JP3421949B2 - 3 hinge buried tunnel - Google Patents
3 hinge buried tunnelInfo
- Publication number
- JP3421949B2 JP3421949B2 JP2000220823A JP2000220823A JP3421949B2 JP 3421949 B2 JP3421949 B2 JP 3421949B2 JP 2000220823 A JP2000220823 A JP 2000220823A JP 2000220823 A JP2000220823 A JP 2000220823A JP 3421949 B2 JP3421949 B2 JP 3421949B2
- Authority
- JP
- Japan
- Prior art keywords
- tunnel
- wall
- foundation
- base plate
- hinge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、3ヒンジ埋設トン
ネルに関するものである。The present invention relates to a three-hinge buried tunnel.
【0002】[0002]
【従来の技術】従来、埋設型の3ヒンジトンネルは、盛
土形式の道路の横断地下道、河川堤防を横断するカルバ
ート等に利用されている。このような埋設トンネルを構
築するには、例えば、図4、図5に示すように、埋設す
る地盤底部にトンネル軸方向に延びる一対の独立基礎1
又は一体化したインバート基礎4を設置した後、この基
礎1間を跨ぐようにトンネルの壁部材2を組み立てトン
ネル壁体を形成し、この後、トンネル壁体を覆って盛土
3を施す方法が一般に実施されている。また、トンネル
の壁部材2、2の上端間21がヒンジ結合であり、それ
ぞれの下端22が基礎の一部に設けた溝11でヒンジ支
持されている。すなわち上記3ヒンジ埋設トンネルは、
静定構造物となっている。2. Description of the Related Art Conventionally, a buried type three hinge tunnel is used for an underground crossing an embankment type road, a culvert crossing a river embankment, and the like. In order to construct such a buried tunnel, for example, as shown in FIGS. 4 and 5, a pair of independent foundations 1 extending in the tunnel axial direction is provided at the bottom of the ground to be buried.
Or, after installing the integrated invert foundation 4, a method of assembling the tunnel wall member 2 so as to straddle between the foundations 1 to form a tunnel wall body, and then applying the embankment 3 over the tunnel wall body is generally adopted. It has been implemented. The upper end 21 of the wall members 2 and 2 of the tunnel is hinged, and the lower end 22 is hingedly supported by the groove 11 provided in a part of the foundation. That is, the 3 hinge buried tunnel is
It is a statically fixed structure.
【0003】[0003]
【本発明が解決しようとする課題】しかし、基礎1の載
る支持地盤が比較的に軟弱で、地耐力が十分でない場
合、独立基礎1は大きな沈下や不等沈下をする恐れがあ
る。これを防ぐために独立基礎の寸法を大規模にすれ
ば、地耐力は得られるものの、寸法が大きいために基礎
の傾斜を誘発する恐れが派生するようになる。また、独
立基礎では、3ヒンジ埋設トンネルの水平力が基礎1の
底面と支持地盤との間の摩擦によって抵抗しているの
で、十分な滑り抵抗が得られないような軟弱地盤では、
基礎1が水平方向に変位する恐れもある。従来、このよ
うな場合には、例えば、図4のように、基礎1間を一体
化したインバート基礎4で構成し、その支持地盤の支持
面積を増大して地耐力を得たり、水平抵抗力をインバー
ト基礎の引張力で分担させるようにしている。 また、
補強のために地盤改良、杭基礎等の手法を併用する場合
もある。しかし、インバート基礎4を採用するにして
も、インバート基礎4は、3ヒンジ埋設トンネルの荷重
による反力から生ずる大きな曲げモートやインバート基
礎3に作用する引張力に抵抗しなければならないため、
基礎の構造は、大規模かつ複雑になり、その施工性、経
済性等に難点がある。However, if the supporting ground on which the foundation 1 rests is relatively soft and the ground bearing capacity is not sufficient, the independent foundation 1 may suffer large settlement or uneven settlement. If the size of the independent foundation is increased to prevent this, the bearing capacity can be obtained, but the large dimensions may induce the inclination of the foundation. Further, in the independent foundation, since the horizontal force of the 3-hinge buried tunnel is resisted by friction between the bottom surface of the foundation 1 and the supporting ground, in soft ground where sufficient slip resistance cannot be obtained,
The foundation 1 may be displaced in the horizontal direction. Conventionally, in such a case, for example, as shown in FIG. 4, the base 1 is composed of an integrated invert foundation 4 to increase the supporting area of the supporting ground to obtain a ground bearing, Is shared by the pulling force of the invert foundation. Also,
In some cases, techniques such as ground improvement and pile foundation are used for reinforcement. However, even if the invert foundation 4 is adopted, the invert foundation 4 must resist a large bending moat generated from the reaction force due to the load of the 3-hinge buried tunnel and the tensile force acting on the invert foundation 3.
The structure of the foundation becomes large-scale and complicated, and there are difficulties in its workability, economy and the like.
【0004】[0004]
【本発明の目的】本発明は上記したような従来の問題を
解決するためになされたもので、比較的に軟弱地盤に適
用でき、かつ効率的、経済的に施工することができる3
ヒンジ埋設トンネルを提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and can be applied to relatively soft ground, and can be constructed efficiently and economically.
It is an object to provide a hinge buried tunnel.
【0005】[0005]
【課題を解決するための手段】上記のような目的を達成
するために、本発明は、折線又は曲線の形状になる一対
の版材の上端間をヒンジで連結して組立てた門形状のト
ンネル壁と、このトンネル壁の下端をヒンジで支持する
基礎とを備えた3ヒンジ埋設トンネルであって、前記基
礎は、トンネル壁の内側と外側とに延びる基版と、外側
の基版端を含む適宜の位置で該基版に交叉するトンネル
軸方向に延びる壁版とを一体して構成したことを特徴と
する、独立基礎形式になる3ヒンジ埋設トンネルであ
る。SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a gate-shaped tunnel constructed by connecting the upper ends of a pair of plate members having a folded line or a curved shape by hinges. A three hinge buried tunnel comprising a wall and a foundation for hingedly supporting a lower end of the tunnel wall, the foundation including a base extending inward and outward of the tunnel wall, and an outer base end. A three-hinge buried tunnel of an independent basic type, wherein a wall slab extending in the tunnel axial direction crossing the base slab at an appropriate position is integrally formed.
【0006】[0006]
【発明の実施の形態】以下図面を参照しながら、本発明
の3ヒンジ埋設トンネルの実施の形態について説明する
が、本発明はこれに限定されるものではない。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a three-hinge buried tunnel according to the present invention will be described below with reference to the drawings, but the present invention is not limited thereto.
【0007】<イ>全体の構成
図1は本発明をアーチ型トンネル1に適用したの一実施
形態を示す。アーチ型トンネル1は、アーチ状に組立て
た一対の円弧版2、2と、この一対の円弧版2、2の作
用荷重を受けて支持地盤6へ伝達する独立基礎3、3と
から構成する。<A> Overall Configuration FIG. 1 shows an embodiment in which the present invention is applied to an arched tunnel 1. The arched tunnel 1 is composed of a pair of arcuate plates 2 and 2 assembled in an arch shape, and independent foundations 3 and 3 which transmit the load applied by the pair of arcuate plates 2 and 2 to a supporting ground 6.
【0008】<ロ>円弧版
各円弧版2は、現場や工場などで製作されたプレキャス
ト鉄筋コンクリート版から構成する。また、その上端2
aにおいて、コンクリート円弧版2、2をヒンジ21で
連結すると共に、その下端2bが回転変位を許容するよ
うに基礎3に支持させることにより、3ヒンジアーチ型
トンネルが形成される。<B> Arc Plate Each arc plate 2 is composed of a precast reinforced concrete plate manufactured at a site or a factory. Also, its upper end 2
In FIG. 3A, a three-hinge arch type tunnel is formed by connecting the concrete arc plates 2 and 2 with a hinge 21 and supporting the lower end 2b of the concrete arc plate 2 and the foundation 3 so as to allow a rotational displacement.
【0009】<ハ>基礎
各基礎3は、図1、2のように、上記トンネル壁の内側
及び外側に延びる基版5と、この基版5に交叉するトン
ネル軸方向の壁版4とによってほぼL字形の形状を作
る。さらに補足すれば、この壁版4の下部の両側へ張出
して、即ちトンネル壁の内側と外側において、水平方向
に形成する張出部51、52を有する基版5とを一体し
て構成する。前記水平張出部51の上面には、トンネル
壁の内側に位置して鉛直突出部53を設け、この鉛直突
出部53と前記壁版4との間に溝54を形成する。この
溝54に円弧版2の下端2bを当接係合する。そして、
下端2bの横方向の変位を拘束しながら、回転変位が許
容できるようになっている。<C> Foundation As shown in FIGS. 1 and 2, each foundation 3 is composed of a base plate 5 extending inside and outside the tunnel wall and a wall plate 4 in the tunnel axial direction crossing the base plate 5. Create a substantially L-shaped shape. Supplementally, the base plate 5 having the projecting portions 51 and 52 formed in the horizontal direction is integrally formed so as to protrude to both sides of the lower portion of the wall plate 4, that is, inside and outside the tunnel wall. A vertical projecting portion 53 is provided on the upper surface of the horizontal overhanging portion 51 inside the tunnel wall, and a groove 54 is formed between the vertical projecting portion 53 and the wall plate 4. The lower end 2b of the arc plate 2 is brought into contact with and engaged with the groove 54. And
Rotational displacement is allowed while restraining lateral displacement of the lower end 2b.
【0010】以上のようにして、アーチ型トンネル1の
重量とその上の荷重は、基礎3を介して支持地盤6に伝
達される。つまり、鉛直荷重Vは、基版5と壁版4とに
作用する鉛直地盤反力qVで支持し、水平荷重Hは、壁
版4の背面と基版5の側面に作用する水平地盤反力qH
と基版5の底面の摩擦力とで支持し、これら荷重によっ
て発生する基礎の断面力は、基版5と壁版4とに作用す
る地盤反力の分布形状に釣り合うようになっている(図
3)。以下に、これについて詳細に説明する。[0010] As described above, the weight of the arched tunnel 1 and the load thereon are transmitted to the supporting ground 6 via the foundation 3. That is, vertical load V is supported by the vertical ground reaction force q V acting on the base plate 5 and the wall plate 4, the horizontal load H is horizontal subgrade reaction acting on the sides of the back and the base plate 5 of the wall plate 4 Force q H
And the frictional force of the bottom surface of the base plate 5, and the sectional force of the foundation generated by these loads is balanced with the distribution shape of the ground reaction force acting on the base plate 5 and the wall plate 4 ( (Fig. 3). Hereinafter, this will be described in detail.
【0011】図3に示すように、支点Oの作用力P(鉛
直力V、水平力H)は、基礎3の剛体変位による地盤反
力qV、qHによって釣り合うようになっている。図示の
地盤反力は、基版5(qV1、qV2)には、鉛直弾性ばね
(kV)、壁版4(qH1、qH 2)には、水平弾性ばね
(kH)が地盤にあると考えた反力形式である。このよ
うな場合、釣り合い式は以下のように表すことができ
る。なお、図3(a)では、張出部52を有するため、
鉛直反力は基版5(51及び52)で、水平反力は壁版
4で、それぞれ分担するようにして、構造解析の簡略化
を図っている。また、図3(c)のように壁版4を傾斜
させた構成では、b2には、図3(d)に示すように、
壁版4の基版5への斜影長を当てればよい。このとき、
壁版4は、水平反力だけでなく鉛直反力も分担する。As shown in FIG. 3, the acting force P (vertical force V, horizontal force H) of the fulcrum O is balanced by the ground reaction forces q V and q H due to the rigid displacement of the foundation 3. Ground reaction force shown, the base plate 5 (q V1, q V2) , the vertical elastic spring (k V), the wall plate 4 (q H1, q H 2 ), a horizontal resilient spring (k H) is This is the type of reaction force considered to be on the ground. In such a case, the balance equation can be expressed as follows. In addition, in FIG. 3A, since it has the overhang portion 52,
The vertical reaction force is shared by the base plates 5 (51 and 52), and the horizontal reaction force is shared by the wall slab 4, thereby simplifying the structural analysis. In the configuration in which the wall slab 4 is inclined as shown in FIG. 3 (c), b2 is provided in b2 as shown in FIG. 3 (d).
The oblique length of the wall slab 4 on the base plate 5 may be applied. At this time,
The wall slab 4 shares not only a horizontal reaction force but also a vertical reaction force.
【0012】[0012]
【式1】 (Equation 1)
【0013】ここに、b1、b2、hは、それぞれ基版5
のトンネル壁の内側と外側の張出部の長さと壁版4の高
さである。Here, b 1 , b 2 , and h each represent a master 5
And the height of the wall slab 4 on the inside and outside of the tunnel wall.
【0014】また、地盤反力qV、qHによって基礎3が
角αだけ左回りに回転変位したとすれば、弾性ばね係数
kV(基版5)、kH(壁版4)に対して、次式が得られ
る。If the foundation 3 is rotated counterclockwise by the angle α due to the ground reaction forces q V and q H , the elastic spring coefficients k V (base plate 5) and k H (wall plate 4) Thus, the following equation is obtained.
【0015】[0015]
【式2】 (Equation 2)
【0016】式1、2を展開してqV1、qV2、qH1、q
H2、tanαについて整理すれば、次の式3、4、5を得
る。By expanding the equations 1 and 2, q V1 , q V2 , q H1 , q
By rearranging H2 and tanα, the following equations 3, 4, and 5 are obtained.
【0017】[0017]
【式3】 (Equation 3)
【0018】[0018]
【式4】 (Equation 4)
【0019】[0019]
【式5】 (Equation 5)
【0020】特別な場合として、例えば、地盤が良好で
ある場合、或いは地盤が軟弱なために基版5の沈下変位
を一様にするよう要求される場合などにおいて、基版5
の反力が等荷重分布になるようにするには、次の式6を
設定する。As a special case, for example, when the ground is good, or when the ground is weak and it is required to make the settlement displacement of the base 5 uniform, the base 5
Equation 6 is set so that the reaction force becomes a uniform load distribution.
【0021】[0021]
【式6】 (Equation 6)
【0022】式6を式3、4、5に代入して次の式7が
得られる。By substituting Equation 6 into Equations 3, 4, and 5, the following Equation 7 is obtained.
【0023】[0023]
【式7】 Equation 7
【0024】即ち、基礎3は等沈下するとともに水平方
向にも等変位することになる。また、式6を用いて
b1、b2、hについて整理すれば、次の式8を得る。That is, the foundation 3 is settled equally and also displaced equally in the horizontal direction. By rearranging b 1 , b 2 , and h using Equation 6, the following Equation 8 is obtained.
【0025】[0025]
【式8】 (Equation 8)
【0026】鉛直荷重V、水平荷重Hが与えられていれ
ば、式1、式6、式7によって、支持地盤のqV、qHを
定めることができるから、式8によって、b1、b2、h
を容易に定めることができる。また、壁版4の基版5に
対する交叉角βも設定することも可能である(図3
(b)、(d))。The vertical load V, if given horizontal load H, Formula 1, Formula 6, by Equation 7, q V supporting ground, because it is possible to determine the q H, by Equation 8, b 1, b 2 , h
Can be easily determined. It is also possible to set the cross angle β of the wall slab 4 with respect to the base plate 5 (FIG. 3).
(B), (d)).
【0027】一方、地盤が軟弱である場合を対象に、基
版5の反力qV1、qV2が、鉛直荷重Vに対して基版5の
地盤支持力に見合うようにするために、基版5の寸法、
つまり、張出部の長さb1、b2を3ヒンジ埋設トンネル
のスパンlに対して、式9のように設定すれば、すなわ
ち、基版5の全長がトンネルのスパンの二分の一になる
ようにすれば、基版5に作用する反力の平均応力は、鉛
直荷重Vのトンネル支間に対する平均鉛直応力に等しく
なり、地盤条件によらず、基礎3はトンネルの鉛直荷重
Vに対抗することが可能になる。On the other hand, in the case where the ground is soft, in order to make the reaction forces q V1 and q V2 of the base plate 5 match the ground support force of the base plate 5 with respect to the vertical load V, Dimensions of plate 5,
That is, if the lengths b 1 and b 2 of the overhang portion are set as shown in Expression 9 with respect to the span 1 of the three-hinge buried tunnel, that is, the total length of the base plate 5 is reduced to half of the span of the tunnel. In this case, the average stress of the reaction force acting on the base plate 5 is equal to the average vertical stress of the vertical load V on the span of the tunnel, and the foundation 3 opposes the vertical load V of the tunnel regardless of the ground conditions. It becomes possible.
【0028】[0028]
【式9】 [Equation 9]
【0029】上記の関係式を式3、4、5に代入すれ
ば、次の式10を得る。By substituting the above relational expressions into Expressions 3, 4, and 5, the following Expression 10 is obtained.
【0030】[0030]
【式10】 (Equation 10)
【0031】式10から、鉛直荷重V、水平荷重H、支
持地盤の弾性ばね係数kV,kHが与えられれば、基版5
と、壁版4の寸法および壁版4の基版5に対する交叉角
(l(b1 、b2)、h、β)を適切に設定することによ
り、反力qV1、qV2、qH1、qH 2を地耐力より小さくす
ると共に、基礎3の回転角(tanα)を実用に支障しな
い小さい値にすることができることがわかる。また、式
10において、tanαが負になることは、基盤5がトン
ネルの支間中央へ向かって下方に傾斜することを意味し
ている。From equation (10), if the vertical load V, the horizontal load H, and the elastic spring coefficients k V and k H of the supporting ground are given,
By appropriately setting the dimensions of the wall slab 4 and the intersection angles (l (b 1 , b 2 ), h, β) of the wall slab 4 with respect to the base plate 5, the reaction forces q V1 , q V2 , q H1 , q with and H 2 smaller than bearing capacity, the rotation angle of the basic 3 (tan [alpha) it can be seen that to a small value that does not hinder the practical. Further, in Expression 10, when tan α is negative, it means that the base 5 is inclined downward toward the center of the span of the tunnel.
【0032】式9を例とするように、b1とb2は、それ
ぞれ3ヒンジ埋設トンネルのスパンlの1/4以下に設定
できるため、従来の一体化したインバート基礎を採用す
る場合に比して曲げモーメントなどの断面力を小さくで
き、基版5の版厚を薄肉化すことが可能となる(図4参
照)。さらに、壁版4は、水平反力に抵抗することによ
って、基版5に発生する鉛直応力の分布を均等化するの
にも役立ち、不等沈下を防止して独立基礎としての安定
した基礎形式を提供している。そして、この基礎形式に
より、埋設トンネルの内空の高さを必要最小限にまで圧
縮することができる。As shown in Equation 9, b 1 and b 2 can be set to 1/4 or less of the span 1 of the three-hinge buried tunnel, respectively. As a result, the sectional force such as bending moment can be reduced, and the plate thickness of the base plate 5 can be reduced (see FIG. 4). Further, the wall slab 4 also helps to equalize the distribution of vertical stress generated in the base slab 5 by resisting the horizontal reaction force, thereby preventing uneven settlement and preventing a stable foundation form as an independent foundation. Is provided. And, with this basic form, the height of the inner space of the buried tunnel can be reduced to a necessary minimum.
【0033】基礎3は、場所打ちのRC構造として施工
現場で直接作製できるが、工事の事情によってはRC二
次製品のプレキャスト版として供給することができる。
この場合、基版5のトンネル壁の外側への張出部を省略
し、図3(c)の形状を用いれば、製作に有利である。The foundation 3 can be produced directly at the construction site as a cast-in-place RC structure, but can be supplied as a precast version of an RC secondary product depending on the construction circumstances.
In this case, if the projecting portion of the base plate 5 to the outside of the tunnel wall is omitted and the shape shown in FIG.
【0034】[0034]
【本発明の効果】本発明は以上説明したように、比較的
に軟弱地盤においても、3ヒンジ埋設トンネルを基版と
壁版を有する独立基礎で安定して支持するので、即ち鉛
直荷重は基版を主に鉛直地盤反力で支持し、水平荷重は
壁版の背面に作用する水平地盤反力を主に支持し、支持
面積によって反力強度を抑制するとともに、これら反力
によって発生するモーメントを減少させ、さらに基版と
壁版とに作用する地盤反力の分布形状によって基礎の変
位を調整しながら釣り合うようになっているので、基礎
の薄肉化と安定化が図れるだけでなく、独立基礎として
構造が簡明化され、工期の短縮と工費の削減を図れる。As described above, the present invention can stably support a 3-hinge buried tunnel on an independent foundation having a base plate and a wall plate even in a relatively soft ground, that is, the vertical load can be reduced. The slab is mainly supported by vertical ground reaction force, and the horizontal load mainly supports the horizontal ground reaction force acting on the back of the wall slab, and the reaction force is suppressed by the support area and the moment generated by these reaction forces As well as adjusting the displacement of the foundation by adjusting the distribution of the ground reaction force acting on the base and wall slabs, not only making the foundation thinner and more stable, but also independent As a basis, the structure is simplified, shortening the construction period and reducing the construction cost.
【図1】本発明に係るアーチ型の3ヒンジ埋設トンネル
の説明図FIG. 1 is an explanatory view of an arched three-hinge buried tunnel according to the present invention.
【図2】本発明に係る基礎の説明図FIG. 2 is an explanatory view of a foundation according to the present invention.
【図3】基礎の構成と作用する荷重を示す概念図FIG. 3 is a conceptual diagram showing a configuration of a foundation and a load acting thereon.
【図4】従来技術によるアーチ型3ヒンジ埋設トンネル
の説明図FIG. 4 is an explanatory view of a conventional arched three-hinge buried tunnel;
【図5】従来技術によるラーメン型3ヒンジ埋設トンネ
ルの説明図FIG. 5 is an explanatory diagram of a ramen-type three-hinge buried tunnel according to the related art.
フロントページの続き (56)参考文献 特開 平9−228399(JP,A) 特開 平11−323974(JP,A) 特開 平7−150898(JP,A) (58)調査した分野(Int.Cl.7,DB名) E02D 29/045 - 29/055 Continuation of front page (56) References JP-A-9-228399 (JP, A) JP-A-11-323974 (JP, A) JP-A 7-150898 (JP, A) (58) Fields studied (Int .Cl. 7 , DB name) E02D 29/045-29/055
Claims (4)
端間をヒンジで連結して組立てた門形状のトンネル壁
と、このトンネル壁の下端をヒンジで支持する基礎とを
備えた3ヒンジ埋設トンネルであって、 前記基礎は独立基礎形式であって、トンネル壁の内側と
外側とに延びる基版と、外側の基版端を含む適宜の位置
で該基版に交叉するトンネル軸方向に延びる壁版とを一
体に構成してなり、前記トンネル壁の下端に発生する水
平荷重は、前記壁版の背面に作用する水平地盤反力で主
に支持することを特徴とする、3ヒンジ埋設トンネル。1. A gate-shaped tunnel wall assembled by connecting hinges between upper ends of a pair of plate members having a folding line or a curved shape, and a foundation supporting a lower end of the tunnel wall with a hinge. A hinge buried tunnel, wherein the foundation is of an independent foundation type, a base plate extending inward and outward of the tunnel wall, and a tunnel axial direction crossing the base plate at an appropriate position including an outer base plate end And a wall slab extending inwardly, and water generated at a lower end of the tunnel wall is formed.
The flat load is mainly the horizontal ground reaction force acting on the back of the wall slab.
A three-hinge buried tunnel, characterized by being supported by:
長さが、トンネルのスパンの四分の一以下になることを
特徴とする、請求項1に記載の3ヒンジ埋設トンネル。Wherein said group version, the length of the inner projecting portion of the tunnel wall, characterized by comprising the following one quarter of the span of the tunnel, 3 hinge buried tunnel according to claim 1 .
長さが、トンネルのスパンの四分の一以下になることを
特徴とする、請求項1又は請求項2に記載の3ヒンジ埋
設トンネル。Wherein the group version, the length of the overhang portion of the outer tunnel wall, characterized by comprising one following quarter of the span of the tunnel, according to claim 1 or claim 2 3 hinge buried tunnel.
る地盤反力が、支持地盤の地耐力以下になるように基版
と壁版の寸法及び壁版の基版に対する交叉角とを設定し
てなることを特徴とする、請求項1乃至請求項3のいず
れかに記載の3ヒンジ埋設トンネル。Wherein said underlying, cross angle with respect to ground reaction force acting on said wall plate and the base plate is the dimension of group version and wall plate to be less than bearing capacity of the supporting ground and wall plate of the base plate The three-hinge buried tunnel according to any one of claims 1 to 3, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000220823A JP3421949B2 (en) | 2000-07-21 | 2000-07-21 | 3 hinge buried tunnel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000220823A JP3421949B2 (en) | 2000-07-21 | 2000-07-21 | 3 hinge buried tunnel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002038502A JP2002038502A (en) | 2002-02-06 |
JP3421949B2 true JP3421949B2 (en) | 2003-06-30 |
Family
ID=18715357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000220823A Expired - Fee Related JP3421949B2 (en) | 2000-07-21 | 2000-07-21 | 3 hinge buried tunnel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3421949B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101202796B1 (en) | 2010-09-20 | 2012-11-19 | (주)나우이앤씨 | Excavation type tunel construction work method and that's structure |
CN105908775A (en) * | 2016-04-25 | 2016-08-31 | 安徽砼宇特构科技有限公司 | Spliced pipe culvert |
JP6710586B2 (en) * | 2016-06-10 | 2020-06-17 | 株式会社ホクコン | Gate type structure and construction method thereof |
CN115354592A (en) * | 2022-08-16 | 2022-11-18 | 中铁上海工程局集团有限公司 | Assembled culvert |
-
2000
- 2000-07-21 JP JP2000220823A patent/JP3421949B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002038502A (en) | 2002-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000513773A (en) | Underground structure for constructing tunnel, underground passage, underground parking lot, etc., method of constructing the same, and prefabricated member for the structure | |
JP3421949B2 (en) | 3 hinge buried tunnel | |
JP2787806B2 (en) | Earth retaining wall | |
KR100720065B1 (en) | Connecting structure for pile and column of building having member for length adjustment | |
JP3359857B2 (en) | Arch type underground structure and construction method thereof | |
JP2002047657A (en) | Slope retention type building and its construction method | |
JP2606448B2 (en) | Concrete overhang structure | |
KR102721857B1 (en) | Load transfer system using post-tension | |
KR20240034919A (en) | Load transfer system for remodeling using underground beam | |
JP2929588B2 (en) | Road extension structure | |
KR200361523Y1 (en) | A bridge abutment structure | |
JP4405226B2 (en) | Foundation reinforcement method for expansion of existing structures | |
JP4664738B2 (en) | Method for enhancing bending strength of pile upper end or column upper and lower ends of structure | |
JP2869764B2 (en) | Reservoir construction method | |
JPH02101225A (en) | Foundation construction for structure | |
JP2000303483A (en) | Foundation structure | |
JP3776849B2 (en) | Bridge and its construction method | |
JP2786358B2 (en) | Damping pile foundation structure | |
JP4087732B2 (en) | Top surface retaining type reinforcement structure | |
JP2002180419A (en) | Earthquake resistant device for architectural structure and reinforcing method of architectural structure | |
JP3277216B2 (en) | Ground-mounted underground beam and its construction method | |
CN111794261A (en) | Enlarged foundation and construction method and application thereof | |
JP2000192424A (en) | Bearing structure for construction | |
KR101183125B1 (en) | Stress ribbon bridge reducing the moment of the point by the lever structure and method constructing the stress Ribbon Bridge by the lever structure | |
JPH0529239Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030304 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100425 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100425 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110425 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120425 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140425 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |