JP3423353B2 - Roll thickness control method - Google Patents

Roll thickness control method

Info

Publication number
JP3423353B2
JP3423353B2 JP11725693A JP11725693A JP3423353B2 JP 3423353 B2 JP3423353 B2 JP 3423353B2 JP 11725693 A JP11725693 A JP 11725693A JP 11725693 A JP11725693 A JP 11725693A JP 3423353 B2 JP3423353 B2 JP 3423353B2
Authority
JP
Japan
Prior art keywords
rolling
rolled
plate thickness
pass
roll gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11725693A
Other languages
Japanese (ja)
Other versions
JPH0663626A (en
Inventor
敬輔 北里
洋二 三谷
好正 大山
覚 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP11725693A priority Critical patent/JP3423353B2/en
Publication of JPH0663626A publication Critical patent/JPH0663626A/en
Application granted granted Critical
Publication of JP3423353B2 publication Critical patent/JP3423353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リバース型圧延機によ
り銅合金などの金属材料を熱間圧延する際に、圧延方向
の板厚を制御する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the plate thickness in the rolling direction when hot rolling a metal material such as a copper alloy by a reverse type rolling mill.

【0002】[0002]

【従来の技術】リバース型圧延機を用いてスラブなどの
金属材料を熱間圧延する場合は、材料の先端部と後端部
とで塑性変形抵抗が異なるため、板厚が一様にならず、
圧延方向にばらつく。圧延方向の板厚を均一にするため
に、従来から種々の板厚制御方法が提案されている。例
えば、圧延機出側に厚み計を設け、これにより圧延直後
の板厚を検出し、目標板厚に対応する所定の基準信号と
検出信号との偏差が無くなるように、ロール圧下装置あ
るいは張力制御装置を圧延中にフィードバック制御す
る。
2. Description of the Related Art When a metal material such as a slab is hot-rolled by using a reverse type rolling mill, the plastic deformation resistance is different between the front end and the rear end of the material, so that the plate thickness is not uniform. ,
Disperses in the rolling direction. Various plate thickness control methods have been conventionally proposed in order to make the plate thickness uniform in the rolling direction. For example, a thickness gauge is installed on the outlet side of the rolling mill to detect the plate thickness immediately after rolling, and to eliminate the deviation between the predetermined reference signal corresponding to the target plate thickness and the detected signal, a roll reduction device or tension control is performed. Feedback control of the device during rolling.

【0003】しかし、一般に、伸銅用の熱間圧延機など
には厚み計や自動板厚制御装置は設けられていない。こ
のような場合は、熱間圧延された板は、空冷による温度
降下が大きくなる最終パス付近では、圧延方向に温度勾
配に応じた塑性係数の分布が生じる。この結果、相対的
に空冷時間の短い先端部から空冷時間の長い後端部に向
かって圧延材の板厚が徐々に厚くなる。
However, in general, a hot rolling mill for copper elongation or the like is not provided with a thickness gauge or an automatic plate thickness control device. In such a case, in the hot-rolled sheet, the distribution of the plasticity coefficient according to the temperature gradient occurs in the rolling direction near the final pass where the temperature drop due to air cooling becomes large. As a result, the plate thickness of the rolled material gradually increases from the front end portion where the air cooling time is relatively short to the rear end portion where the air cooling time is long.

【0004】[0004]

【発明が解決しようとする課題】従来の圧延パススケジ
ュール設計では、作業能率の向上を図るために、圧延最
終パスの圧下量も大きくする。しかしながら、圧延最終
パスの圧下量が過大であるために、熱間圧延板の圧延方
向板厚分布は、塑性係数が小さく入側板厚が厚い圧延最
終パス先端部から塑性係数が大きく入側板厚が薄い圧延
最終パス後端部に向かって徐々に厚くなるという不都合
を生じる。
In the conventional rolling pass schedule design, the amount of reduction in the final rolling pass is also increased in order to improve the work efficiency. However, since the rolling amount in the final rolling pass is too large, the rolling direction thickness distribution of the hot-rolled strip has a small plasticity coefficient and a large inlet side thickness. A problem occurs that the thickness gradually increases toward the rear end of the thin rolling final pass.

【0005】このような圧延方向の板厚のばらつきを解
消するために、圧下制御装置および張力制御装置などの
自動板厚制御装置、あるいは厚み計を既設の圧延機に取
り付けることも考えられるが、大幅な設備改造が必要に
なり、設備改造に高コストを要する。
In order to eliminate such variations in strip thickness in the rolling direction, it is conceivable to install an automatic strip thickness control device such as a reduction control device and a tension control device, or a thickness gauge on an existing rolling mill. A large amount of equipment modification is required, and the equipment modification requires high cost.

【0006】本発明は、上記課題を解決するためになさ
れたものであって、リバース型圧延機により金属材料を
熱間圧延する際に、圧延機出側の厚み計や板厚制御のた
めの圧下制御装置あるいは張力制御装置などの自動板厚
制御装置を用いることなく、圧延方向の板厚を適正に制
御することができる方法を提供するものである。
[0006] The present invention has been made to solve the above problems, and is intended to control the thickness gauge on the delivery side of a rolling mill and the plate thickness control when hot rolling a metal material with a reverse type rolling mill. It is intended to provide a method capable of appropriately controlling the strip thickness in the rolling direction without using an automatic strip thickness control device such as a rolling reduction device or a tension control device.

【0007】[0007]

【課題を解決するための手段】本発明に係る圧延方向の
板厚制御方法は、リバース型圧延機により被圧延材を熱
間圧延するときの最終パスにおいて、被圧延材の先端部
及び後端部の板厚にそれぞれ対応する塑性特性曲線を把
握するとともに圧延機の弾性特性線をも把握し、被圧延
材の先端部板厚に対応する塑性特性曲線と後端部板厚に
対応する塑性特性曲線との交点を求め、この交点を通る
圧延機の弾性特性線から無負荷状態のロールギャップを
求め、これに基づき最終パスのロールギャップを設定す
ることを特徴とする。
The method for controlling the plate thickness in the rolling direction according to the present invention is a method for controlling the thickness of a material to be rolled in the final pass when hot rolling the material to be rolled by a reverse type rolling mill. The plastic characteristic curve corresponding to the strip thickness and the elastic characteristic line of the rolling mill are also grasped, and the plastic characteristic curve corresponding to the leading end sheet thickness and the plasticity corresponding to the rear end portion thickness of the rolled material are grasped. It is characterized in that the intersection with the characteristic curve is obtained, the roll gap in the unloaded state is obtained from the elastic characteristic line of the rolling mill passing through this intersection, and the roll gap of the final pass is set based on this.

【0008】この場合に、被圧延材の先端部及び後端部
板厚にそれぞれ対応する塑性特性曲線の代わりに、これ
らに近似する二つの近似直線を採用し、両者の交点を求
め、交点を通る圧延機の弾性特性線からロールギャップ
設定値の近似解を求めてもよい。
In this case, instead of the plastic characteristic curves corresponding to the front and rear plate thicknesses of the material to be rolled, two approximate straight lines approximate to these are adopted, the intersections of the two are found, and the intersections are determined. You may obtain | require the approximate solution of a roll gap setting value from the elastic characteristic line of the rolling mill which passes.

【0009】なお、塑性特性曲線は、複数本の材料を順
次ロールギャップを締め込んで圧延し、そのときの被圧
延材の先端部と後端部とにおける圧延荷重と出側板厚と
の関係から求める。
The plastic characteristic curve is obtained from the relationship between the rolling load and the strip thickness at the leading end and the trailing end of the material to be rolled at that time, when a plurality of materials are rolled with the roll gaps tightened in order. Ask.

【0010】[0010]

【作用】図1および図7を参照しながらロールギャップ
及び圧延機出側の板厚と圧延荷重との関係からロールギ
ャップ設定値を求める手順について説明する。
The procedure for obtaining the roll gap set value from the relationship between the roll gap and the strip thickness on the delivery side of the rolling mill and the rolling load will be described with reference to FIGS. 1 and 7.

【0011】先ず、図7に示す塑性特性の近似直線を用
いる簡易法について説明する。最終パス(9パス)先端
部の圧延荷重をP9S、最終パス後端部の圧延荷重を
9E、最終パス先端部の出側板厚をh9S、最終パス後端
部の出側板厚をh9E、最終パス直前のパス(8パス)先
端部の出側板厚をh8S、最終パス直前のパス後端部の出
側板厚をh8Eとすると、最終パス先端部の塑性係数M9S
および後端部の塑性係数M9Eの両者は簡易的には下式
(1)および(2)で表わすことができる。
First, a simple method using the approximate straight line of the plastic characteristic shown in FIG. 7 will be described. Rolling load at the leading end of the final pass (9 passes) is P 9S , rolling load at the trailing end of the final pass is P 9E , exit side plate thickness at the end of the final pass is h 9S , exit side plate thickness at the end of the last pass is h Assuming that the exit side plate thickness of the leading end of the pass (8 passes) immediately before the final pass is h 8S and the exit side plate thickness of the trailing end of the pass immediately before the final pass is h 8E , the plasticity coefficient M 9S of the leading end of the final pass is 9E .
Both the plasticity coefficient M 9E of the rear end portion and the plasticity coefficient M 9E of the rear end portion can be simply expressed by the following equations (1) and (2).

【0012】 M9S=P9S/(h8E−h9S) …(1) M9E=P9E/(h8S−h9E) …(2) 上式(1)は図7に示す直線C1の傾きを表わし、上式
(2)は図7に示す直線C2の傾きを表わすものであ
り、これらの近似式(1)及び(2)をそれぞれ用い
て、先端部の塑性係数M9SをP9S,h8E,h9Sから求め
るとともに、後端部の塑性係数M9EをP9E,h8S,h9E
から求めることができる。
M 9S = P 9S / (h 8E −h 9S ) ... (1) M 9E = P 9E / (h 8S −h 9E ) ... (2) The above formula (1) corresponds to the straight line C 1 shown in FIG. The above equation (2) represents the inclination of the straight line C2 shown in FIG. 7, and the plasticity coefficient M 9S of the tip portion is set to P 9S by using these approximate equations (1) and (2), respectively. , H 8E , h 9S, and the plasticity coefficient M 9E at the rear end is P 9E , h 8S , h 9E
Can be obtained from

【0013】ここで、出側板厚h8Sとh8Eのそれぞれ
は、圧延荷重の実測値と下記のゲージメータ式(3)を
用いて求めることができる。
Here, each of the delivery side plate thicknesses h 8S and h 8E can be obtained by using the measured value of the rolling load and the following gauge meter formula (3).

【0014】 h=S0 +(P/K) …(3) ただし、hは出側板厚、S0 は無負荷時のロールギャッ
プ、Pは圧延荷重、Kはミル剛性係数をそれぞれ表わ
す。
H = S 0 + (P / K) (3) where h is the exit side plate thickness, S 0 is the roll gap when there is no load, P is the rolling load, and K is the mill rigidity coefficient.

【0015】さらに本発明方法においては、下式(4)
および(5)を満足するように、圧下量を設定すること
により、圧延方向に均一な板厚分布をもつ熱間圧延板を
得ることができる。
Further, in the method of the present invention, the following formula (4)
By setting the reduction amount so as to satisfy (5) and (5), it is possible to obtain a hot-rolled sheet having a uniform sheet thickness distribution in the rolling direction.

【0016】 P9 =Δh9S×M9S=Δh9E×M9E=一定 …(4) h9 =h8E−Δh9S=h8S−Δh9E=一定 …(5) ただし、Δh9Sは最終パス先端部の圧下量を示し、Δh
9Eは最終パス後端部の圧下量を表わす。
P 9 = Δh 9S × M 9S = Δh 9E × M 9E = constant (4) h 9 = h 8E −Δh 9S = h 8S −Δh 9E = constant (5) However, Δh 9S is the final path. Indicates the amount of reduction at the tip, Δh
9E represents the amount of reduction at the rear end of the final pass.

【0017】このようにして上記(4)式および(5)
式を満足するΔh9SおよびΔh9Eをそれぞれ求める。そ
して、出側板厚h9S,h9Eと圧延荷重P9S,P9Eとから
得られる座標上の2点から弾性特性線A0 を決定する一
方で、さらに2つの塑性係数(傾き)M9S,M9Eを用い
て前記2点を通る近似塑性特性線C1およびC2をそれ
ぞれ記入し、両者の交点Nを求める。交点Nから最終パ
スの圧延荷重P9 が求まり、さらに、交点Nを通る圧延
機の弾性特性線A1(線A0に平行な弾性特性線)を記
入する。弾性特性線A1は圧延機のミル係数により与え
られるものである。弾性特性線A1が横軸を切るところ
からロールギャップ設定値S1 が得られる。
Thus, the above equations (4) and (5) are obtained.
Δh 9S and Δh 9E that satisfy the equation are obtained, respectively. Then, the elastic characteristic line A 0 is determined from the two points on the coordinates obtained from the delivery side plate thicknesses h 9S and h 9E and the rolling loads P 9S and P 9E , while further two plasticity coefficients (slopes) M 9S , Approximate plastic characteristic lines C1 and C2 passing through the above two points are entered using M9E , and the intersection point N between them is determined. The rolling load P 9 of the final pass is obtained from the intersection point N, and the elastic characteristic line A1 of the rolling mill passing through the intersection point N (the elastic characteristic line parallel to the line A0) is entered. The elastic characteristic line A1 is given by the mill coefficient of the rolling mill. The roll gap setting value S 1 is obtained from the position where the elastic characteristic line A1 crosses the horizontal axis.

【0018】なお、圧延最終パス入側および出側材料の
圧延方向板厚分布は、圧延機入側および出側にX線やガ
ンマ線などを利用した厚み計をそれぞれ設け、入側およ
び出側の板厚を直接測定してもよいが、厚み計を備えて
いない熱間圧延機においては圧延荷重Pの圧延方向分布
よりゲージメータ式(3)などを用いて算出することも
できる。
For the plate thickness distribution in the rolling direction of the material on the inlet and outlet sides of the final rolling pass, thickness gauges using X-rays and gamma rays are provided on the inlet side and outlet side of the rolling mill, respectively. The plate thickness may be directly measured, but in a hot rolling mill without a thickness gauge, it can be calculated from the distribution of the rolling load P in the rolling direction using a gauge meter formula (3) or the like.

【0019】次に、図1に示す塑性特性の真曲線(厳密
曲線)を用いる正式法について説明する。
Next, a formal method using the true curve (exact curve) of the plastic characteristic shown in FIG. 1 will be described.

【0020】先ず、図中に示すE0,Q0,E1,Q1
の4点を上記手順によって求める。次いで、複数本の鋳
塊を最終パス直前のパスまでは同じ工程で圧延した後
に、最終パスにおけるロールギャップを順次しめこんで
圧延し、その際の先端部および後端部における圧延荷重
および板厚を順次測定する。圧延荷重および測定板厚に
基づきE2,Q2,E3,Q3の4点を順次求める。そ
して、E0,E1,E2,E3の4点をつないで塑性特
性曲線B1を得る。また、Q0,Q1,Q2,Q3の4
点をつないで塑性特性曲線B2を得る。そして、両曲線
B1およびB2の交点Mを求める。
First, E0, Q0, E1, Q1 shown in the figure
4 points are obtained by the above procedure. Then, after rolling a plurality of ingots in the same process up to the pass immediately before the final pass, rolling is performed by sequentially inserting the roll gap in the final pass, and the rolling load and plate thickness at the leading end and the trailing end at that time Are sequentially measured. Four points E2, Q2, E3 and Q3 are sequentially obtained based on the rolling load and the measured plate thickness. Then, the plastic characteristic curve B1 is obtained by connecting the four points E0, E1, E2, and E3. In addition, 4 of Q0, Q1, Q2, Q3
By connecting the points, a plastic characteristic curve B2 is obtained. Then, the intersection M of the curves B1 and B2 is obtained.

【0021】次いで、交点Mを通る弾性特性線A1を記
入する。弾性特性線A1は圧延機のミル係数により与え
られるものである。弾性特性線A1が横軸を切るところ
がロールギャップ設定値S1 に相当する。このときの所
要圧延荷重はP9 である。ちなみに、従来方法において
は、弾性特性線A0が横軸を切るところからロールギャ
ップ設定値S0 を決めていたので、圧延荷重はP9S,P
9Eとなり、本発明方法の所要圧延荷重P9 より大幅に大
きい。
Then, an elastic characteristic line A1 passing through the intersection M is entered. The elastic characteristic line A1 is given by the mill coefficient of the rolling mill. The point where the elastic characteristic line A1 cuts the horizontal axis corresponds to the roll gap setting value S 1 . The required rolling load at this time is P 9 . By the way, in the conventional method, since the roll gap setting value S 0 is determined from the point where the elastic characteristic line A0 crosses the horizontal axis, the rolling load is P 9S , P
9E , which is significantly larger than the required rolling load P 9 of the method of the present invention.

【0022】つまり、本発明方法によれば、最終の1パ
ス前の圧延で発生する圧延最終パス入側材料の圧延方向
板厚分布と、最終パス圧延中の材料の塑性係数の分布と
が互いに相殺されるような最終パスの圧下量を得るよう
にパススケジュールを設定することができる。
That is, according to the method of the present invention, the strip thickness distribution in the rolling direction of the material on the entry side of the final rolling pass, which occurs in the rolling before the final final pass, and the distribution of the plasticity coefficient of the material during the final pass rolling are mutually The pass schedule can be set to obtain a final pass reduction that offsets.

【0023】[0023]

【実施例】以下、本発明の実施例を添付の図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0024】図2に示すように、圧延ライン2にリバー
ス型圧延機3が設けられ、スラブ8が熱間圧延されるよ
うになっている。圧延ライン2の東側にはアップコイラ
4、再熱炉(WFC)5、並びに水冷ゾーン6が設けら
れている。リバース型圧延機3は、ワークロール直径5
00mm、バックアップロール直径1000mm、ロールバ
レル1500mm、ミル剛性係数300tonf/mmの4段式
熱間圧延機である。
As shown in FIG. 2, a reverse type rolling mill 3 is provided in the rolling line 2 so that the slab 8 is hot-rolled. An up coiler 4, a reheating furnace (WFC) 5 and a water cooling zone 6 are provided on the east side of the rolling line 2. Reverse type rolling mill 3 has a work roll diameter of 5
This is a four-stage hot rolling mill with 00 mm, backup roll diameter 1000 mm, roll barrel 1500 mm, and mill rigidity coefficient 300 tonf / mm.

【0025】(実施例1)スラブ8は、厚さ180mm、
幅1000mm、長さ5500mmのタフピッチ銅である。
このようなスラブ8を2本準備し、WFC5内で約85
0℃にそれぞれ再加熱した後に、表1に示すパススケジ
ュールでそれぞれ9パスずつ圧延した。一方のパススケ
ジュールは従来方法によるものであり、他方のパススケ
ジュールは本発明の実施例に係る方法によるものであ
る。両者は8パス目までは同じスケジュールで行なった
が、最後の9パス目では後者のロールギャップを前者の
それよりも大きくした。ロールギャップは、上述の図1
を用いて設定した。ちなみに、従来方法における9パス
目のロールギャップは11.0mmであるのに対して、本
発明方法における9パス目のそれは17.4mmである。
(Example 1) The slab 8 has a thickness of 180 mm,
It is tough pitch copper with a width of 1000 mm and a length of 5500 mm.
Two such slabs 8 are prepared and about 85 in WFC5.
After each reheating to 0 ° C., 9 passes were rolled according to the pass schedule shown in Table 1. One pass schedule is according to the conventional method, and the other pass schedule is according to the method according to the embodiment of the present invention. Both teams performed the same schedule up to the 8th pass, but in the final 9th pass, the roll gap of the latter was made larger than that of the former. The roll gap is shown in FIG.
Was set using. By the way, the roll gap of the 9th pass in the conventional method is 11.0 mm, while that of the 9th pass in the method of the present invention is 17.4 mm.

【0026】表2は、従来方法および本発明方法の8パ
ス目及び9パス目のパススケジュールを詳細に示すもの
である。前者においてはスラブ先端と後端とで板厚の違
いが見られるが、後者においてはスラブ先端と後端とで
板厚が実質的に等しくなる。
Table 2 details the pass schedules of the 8th pass and the 9th pass of the conventional method and the method of the present invention. In the former, a difference in plate thickness is seen between the slab front end and the rear end, but in the latter, the plate thickness is substantially equal between the slab front end and the rear end.

【0027】図3に示すように、奇数パスは東側からス
ラブ8を圧延機3に送給し、偶数パスは西側からスラブ
8を圧延機3に送給する。表1および表2に示すよう
に、各パスごとにロールギャップ設定値および圧延荷重
を変えて実施した。
As shown in FIG. 3, the odd-numbered paths feed the slab 8 from the east side to the rolling mill 3, and the even-numbered paths feed the slab 8 from the west side to the rolling mill 3. As shown in Table 1 and Table 2, the roll gap setting value and rolling load were changed for each pass.

【0028】図4を参照しながら塑性特性曲線を求める
場合について説明する。初期板厚1.0mmから0.7mm
に1パスで圧延する場合は荷重100トンを要し、初期
板厚1.0mmから0.6mmに1パスで圧延する場合は荷
重120トンを要したとする。これらの結果から塑性係
数Mを求めることができる。すなわち、塑性係数Mは
(120−100)/(0.7−0.6)=200トン
/mmとして求めることができる。このような塑性係数M
は、圧延後の板厚0.6〜0.7mm区間における塑性特
性曲線の勾配に相当する。このようにして各区間の勾配
(塑性係数M)を順次求めることによりその材料の塑性
特性曲線を得ることができる。ちなみに、後述の近似解
を求めるための塑性特性の近似直線は、板厚1.0mm
(無荷重)と板厚0.6mm(荷重120トン)との二点
間を結ぶ直線により与えられる。この場合の塑性係数M
は、120/(1.0−0.6)=300トン/mmにな
る。
The case of obtaining the plastic characteristic curve will be described with reference to FIG. Initial plate thickness 1.0mm to 0.7mm
It is assumed that a load of 100 tons is required for rolling in one pass, and a load of 120 tons is required for rolling in an initial plate thickness of 1.0 mm to 0.6 mm. The plasticity coefficient M can be obtained from these results. That is, the plasticity coefficient M can be calculated as (120-100) / (0.7-0.6) = 200 ton / mm. Such a plasticity coefficient M
Corresponds to the gradient of the plastic characteristic curve in the section of the rolled sheet having a thickness of 0.6 to 0.7 mm. In this way, the plastic characteristic curve of the material can be obtained by sequentially obtaining the gradient (plasticity coefficient M) of each section. By the way, the approximate straight line of the plastic characteristic for obtaining the approximate solution described later is the plate thickness 1.0 mm
It is given by a straight line connecting two points of (no load) and a plate thickness of 0.6 mm (load of 120 tons). Plasticity coefficient M in this case
Is 120 / (1.0-0.6) = 300 ton / mm.

【0029】図5は、横軸に最終パス圧延先端からの距
離をとり、縦軸に板厚をとって、本発明の第1実施例に
係る板厚制御方法により圧延したタフピッチ銅板の圧延
方向の板厚分布図である。
FIG. 5 shows the rolling direction of a tough pitch copper sheet rolled by the sheet thickness control method according to the first embodiment of the present invention, with the horizontal axis representing the distance from the end of the last pass rolling and the vertical axis representing the sheet thickness. It is a plate thickness distribution map of.

【0030】図6は、横軸に最終パス圧延先端からの距
離をとり、縦軸に板厚をとって、従来方法により圧延し
たタフピッチ銅板の圧延方向の板厚分布図である。
FIG. 6 is a plate thickness distribution diagram in the rolling direction of a tough pitch copper plate rolled by a conventional method, with the horizontal axis representing the distance from the tip of the final pass rolling and the vertical axis representing the plate thickness.

【0031】両結果は、上記の表1および表2に示すパ
ススケジュールで圧延し、スラブ8を水冷した後に、超
音波厚み計を用いて板厚を測定した。図6から明らかな
ように、従来方法による場合は、板の先端部から後端部
に向かって0.25mm程度徐々に厚くなっている。これ
に対して、図5から明らかなように、本発明方法による
場合は、板の先端部から後端部に至るまでほぼ均一な厚
さを得ることができた。
Both results were obtained by rolling with the pass schedule shown in Tables 1 and 2 above, cooling the slab 8 with water, and then measuring the plate thickness using an ultrasonic thickness gauge. As is clear from FIG. 6, in the case of the conventional method, the thickness gradually increases from the front end to the rear end of the plate by about 0.25 mm. On the other hand, as is apparent from FIG. 5, according to the method of the present invention, it was possible to obtain a substantially uniform thickness from the front end to the rear end of the plate.

【0032】なお、上記実施例では、タフピッチ銅スラ
ブを熱間圧延する場合について説明したが、この発明方
法はこれのみに限られることなく、鉄鋼材料やアルミニ
ウムなどの他の金属材料にも用いることができる。
In the above embodiment, the case where the tough pitch copper slab is hot-rolled has been described, but the method of the present invention is not limited to this, and can be used for other metal materials such as steel materials and aluminum. You can

【0033】図7は、被圧延材の塑性特性に近似直線を
用いてロールギャップを設定する他の実施例を示すグラ
フ図である。
FIG. 7 is a graph showing another embodiment in which the roll gap is set by using an approximate straight line for the plastic characteristics of the material to be rolled.

【0034】最終パス先端部の出側板厚h9S(荷重
9S)および最終パス直前のパス後端部の出側板厚h8E
(無荷重)から塑性特性近似直線C1を得る。また、最
終パス後端部の出側板厚h9E(荷重P9E)および最終パ
ス直前のパス先端部の出側板厚h8S(無荷重)から塑性
特性近似直線C2を得る。そして、両直線C1およびC
2の交点Nを求める。
Outgoing plate thickness h 9S (load P 9S ) at the leading end of the final pass and outgoing plate thickness h 8E at the trailing end of the pass immediately before the final pass.
An approximate straight line C1 of plastic characteristics is obtained from (no load). Further, a plastic characteristic approximation straight line C2 is obtained from the exit side plate thickness h 9E (load P 9E ) at the rear end of the final pass and the exit side plate thickness h 8S (no load) at the end of the pass immediately before the final pass. And both straight lines C1 and C
Find the intersection point N of 2.

【0035】次いで、交点Nを通る弾性特性線A1を記
入する。弾性特性線A1は圧延機のミル係数により与え
られるものである。弾性特性線A1が横軸を切るところ
がロールギャップ設定値S1 に相当する。このときの所
要圧延荷重はP9 である。(ちなみに、従来方法におい
ては、弾性特性線A0 が横軸を切るところからロールギ
ャップ設定値S0 を決めていたので、圧延荷重はP9S
9Eとなり、本発明方法の所要圧延荷重P9 より大幅に
大きくなる。) (実施例2)第2実施例では上記第1実施例と同じ4段
式熱間圧延機3を用いて65/35黄銅スラブを熱間圧延し
た。スラブ8は、厚さ180mm、幅750mm、長さ60
00mmの65/35黄銅である。このようなスラブ8を2本
準備し、WFC5内で約820℃にそれぞれ再加熱した
後に、表3に示すパススケジュールでそれぞれ15パス
ずつ圧延した。一方のパススケジュールは従来方法によ
るものであり、他方のパススケジュールは本発明の実施
例に係る方法によるものである。両者は14パス目まで
は同じパススケジュールで行なったが、最後の15パス
目では後者のロールギャップを前者のそれよりも大きく
した。ロールギャップは、上述の図1を用いて設定し
た。ちなみに、従来方法における15パス目のロールギ
ャップは10.5mmであるのに対して、本発明方法にお
ける15パス目のそれは13.1mmである。
Then, an elastic characteristic line A1 passing through the intersection point N is entered. The elastic characteristic line A1 is given by the mill coefficient of the rolling mill. The point where the elastic characteristic line A1 cuts the horizontal axis corresponds to the roll gap setting value S 1 . The required rolling load at this time is P 9 . (By the way, in the conventional method, since the roll gap setting value S 0 is determined from the point where the elastic characteristic line A 0 crosses the horizontal axis, the rolling load is P 9S ,
P 9E , which is significantly larger than the required rolling load P 9 of the method of the present invention. (Example 2) In the second example, a 65/35 brass slab was hot-rolled using the same four-stage hot rolling mill 3 as in the first example. The slab 8 has a thickness of 180 mm, a width of 750 mm, and a length of 60.
It is a 65/35 brass of 00 mm. Two such slabs 8 were prepared and reheated in the WFC 5 to about 820 ° C., respectively, and then 15 passes were each rolled according to the pass schedule shown in Table 3. One pass schedule is according to the conventional method, and the other pass schedule is according to the method according to the embodiment of the present invention. Both teams performed the same pass schedule until the 14th pass, but in the final 15th pass, the roll gap of the latter was made larger than that of the former. The roll gap was set using FIG. 1 described above. By the way, the roll gap of the 15th pass in the conventional method is 10.5 mm, whereas that of the 15th pass in the method of the present invention is 13.1 mm.

【0036】表4は、従来方法および本発明方法の14
パス目及び15パス目のパススケジュールを詳細に示す
ものである。前者においてはスラブ先端と後端とで板厚
の違いが見られるが、後者においてはスラブ先端と後端
とで板厚が実質的に等しくなる。
Table 4 shows 14 of the conventional method and the method of the present invention.
It shows in detail the pass schedule of the pass and the 15th pass. In the former, a difference in plate thickness is seen between the slab front end and the rear end, but in the latter, the plate thickness is substantially equal between the slab front end and the rear end.

【0037】図8は、横軸に最終パス圧延先端からの距
離をとり、縦軸に板厚をとって、本発明の第2実施例に
係る板厚制御方法により圧延した65/35黄銅板の圧延方
向の板厚分布図である。
FIG. 8 is a 65/35 brass sheet rolled by the sheet thickness control method according to the second embodiment of the present invention, in which the horizontal axis represents the distance from the tip of the final pass rolling and the vertical axis represents the sheet thickness. FIG. 3 is a plate thickness distribution diagram in the rolling direction of FIG.

【0038】図9は、横軸に最終パス圧延先端からの距
離をとり、縦軸に板厚をとって、従来方法により圧延し
た65/35黄銅板の圧延方向の板厚分布図である。
FIG. 9 is a plate thickness distribution diagram in the rolling direction of a 65/35 brass plate rolled by the conventional method, with the horizontal axis representing the distance from the tip of the final pass rolling and the vertical axis representing the plate thickness.

【0039】両結果は、上記の表3および表4に示すパ
ススケジュールで圧延し、スラブ8を水冷した後に、超
音波厚み計を用いて板厚を測定した。図9から明らかな
ように、従来方法による場合は、板の先端部から後端部
に向かって0.20mm程度徐々に厚くなっている。これ
に対して、図8から明らかなように、本発明方法による
場合は、板の先端部から後端部に至るまでほぼ均一な厚
さを得ることができた。
Both results were obtained by rolling with the pass schedule shown in Tables 3 and 4 above, cooling the slab 8 with water, and then measuring the plate thickness using an ultrasonic thickness gauge. As is apparent from FIG. 9, in the case of the conventional method, the thickness gradually increases from the front end to the rear end of the plate by about 0.20 mm. On the other hand, as is apparent from FIG. 8, according to the method of the present invention, it was possible to obtain a substantially uniform thickness from the front end to the rear end of the plate.

【0040】[0040]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【0041】[0041]

【発明の効果】本発明によれば、リバース型圧延機を用
いて金属材料を複数パスで熱間圧延する際に、圧延最終
パス入側材料の圧延方向板厚分布と塑性係数分布とが相
殺されるように最終パスの圧下量を設定することによ
り、厚み計や圧下制御装置あるいは張力制御装置などの
自動板厚制御装置を用いることなく、圧延方向に均一な
板厚分布をもつ熱間圧延板を得ることができる。
According to the present invention, when a metal material is hot-rolled in a plurality of passes using a reverse type rolling mill, the rolling direction plate thickness distribution and the plasticity coefficient distribution of the material on the entry side of the final rolling pass cancel each other out. By setting the amount of reduction in the final pass as described above, hot rolling with a uniform thickness distribution in the rolling direction can be performed without using an automatic thickness control device such as a thickness gauge, reduction control device or tension control device. The board can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】被圧延材の先端部及び後端部の板厚にそれぞれ
対応する塑性特性曲線および圧延機の弾性特性線を示す
グラフ図である。
FIG. 1 is a graph showing a plastic characteristic curve and an elastic characteristic line of a rolling mill respectively corresponding to the plate thicknesses of the front end portion and the rear end portion of a material to be rolled.

【図2】リバース型圧延機の圧延ラインの概要を示す図
である。
FIG. 2 is a diagram showing an outline of a rolling line of a reverse type rolling mill.

【図3】リバース型圧延機の前後ラインを示し、スラブ
を圧延する場合を説明するための図である。
FIG. 3 is a diagram showing front and rear lines of a reverse type rolling mill for explaining a case of rolling a slab.

【図4】荷重及び板厚の相関関係の一例を示すグラフ図
である。
FIG. 4 is a graph showing an example of a correlation between load and plate thickness.

【図5】本発明の第1実施例の方法により圧延した板の
圧延方向の板厚分布図である。
FIG. 5 is a plate thickness distribution diagram in the rolling direction of a plate rolled by the method of the first embodiment of the present invention.

【図6】従来方法により圧延した板の圧延方向の板厚分
布図である。
FIG. 6 is a plate thickness distribution diagram in the rolling direction of a plate rolled by a conventional method.

【図7】被圧延材の先端部及び後端部の板厚にそれぞれ
対応する塑性特性に近似する直線および圧延機の弾性特
性線を示すグラフ図である。
FIG. 7 is a graph showing straight lines and elastic characteristic lines of a rolling mill that approximate the plastic characteristics corresponding to the plate thicknesses of the front end portion and the rear end portion of the material to be rolled, respectively.

【図8】本発明の第2実施例の方法により圧延した板の
圧延方向の板厚分布図である。
FIG. 8 is a plate thickness distribution diagram in the rolling direction of a plate rolled by the method of the second embodiment of the present invention.

【図9】従来方法により圧延した板の圧延方向の板厚分
布図である。
FIG. 9 is a plate thickness distribution diagram in the rolling direction of a plate rolled by a conventional method.

【符号の説明】[Explanation of symbols]

3…リバース型圧延機、8…スラブ 3 ... Reverse type rolling mill, 8 ... Slab

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 覚 東京都千代田区丸の内2丁目6番1号 古河電気工業株式会社内 (56)参考文献 特開 昭60−238010(JP,A) 特開 平5−69021(JP,A) (58)調査した分野(Int.Cl.7,DB名) B21B 37/00 - 37/78 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Sasaki 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Inside Furukawa Electric Co., Ltd. (56) Reference JP-A-60-238010 (JP, A) JP-A 5-69021 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B21B 37/00-37/78

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リバース型圧延機により被圧延材を熱間
圧延するときの最終パスにおいて、被圧延材の先端部及
び後端部の板厚にそれぞれ対応する塑性特性曲線を把握
するとともに圧延機の弾性特性線をも把握し、被圧延材
の先端部板厚に対応する塑性特性曲線と後端部板厚に対
応する塑性特性曲線との交点を求め、この交点を通る圧
延機の弾性特性線から無負荷状態のロールギャップを求
め、これに基づき最終パスのロールギャップを設定する
ことを特徴とする圧延方向の板厚制御方法。
1. In a final pass when hot rolling a material to be rolled by a reverse type rolling mill, the plastic characteristic curves corresponding to the plate thicknesses of the leading end portion and the trailing end portion of the rolled material are grasped and the rolling mill is operated. The elastic characteristic line of the rolling material is also grasped, the intersection point of the plastic characteristic curve corresponding to the front end plate thickness of the material to be rolled and the plastic characteristic curve corresponding to the rear end plate thickness is obtained, and the elastic characteristic of the rolling mill passing through this intersection point is determined. A method for controlling the plate thickness in the rolling direction, which comprises determining a roll gap in an unloaded state from a line and setting a roll gap in the final pass based on the obtained roll gap.
【請求項2】 リバース型圧延機により被圧延材を熱間
圧延するときの最終パスにおいて、被圧延材の先端部及
び後端部の板厚にそれぞれ対応する塑性特性に近似する
近似直線を把握するとともに圧延機の弾性特性線をも把
握し、被圧延材の先端部板厚に対応する塑性特性近似直
線と後端部板厚に対応する塑性特性近似直線との交点を
求め、この交点を通る圧延機の弾性特性線から無負荷状
態のロールギャップを求め、これに基づき最終パスのロ
ールギャップを設定することを特徴とする圧延方向の板
厚制御方法。
2. In the final pass when hot rolling a material to be rolled by a reverse type rolling mill, an approximate straight line that approximates the plastic characteristics corresponding to the plate thicknesses of the leading end portion and the trailing end portion of the rolled material is grasped. While also grasping the elastic characteristic line of the rolling mill, find the intersection of the plastic characteristic approximation line corresponding to the front end plate thickness of the material to be rolled and the plastic characteristic approximation line corresponding to the rear end plate thickness, and find this intersection point. A sheet thickness control method in the rolling direction, which comprises determining a roll gap in an unloaded state from an elastic characteristic line of a passing rolling mill and setting a roll gap in a final pass based on the obtained roll gap.
JP11725693A 1992-06-19 1993-05-19 Roll thickness control method Expired - Fee Related JP3423353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11725693A JP3423353B2 (en) 1992-06-19 1993-05-19 Roll thickness control method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16097392 1992-06-19
JP4-160973 1992-06-19
JP11725693A JP3423353B2 (en) 1992-06-19 1993-05-19 Roll thickness control method

Publications (2)

Publication Number Publication Date
JPH0663626A JPH0663626A (en) 1994-03-08
JP3423353B2 true JP3423353B2 (en) 2003-07-07

Family

ID=26455400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11725693A Expired - Fee Related JP3423353B2 (en) 1992-06-19 1993-05-19 Roll thickness control method

Country Status (1)

Country Link
JP (1) JP3423353B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020045429A (en) * 2000-12-11 2002-06-19 이구택 Thickness estimation apparatus of rolling strip by using elastic line and plastic line and its estimation method

Also Published As

Publication number Publication date
JPH0663626A (en) 1994-03-08

Similar Documents

Publication Publication Date Title
US5231858A (en) Method of controlling edge drop in cold rolling of steel
EP0391658B1 (en) Wet skin-pass rolling method
JP3423353B2 (en) Roll thickness control method
AU719409B2 (en) Apparatus for controlling a rolling mill based on a strip crown of a strip and the same
JP7036241B2 (en) Serpentine control method for hot-rolled steel strips, meandering control device and hot-rolling equipment
JP3485083B2 (en) Cold rolling equipment and cold rolling method
JP2819202B2 (en) How to change the roll cross angle and roll bend force between runs
JP3506120B2 (en) Method of changing rolling load distribution of tandem rolling mill
JP3321051B2 (en) Method and apparatus for controlling shape of rolled material
JP3348409B2 (en) Method for controlling crown and shape of rolling mill
JPS5924887B2 (en) Hot rolling mill strip width control method and device
KR19990052681A (en) Prediction of High-Precision Plate Crown Considering Thickness Profile of Hot-rolled Plate Width
JPH0615318A (en) Method for learning flying gage change setup of gold rolling mill
JPS6195711A (en) Method for controlling sheet camber in thick plate rolling
JPS61154709A (en) Device for controlling thickness profile of sheet stock
JPH0659483B2 (en) Method for measuring rolling plate deformation resistance
JP4192321B2 (en) Plate crown control method
JPH05269527A (en) Method for controlling flat shape of metallic strip
JP3359566B2 (en) Method for preventing coil winding deviation, band, and steel strip
JP3300202B2 (en) Rolling force control method in temper rolling of steel strip
JPH08150406A (en) Thickness controller for cold tandem mill
JP3152524B2 (en) Method of controlling thickness of rolled material in hot continuous rolling
JP2001262236A (en) Method for controlling width of metallic steel strip
JP2001087802A (en) Manufacture of ferritic stainless steel strip excellent in ridging resistance
JPH04100624A (en) Method for controlling sheet thickness and shape on hot continuous rolling mill

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees