is selected. Next, at step 16, the fuel injection amount Ti is calculated by the following equation using the learned value KLBLRC selected and searched as described above. Ti = Tib × KLBLRC × COEF + Ts COEF is various correction coefficients determined based on the cooling water temperature,
Ts is an invalid injection amount determined by the battery voltage.

【0027】ステップ17では、パージ制御弁15の開度
制御値EVPを次式により算出する。ここで、既述した
ように成層リーン燃焼時は、前記出力補正係数KHEV
Pを1.0未満の値にセットしてあるので、パージ流量
が制限され、均質リーン燃焼時は、前記出力補正係数K
HEVPを1.0にセットしてあるので、パージ制御弁
15の開度は特別補正されることなく目標制御値TEV
Pに制御される。
In step 17, the opening control value EVP of the purge control valve 15 is calculated by the following equation. Here, as described above, during the stratified lean combustion, the output correction coefficient KHEV
Since P is set to a value less than 1.0, the purge flow rate is limited, and during homogeneous lean combustion, the output correction coefficient K
Since HEVP is set to 1.0, the opening degree of the purge control valve 15 is not specially corrected and the target control value TEV
Controlled by P.

【0028】EVP=TEVP×KHEVP このようにすれば、成層リーン燃焼時は、パージ流量を
制限しつつ、2種類の学習値のうち空燃比を薄くする小
さい方の学習値を選択することにより、空燃比リッチ化
による失火を確実に防止できる。また、均質リーン燃焼
時は逆に空燃比を濃くする大きい方の学習値を選択する
ことにより、従来同様に空燃比リーン化による失火を確
実に防止できる。特に、本実施形態では、パージ制御弁
等パージ制御系に異常が生じて誤学習が行われた場合で
も、それぞれの燃焼に適した方の学習値を選択して良好
な空燃比制御を行うことができる。
EVP = TEVP × KHEVP In this way, at the time of stratified lean combustion, by limiting the purge flow rate, the smaller learning value of the two kinds of learning values that thins the air-fuel ratio is selected. It is possible to reliably prevent misfire due to enrichment of the air-fuel ratio. On the contrary, during homogeneous lean combustion, conversely, by selecting the larger learning value that makes the air-fuel ratio richer, it is possible to reliably prevent misfire due to lean air-fuel ratio as in the conventional case. In particular, in this embodiment, even if an abnormality occurs in the purge control system such as the purge control valve and erroneous learning is performed, a learning value that is suitable for each combustion is selected to perform good air-fuel ratio control. You can

【0029】また、ステップ14のリーンフラグFLEA
Nの判定で、リーン燃焼中でなく均質ストイキ燃焼中で
あると判定された場合はステップ18以降へ進み、以下の
ようにパージの有無に応じて独立した空燃比の学習を行
う。ステップ18では、学習収束フラグFBSLTDの値
を判別して学習が収束しているか否かを判定する。
Also, in step 14, the lean flag FLEA is set.
If it is determined by N that the combustion is not in the lean combustion but in the homogeneous stoichiometric combustion, the process proceeds to step 18 and subsequent steps, and the independent learning of the air-fuel ratio is performed according to the presence or absence of the purge as follows. In step 18, the value of the learning convergence flag FBSLTD is determined to determine whether the learning has converged.

【0030】収束判定フラグFBSLTDの値が0つま
り空燃比フィードバック補正係数が収束しておらず、蒸
発燃料のパージを停止する条件であると判定されたとき
は、ステップ19でパージ制御弁15の目標開度制御値T
EVPを0にセットしてパージを停止する。ステップ20
では、蒸発燃料非パージ中の空燃比学習値を記憶したマ
ップから学習値を検索するように、マップヘッダMAP
HDに定数BSALPをセットする。
If the value of the convergence determination flag FBSLTD is 0, that is, the air-fuel ratio feedback correction coefficient has not converged, and it is determined that the condition for stopping the purge of the evaporated fuel is the condition, the target of the purge control valve 15 is determined in step 19. Opening control value T
Set EVP to 0 to stop purging. Step 20
Then, the map header MAP is searched so that the learned value is searched from the map that stores the air-fuel ratio learned value during the non-purging of the evaporated fuel.
Set the constant BSALP to HD.

【0031】ステップ21では、機関回転速度Neと燃料
噴射量Tibとに基づいて、前記非パージ中の空燃比学
習値を記憶したマップから学習値KLBLRCを検索す
る。ステップ22では、空燃比フィードバック補正係数A
LPHAを基準値(例えば1) に近づけるように学習を
行い、学習値KLBLRCを更新する。ここで、該学習
時は非パージ中であり、非パージ中専用の記憶領域に学
習値KLBLRCを記憶更新する。また、学習の収束判
定を行い収束したと判定されたときに学習収束フラグF
BSLTDを1にセットする。
In step 21, the learned value KLBLRC is retrieved from the map storing the learned value of the air-fuel ratio during non-purging based on the engine speed Ne and the fuel injection amount Tib. In step 22, the air-fuel ratio feedback correction coefficient A
Learning is performed so that LPHA approaches a reference value (for example, 1), and the learning value KLBLRC is updated. Here, during the learning, the non-purging is being performed, and the learning value KLBLRC is stored and updated in the storage area dedicated to the non-purging. If the learning convergence is determined and it is determined that the learning has converged, the learning convergence flag F
Set BSLTD to 1.

【0032】次いでステップ16へ進んで、前記非パージ
時の学習値を用いて燃料噴射量Tiを算出し、ステップ
17でパージ制御弁の開度制御値EVPを算出するが、前
記したように目標開度制御値TEVPが0にセットされ
ているので、開度制御値も0となり、パージが停止状態
に維持される。一方、ステップ18で学習が収束している
と判定されたときは、ステップ23へ進ん蒸発燃料パージ
中の空燃比学習値を記憶したマップから学習値を検索す
るように、マップヘッダMAPHDに定数LRNALP
をセットする。
Next, the routine proceeds to step 16, where the fuel injection amount Ti is calculated using the learning value at the time of non-purging, and step
The opening control value EVP of the purge control valve is calculated at 17, but since the target opening control value TEVP is set to 0 as described above, the opening control value also becomes 0 and the purge is maintained in the stopped state. It On the other hand, when it is determined in step 18 that the learning has converged, the routine proceeds to step 23, where a constant LRNALP is set in the map header MAPHD so that the learned value is searched from the map storing the air-fuel ratio learned value during evaporative fuel purge.
Set.

【0033】ステップ24では、機関回転速度Neと燃料
噴射量Tibとに基づいて、前記パージ中の空燃比学習
値を記憶したマップから学習値KLBLRCを検索す
る。ステップ25では、前記同様の空燃比学習を行い、学
習値KLBLRCを更新する。ここで、該学習時はパー
ジ中であり、パージ中専用の記憶領域に学習値KLBL
RCを記憶更新する。
In step 24, the learned value KLBLRC is retrieved from the map storing the learned value of the air-fuel ratio during the purge, based on the engine speed Ne and the fuel injection amount Tib. In step 25, the air-fuel ratio learning similar to the above is performed and the learning value KLBLRC is updated. Here, at the time of learning, purging is in progress, and the learning value KLBL is stored in a dedicated storage area during purging.
Store and update RC.

【0034】次いでステップ16へ進んで、前記非パージ
時の学習値を用いて燃料噴射量Tiを算出し、ステップ
17でパージ制御弁の開度制御値EVPを算出する。
Next, the routine proceeds to step 16, where the fuel injection amount Ti is calculated using the learning value at the time of non-purging,
At 17, the opening control value EVP of the purge control valve is calculated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成・機能を示すブロック図。FIG. 1 is a block diagram showing the configuration and functions of the present invention.

【図2】本発明の一実施形態のシステム構成を示す図。FIG. 2 is a diagram showing a system configuration of an embodiment of the present invention.

【図3】第1の実施形態における燃料噴射量制御及びパ
ージ制御ルーチンを示すフローチャート。
FIG. 3 is a flowchart showing a fuel injection amount control and purge control routine in the first embodiment.

【図4】同上の実施形態における運転条件に応じた燃焼
切換マップ。
FIG. 4 is a combustion switching map according to operating conditions in the above embodiment.

【図5】同じく運転条件に応じたパージ制御弁の目標開
度制御値のマップ。
FIG. 5 is a map of the target opening control value of the purge control valve according to the operating conditions.

【符号の説明】[Explanation of symbols]

1 内燃機関 5 燃料噴射弁 6 点火栓 9 燃料タンク 10 キャニスタ 11 吸着剤 12 蒸発燃料導入管 13 新気導入口 14 パージ通路 15 パージ制御弁 20 コントロールユニット 1 Internal combustion engine 5 Fuel injection valve 6 spark plug 9 Fuel tank 10 canisters 11 Adsorbent 12 Evaporative fuel introduction pipe 13 Fresh air inlet 14 Purge passage 15 Purge control valve 20 control unit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−231758(JP,A) 特開 平5−202816(JP,A) 特開 平9−151771(JP,A) 特開 平4−362221(JP,A) 特開 平3−281965(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02D 41/14 F02D 41/02 F02M 25/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 10-231758 (JP, A) JP 5-202816 (JP, A) JP 9-151771 (JP, A) JP 4- 362221 (JP, A) JP-A-3-281965 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F02D 41/14 F02D 41/02 F02M 25/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】機関運転条件に応じて、成層リーン燃焼
と、均質リーン燃焼と、空燃比を理論空燃比にフィード
バック制御する均質ストイキ燃焼と、を切り換えると共
に、所定の運転条件で蒸発燃料を吸気系にパージする内
燃機関において、 前記均質ストイキ燃焼時に前記蒸発燃料パージの有無に
より独立して空燃比のフィードバック補正値を学習して
該フィードバック補正値を基準値近傍に維持する学習値
を得ると共に、前記成層リーン燃焼時と均質リーン燃焼
時とで該2種類の学習値を個別に参照して空燃比制御を
行うことを特徴とする内燃機関の制御装置。
1. A stratified lean combustion, a homogeneous lean combustion, and a homogeneous stoichiometric combustion in which the air-fuel ratio is feedback-controlled to a stoichiometric air-fuel ratio are switched according to the engine operating conditions, and the evaporated fuel is taken in under a predetermined operating condition. In an internal combustion engine for purging the system, while independently learning the feedback correction value of the air-fuel ratio by the presence or absence of the evaporated fuel purge during the homogeneous stoichiometric combustion to obtain a learning value for maintaining the feedback correction value near the reference value, A control device for an internal combustion engine, wherein air-fuel ratio control is performed by individually referring to the two types of learned values during stratified lean combustion and homogeneous lean combustion.
【請求項2】機関運転条件に応じて、成層リーン燃焼
と、均質リーン燃焼と、空燃比を理論空燃比にフィード
バック制御する均質ストイキ燃焼と、を切り換える燃焼
切換手段を備えると共に、所定の運転条件で蒸発燃料を
吸気系にパージする蒸発燃料パージ手段を備えた内燃機
関において、 前記均質ストイキ燃焼時に前記蒸発燃料パージの有無に
より独立して空燃比のフィードバック補正値を学習して
該フィードバック補正値を基準値近傍に維持する学習値
を得るパージ有無別学習手段と、 前記成層リーン燃焼時と均質リーン燃焼時とでそれぞれ
前記2種類の学習値を個別に参照して空燃比制御を行う
成層リーン燃焼時空燃比制御手段と、均質リーン燃焼時
空燃比制御手段と、を含んで構成したことを特徴とする
内燃機関の制御装置。
2. Combustion switching means for switching between stratified lean combustion, homogeneous lean combustion, and homogeneous stoichiometric combustion in which the air-fuel ratio is feedback-controlled to the stoichiometric air-fuel ratio is provided in accordance with engine operating conditions, and predetermined operating conditions are provided. In an internal combustion engine equipped with an evaporated fuel purging means for purging the evaporated fuel into the intake system, the feedback correction value of the air-fuel ratio is independently learned by the presence or absence of the evaporated fuel purge during the homogeneous stoichiometric combustion, and the feedback correction value is calculated. Purge presence / non-learning means for obtaining a learning value maintained near the reference value, and stratified lean combustion for performing air-fuel ratio control by individually referring to the two types of learned values during stratified lean combustion and homogeneous lean combustion, respectively. An internal-combustion-engine control device comprising: a space-time air-fuel ratio control unit and a homogeneous lean-burn time air-fuel ratio control unit.
【請求項3】成層リーン燃焼時には、蒸発燃料のパージ
流量を制限すると共に、前記2種類の学習値のうち、空
燃比が薄くなる側の学習値を参照して空燃比制御を行
い、 均質燃焼時には、前記2種類の学習値のうち、空燃比が
濃くなる側の学習値を参照して空燃比制御を行うことを
特徴とする請求項1又は請求項2に記載の内燃機関の制
御装置。
3. At the time of stratified lean combustion, the purge flow rate of the evaporated fuel is restricted, and the air-fuel ratio control is performed by referring to the learned value of the two types of learned values on the side where the air-fuel ratio becomes thin, to achieve homogeneous combustion. The control device for the internal combustion engine according to claim 1 or 2, wherein the air-fuel ratio control is performed with reference to a learned value on the side where the air-fuel ratio becomes richer, out of the two types of learned values.
【請求項4】燃焼室内に直接燃料を噴射することを特徴
とする請求項1〜請求項3のいずれか1つに記載の内燃
機関の制御装置。
4. The control device for an internal combustion engine according to claim 1, wherein the fuel is directly injected into the combustion chamber.
JP20791497A 1997-07-04 1997-08-01 Control device for internal combustion engine Expired - Lifetime JP3424518B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP20791497A JP3424518B2 (en) 1997-08-01 1997-08-01 Control device for internal combustion engine
US09/109,044 US6161530A (en) 1997-07-04 1998-07-02 Control system for internal combustion engine
DE69838885T DE69838885T2 (en) 1997-07-04 1998-07-03 Combustion engine and method for controlling an internal combustion engine
DE69822712T DE69822712T2 (en) 1997-07-04 1998-07-03 Control system for an internal combustion engine
EP98112398A EP0889221B1 (en) 1997-07-04 1998-07-03 Control system for internal combustion engine
EP03026572A EP1396627B1 (en) 1997-07-04 1998-07-03 Internal combustion engine and method for controlling an internal combustion engine
KR1019980026991A KR100308223B1 (en) 1997-07-04 1998-07-04 Internal combustion engine control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20791497A JP3424518B2 (en) 1997-08-01 1997-08-01 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH1150887A JPH1150887A (en) 1999-02-23
JP3424518B2 true JP3424518B2 (en) 2003-07-07

Family

ID=16547661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20791497A Expired - Lifetime JP3424518B2 (en) 1997-07-04 1997-08-01 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3424518B2 (en)

Also Published As

Publication number Publication date
JPH1150887A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
JP3861446B2 (en) Evaporative fuel concentration detection device for lean combustion internal combustion engine and its application device
JP3496468B2 (en) Apparatus for determining evaporated fuel concentration of internal combustion engine
JP3385919B2 (en) Evaporative fuel purge control system for internal combustion engine
JP3753166B2 (en) Evaporative fuel processing device for internal combustion engine
JP3424518B2 (en) Control device for internal combustion engine
JP3846481B2 (en) In-cylinder injection internal combustion engine control device
JP3337410B2 (en) Evaporative fuel treatment system for internal combustion engine
JP3562241B2 (en) Control device for internal combustion engine
JP3555394B2 (en) Air-fuel ratio control device for internal combustion engine
JP3835975B2 (en) In-cylinder injection internal combustion engine control device
US6273063B1 (en) Apparatus and method for controlling idle rotation speed of an internal combustion engine
JP3562248B2 (en) Evaporative fuel treatment system for internal combustion engine
JPH09324672A (en) Fuel injection timing control device of lean-burn engine
JP3525688B2 (en) Evaporative fuel treatment system for internal combustion engine
JP3384291B2 (en) Evaporative fuel treatment system for internal combustion engine
JP3633283B2 (en) Evaporative fuel processing device for internal combustion engine
JP3384303B2 (en) Air-fuel ratio control device for internal combustion engine
JPH10331728A (en) Evaporating fuel treating device for cylinder fuel injection type internal combustion engine
JPH09310643A (en) Controller for direct injection gasoline engine
JP3620151B2 (en) Evaporative fuel processing device for internal combustion engine
JP3349398B2 (en) Evaporative fuel treatment system for internal combustion engine
JP4421078B2 (en) In-cylinder injection engine control device
JP3337411B2 (en) Evaporative fuel treatment system for internal combustion engine
JP3161248B2 (en) Air-fuel ratio control device for internal combustion engine with EGR device
JP3105012B2 (en) Engine fuel control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 11

EXPY Cancellation because of completion of term