JP3421687B2 - Electric vehicle control device - Google Patents

Electric vehicle control device

Info

Publication number
JP3421687B2
JP3421687B2 JP8949598A JP8949598A JP3421687B2 JP 3421687 B2 JP3421687 B2 JP 3421687B2 JP 8949598 A JP8949598 A JP 8949598A JP 8949598 A JP8949598 A JP 8949598A JP 3421687 B2 JP3421687 B2 JP 3421687B2
Authority
JP
Japan
Prior art keywords
control
timer
electromagnetic brake
motor
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8949598A
Other languages
Japanese (ja)
Other versions
JPH11275705A (en
Inventor
陽二 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATECS CORP
Original Assignee
ATECS CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATECS CORP filed Critical ATECS CORP
Priority to JP8949598A priority Critical patent/JP3421687B2/en
Publication of JPH11275705A publication Critical patent/JPH11275705A/en
Application granted granted Critical
Publication of JP3421687B2 publication Critical patent/JP3421687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、モータの駆動力で
走行する電動車で低速で走行する電動車椅子等で利用さ
れる。 【0002】 【従来の技術】電動車椅子等の電動車には、電磁ブレー
キが設けられ、下り走行時のスピードの出過ぎや、故障
による暴走時には、電磁ブレーキを作動させて緊急に走
行停止を行えるようにしている。 【0003】 【発明が解決しようとする課題】走行速度が速い場合に
電磁ブレーキを急激に作用させると、機体が傾いたり搭
乗者が振り落されそうになる。このため、急いで走行を
停止させながらもあまり慣性力が作用しないように制御
することを課題として次の如く構成した。 【0004】 【課題を解決するための手段】駆動モータ1の回動を制
動する負作動の電磁ブレーキ22を有し、緊急停止制御
該電磁ブレーキ22に断続的通電して制動作用
する制動指令を出力する制御手段10,17を設けて電
動車の制御装置を構成した。 【0005】 【発明の作用及び効果】緊急停止制御時には制御手段1
0,17により電磁ブレーキ22へ断続的に制動作用す
るように通電制御されることによって、急停止時に、機
体や搭乗者への慣性力(停止時のショック)を少なくし
ながら迅速に機体を停止させることができる。 【0006】 【実施例】次に、本発明の実施例を図面を参照しながら
説明する。図1は、走行制御の制御信号の流れを示す制
御ブロック図で、キ−スイッチ11から電源ON・OF
Fの信号、アクセルレバー12から設定速度信号、前後
進切換スイッチ13から走行方向信号、ホ−ンスイッチ
15からホ−ン21を鳴らす信号、バンパーセンサ16
から衝突検出信号がそれぞれ制御基盤10に入り、この
制御基盤10からモータ1へモータ制御回路17を介し
て回転制御信号が出力され、ホーン21を鳴らす制御信
号が出力され、表示器14には異常表示等の制御信号が
出力され、電磁ブレーキ22に制動作動信号が出力され
る。モータ1からは駆動電流検出回路18を介して駆動
電流値が、回生電流検出回路19を介して回生電流値が
それぞれ制御基盤10に入力される。また、タイマー2
0からは各経過時間の計測のためのクロックカウントが
制御基盤10に入力され、速度計14から実走行速度が
検出され制御基盤10に入力される。 【0007】図2と図3は、走行制御全体の制御状態を
説明するフローチャート図である。ステップS1でキー
スイッチ11を回して電源をONすると、ステップS2
で制御用フラグであるホーンスイッチ無効フラグHFを
0とし、バンパーセンサ無効フラグBFを0とし、異状
検知フラグEFを0とし、異状検知1用タイマET1と
異状検知2用タイマET2を0とする初期化処理を行
う。次に、キースイッチ11をONしたままでホーンス
イッチ15をONするとアクセルレバー12の中立位置
を調整するステップS4の調整モードに行き、ホーンス
イッチがOFFのままであると後述するステップS5の
電磁ブレーキ22を断続ON処理する。このステップS
5の前にはステップS18の駐車処理が入ってくる。次
に、ステップS6の動作停止処理を行い、ステップS7
のアクセルレバー12がONされると後述するステップ
S8の始動コントロール処理を行い、ステップS9で電
源がOFFされるとステップS24の動作停止処理を行
い、ステップS25で終了となる。 【0008】ステップS10の判定は、モータ1あるい
はモータ制御回路17が異状かどうかの判定で、もし異
状判定であれば、ステップS26の非常停止処理を行
う。ステップS11はホーンスイッチ状態判定で、ホー
ンスイッチ15が無効でステップS12のホーンスイッ
チがOFFであればステップS13でホーンスイッチ無
効フラグHFを0とする。ステップS14の判定は、バ
ンパーセンサ16の状態を判定するもので、バンパーセ
ンサ16による停止状態でなければステップS15でバ
ンパーセンサ16がONならばステップS16のバンパ
ーセンサ無効フラグBFを1としてステップS17の減
速コントロールを行いステップS18の駐車となる。ス
テップS19とステップS20は、バンパーセンサ16
がOFFとなればバンパーセンサ無効フラグBFを0と
するものである。ステップS21でアクセルレバー12
がONならば、そのアクセル操作量に応じた速度で走行
するようにステップS22で速度コントロールを行い、
ステップS9の前に戻る。アクセルレバー12がOFF
ならば、ステップS23の減速コントロールを行いステ
ップ18で駐車とする。 【0009】次に、各制御処理を詳しく説明していく。
図4、図5は始動コントロールの制御フローチャート
で、ステップS801で電磁ブレーキ22を制動し、ス
テップS802でチェック回数CNを0とし、ステップ
S803でモータ出力を0にし、ステップS804でメ
インリレーをONし、ステップS805で0.1秒待
ち、ステップS806でチェック用タイマーCTを0と
し、ステップS807でチェック回数を1回カウントす
る。ステップS808では、前後進切換スイッチ13が
前進か後進かによってステップS809の前進用リレー
切換か、ステップS810の後進用リレー切換を行い、
ステップS811で0.1秒待ち、ステップS812で
25ミリ秒待つ。ステップS813、S814、S81
5、S816は、モータ出力が60%以下の場合に出力
を徐々に増加させる処理で、ステップS814でモータ
出力が0ならばステップS816で出力を12%に設定
し、0でなければ出力をステップS815で4%増加さ
せる。 【0010】ステップS817でモータ電流が3A以上
ならば、ステップS834でモータ出力を0にし、ステ
ップS835で50ミリ秒待ち、ステップS836で電
磁ブレーキ22を開放してメイン処理に戻る。モータ電
流が3A未満ならば、ステップS818でチェック用タ
イマCTをカウントアップし、ステップS819でチェ
ック用タイマCTが0.3秒になるまでモータ出力を増
加させる処理を行う。チェック用タイマCTが0.3秒
を経過すると、ステップS820でモータ出力を0と
し、ステップS821で0.1秒待ち、ステップS82
2とS823とS824で前後進切換スイッチ13の切
換による進行方向と逆方向へのリレーの切換を行い、ス
テップS825で0.1秒待ち、ステップS826でメ
インリレーをOFFし、ステップS827で25ミリ秒
待ち、ステップS828でチェック回数が2回になるま
で、ステップS804の前まで戻るのを繰り返す。 【0011】2回のリレー切換チェックが終了すると、
ステップS829でアクセルレバー12の中立位置での
保持時間を計るタイマNTを0とし、ステップ830で
アクセルレバー12が中立になるのを待ち、中立となれ
ばステップS831でタイマNTをカウントアップし、
ステップS832で0.5秒になるまでタイマNTをカ
ウントアップし、ステップS833でアクセルレバー1
2がONされるのを待ち、ステップS802の前に戻
る。 【0012】図6は、速度コントロールのフローチャー
ト図で、ステップS2201でアクセルレバー12の回
動程度による走行速度を設定し、ステップS2202で
ホーンスイッチ無効フラグHFが1すなわちホーンスイ
ッチ15が故障か、ステップS2203でバンパーセン
サ無効フラグBFが1すなわちバンパーセンサ16が故
障かであれば、ステップS2205で設定速度を低速に
制限し、ステップS2206で警報を表示する。両方と
も正常であればステップS2204で警報をOFFす
る。ステップS2207で、実速度が目的速度になれ
ば、ステップS2214で減速開始速度Sを実速度に
し、ステップS2215で減速開始モータ出力Dを現在
のモータ出力として戻る。ステップS2208の判定で
実速度が目的速度未満であれば、ステップS2209で
加速し、ステップS2210で駆動系異常検査1を行
う。実速度が目的速度以上であれば、ステップS221
1で減速し、ステップS2212の駆動系異常検査2を
行い、ステップS2213の駆動系異常検査3を行う。 【0013】減速コントロールは図7に示す如く、ステ
ップS231の通常減速制御とステップS232のリレ
ー逆転制動及びステップS233の逆転制動から成る。
通常減速制御は、図8の如く、ステップS2212の駆
動系異常検査2とステップS2213の駆動系異常検査
3を経て、ステップS2311の減速開始後1.2秒以
上経過か、ステップS2313の実速度が0.2km/
h未満か、ステップS2313の実走行方向が設定走行
方向と逆かの判断のどれかがYESになればステップS
18の駐車となり、全てがONであればステップS23
14のモータ出力が最小かの判断でNOであればステッ
プS2335の減速を行ってステップS2212の駆動
系異常検査2の前に戻る。 【0014】リレー逆転制御は、図9に示す如く、ステ
ップS2321でモータ出力を完全に停止し、ステップ
2322で0.1ミリ秒待ち、ステップS2323の走
行方向判定後、ステップS2324、S2325、S2
326、S2627で走行方向と逆方向に駆動力が加わ
るようにリレーを切り換える。ステップS2338で2
5ミリ秒待ち次の処理に移る。 【0015】逆転制動制御は、図10に示す如く、ステ
ップS2331でモータ出力を開始し、ステップS23
32で50ミリ秒待ち、ステップS2213で駆動系異
常検査3を行って、ステップS2333の減速開始後
1.2秒以上経過か、ステップS2334の実速度が
0.2km/h未満か、ステップS2335の走行方向
が逆方向かの判定でどれかがYESならば次の処理に移
行し、全てNOであればステップS2336でモータ出
力をアップし、ステップS2213の前に戻る。 【0016】動作停止制御S24は、図11に示す如
く、ステップS2401のモータ出力完全停止からステ
ップS2402の正逆切換リレーOFFを経てステップ
S2403の電磁ブレーキ制動となる。尚、電磁ブレー
キ22は通電を切ると制動となる負作動の電磁ブレーキ
である。 【0017】電磁ブレーキ断続ON処理制御S5は、図
12に示す如く、ステップS501で電磁ブレーキ22
の断続ON処理タイマーXを0とし、ステップS502
とステップS506で実速度が0.5km/hより速け
ればタイマXを0.5秒とし、ステップS503とステ
ップS507で実速度が1km/hより速ければタイマ
ーXを1秒とし、ステップS504とステップS508
で実速度が2km/hより速ければタイマXを2秒と
し、ステップS505でタイマXが0でなければステッ
プS509で電磁ブレーキ22を25ミリ秒開放し、ス
テップS510で電磁ブレーキ22を100ミリ秒制動
し、ステップS511でタイマーXをカウントダウン
し、ステップS505の前に戻る。従って実走行速度が
速いほど、電磁ブレーキ22の断続ON時間が長くなる
わけである。 【0018】モータ1あるいはモータ制御回路17に異
常が発見され非常停止制御S26をする場合には、図1
3に示す如く、ステップS261でモータ1の出力を0
とし、ステップS262で、電磁ブレーキ断続ON処理
タイマーXを2秒とし、ステップS263のタイマXが
0となったかの判断により、ステップS266の電磁ブ
レーキ22の25ミリ秒開放とステップS267の電磁
ブレーキ22の100ミリ秒制動とステップS268の
タイマーXのカウントダウンを実施し、タイマーXが0
となればステップS264で警報をONし、ステップS
24の動作停止制御を行い、ステップS265の電源を
OFFして終了する。 【0019】アクセルレバー12の中立位置を調整する
調整モードS4は、図14の如く、ステップS401で
調整モード解除用タイマATを0とし、ステップS40
2のホーンスイッチ15がONかの判断で、ONされて
いればステップS403でタイマATをカウントアップ
し、ステップS404のタイマーATが1.5秒以上経
てばステップS405でホーンスイッチ無効フラグHF
を1として駐車制御となる。ホーンスイッチ15がOF
Fであれば、ステップS406の各種調整機能処理を行
って中立位置を調整し、ステップS407で電源がOF
FされればステップS24の動作停止処理を行って終了
する。 【0020】加速時の駆動系異常検査1の制御SC1
は、図15に示す如く、ステップSC101の判断で2
5ミリ秒毎に以下の検査処理に入る。ステップSC10
2でモータ電流が2A未満か、ステップSC103で回
生電流が1A未満か、ステップSC104で実速度が目
標設定速度より2km/h以上遅いか、ステップSC1
05でモータ出力が80%以上かのどれかの判断がNO
であれば、ステップSC108で異常検知1用タイマE
T1を0としてステップSC107のタイマET1が1
2カウントより大きかの判断を行い、大きければ異常検
知フラグEFを1として元の制御に戻る。前記複数の判
断で全てがYESであれば、ステップSC106の異常
検知1用タイマET1をカウントアップして、ステップ
SC107に移行する。 【0021】減速時の駆動系異常検査2の制御SC2
は、図16に示す如く、ステップSC201で25ミリ
秒毎に以上の検査処理に入る。ステップSC202のモ
ータ電流が2A未満か、ステップSC203の回生電流
が1A未満か、ステップSC204の実速度が3.5k
m/h以上か、ステップSC205の減速開始時のモー
タ出力Dが4%以上か、ステップSC206の現在のモ
ータ出力がD/2以上か、ステップSC207の実速度
が(減速開始時の速度S−0.2km/h)より大きい
かのどれかの判断がNOであれば、異常検知2用タイマ
ーET2を0とする。これらの判断の全てがYESであ
ればタイマET2をカウントアップし、ステップSC2
09の判断でタイマーET2が4カウント以上すなわち
0.1秒経過すれば異常検知フラグEFを1とする。 【0022】減速時の駆動系異常検査3は、図17に示
す如く、ステップSC301の25m秒毎に以上の検査
処理に入る。ステップSC302のモータ電流が2A未
満か、ステップSC303の回生電流が1A未満か、ス
テップSC304の実速度が3.5km/h以上かステ
ップSC305の0.3秒間の加速が0.3km/h以
上かの判断全てがYESならばSC306の通常減速中
かの判断に移り、どれかがNOなればステップSC31
2の異常検出2用タイマET2を0とし、ステップSC
309の前に移行する。 【0023】ステップSC306の通常減速中との判断
がYESならばステップSC310のモータ出力が8%
未満かの判断に移りNOならばステップSC312に移
り、YESならばステップSC307の逆転制動中かの
判断に移り、これがYESならばステップSC311の
モータ出力が12%以上かの判断に移り、NOならばス
テップSC312に移り、YESならばステップSC3
08のタイマET2をカウントアップする。ステップS
C309でタイマET2が4カウント以上つまり0.1
秒経過すればステップSC313で異常検知フラグEF
を1とする。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in an electric wheelchair or the like that runs at a low speed with an electric vehicle that runs with the driving force of a motor. 2. Description of the Related Art An electric vehicle such as an electric wheelchair is provided with an electromagnetic brake, and when the vehicle speeds down when traveling downhill or runs out of control due to a malfunction, the electromagnetic brake can be operated to stop the traveling urgently. I have to. [0003] If the electromagnetic brake is applied suddenly when the traveling speed is high, the body is likely to tilt or the occupant to be shaken off. For this reason, the following configuration has been made to control the inertia force so that it does not act so much while the running is stopped in a hurry. [0004] have a negative operation of the electromagnetic brake 22 for braking the rotation of the driving motor 1 Means for Solving the Problems], emergency stop control, the braking action by the intermittent energization to the electromagnetic brake 22 A control device for an electric vehicle is provided by providing control means 10 and 17 for outputting a braking command to be performed. [0005] The operation of the control means 1 at the time of emergency stop control
By controlling the power supply so that the electromagnetic brake 22 is intermittently operated by the electromagnetic brakes 0 and 17 , the machine can
The aircraft can be stopped quickly while reducing the inertial force (shock when stopping) on the body and the passenger . Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a control block diagram showing a flow of a control signal for traveling control.
F signal, a set speed signal from the accelerator lever 12, a traveling direction signal from the forward / reverse changeover switch 13, a signal to sound the horn 21 from the horn switch 15, a bumper sensor 16
, A collision detection signal enters the control board 10, a rotation control signal is output from the control board 10 to the motor 1 via the motor control circuit 17, a control signal for sounding the horn 21 is output, and an abnormal A control signal such as a display is output, and a braking operation signal is output to the electromagnetic brake 22. The drive current value is input from the motor 1 via the drive current detection circuit 18 and the regenerative current value is input to the control board 10 via the regenerative current detection circuit 19. Timer 2
From 0, a clock count for measuring each elapsed time is input to the control base 10, an actual traveling speed is detected from the speedometer 14, and input to the control base 10. FIG. 2 and FIG. 3 are flowcharts for explaining the control state of the entire traveling control. When the power is turned on by turning the key switch 11 in step S1, step S2
Initially, the horn switch invalid flag HF, which is a control flag, is set to 0, the bumper sensor invalid flag BF is set to 0, the abnormality detection flag EF is set to 0, and the abnormality detection 1 timer ET1 and the abnormality detection 2 timer ET2 are set to 0. Perform the conversion process. Next, if the horn switch 15 is turned on while the key switch 11 is kept on, the process goes to the adjustment mode of step S4 for adjusting the neutral position of the accelerator lever 12, and if the horn switch is kept off, the electromagnetic brake of step S5 to be described later will be described. 22 is turned on and off. This step S
Before step 5, the parking process of step S18 is entered. Next, the operation stop processing of step S6 is performed, and step S7 is performed.
When the accelerator lever 12 is turned on, a start control process in step S8 described later is performed, and when the power is turned off in step S9, an operation stop process in step S24 is performed, and the process ends in step S25. The determination in step S10 is for determining whether the motor 1 or the motor control circuit 17 is abnormal. If the abnormality is determined, the emergency stop processing in step S26 is performed. In step S11, the horn switch state is determined. If the horn switch 15 is invalid and the horn switch in step S12 is OFF, the horn switch invalid flag HF is set to 0 in step S13. The determination in step S14 is for determining the state of the bumper sensor 16. If the bumper sensor 16 is ON in step S15 unless the bumper sensor 16 is stopped, the bumper sensor invalid flag BF in step S16 is set to 1 and the processing in step S17 is performed. Deceleration control is performed, and parking is performed in step S18. Step S19 and step S20 are performed by the bumper sensor 16
Is turned off, the bumper sensor invalid flag BF is set to 0. In step S21, the accelerator lever 12
Is ON, speed control is performed in step S22 so as to run at a speed corresponding to the accelerator operation amount,
It returns before step S9. Accelerator lever 12 is off
If so, deceleration control in step S23 is performed, and parking is performed in step 18. Next, each control process will be described in detail.
4 and 5 are control flowcharts of the start control. In step S801, the electromagnetic brake 22 is braked, the number of checks CN is set to 0 in step S802, the motor output is set to 0 in step S803, and the main relay is turned on in step S804. Then, the process waits for 0.1 second in step S805, sets the check timer CT to 0 in step S806, and counts the number of checks once in step S807. In step S808, depending on whether the forward / reverse switch 13 is forward or reverse, the forward relay is switched in step S809 or the reverse relay is switched in step S810.
In step S811, wait for 0.1 second, and in step S812, wait for 25 milliseconds. Steps S813, S814, S81
5, S816 is a process for gradually increasing the output when the motor output is 60% or less. If the motor output is 0 in step S814, the output is set to 12% in step S816; In S815, increase by 4%. If the motor current is 3 A or more in step S817, the motor output is set to 0 in step S834, the process waits for 50 milliseconds in step S835, the electromagnetic brake 22 is released in step S836, and the process returns to the main process. If the motor current is less than 3 A, the check timer CT is counted up in step S818, and a process of increasing the motor output is performed in step S819 until the check timer CT reaches 0.3 seconds. When the check timer CT has passed 0.3 seconds, the motor output is set to 0 in step S820, and waits for 0.1 seconds in step S821.
In steps S823, S823, and S824, the relay is switched between the forward direction and the reverse direction by switching the forward / reverse changeover switch 13. In step S825, the relay is waited for 0.1 second, the main relay is turned off in step S826, and 25 millimeters in step S827. After waiting for seconds, the process returns to the step S804 until the number of checks becomes two in the step S828. When the two relay switching checks have been completed,
In step S829, the timer NT for measuring the holding time at the neutral position of the accelerator lever 12 is set to 0, and in step 830, the process waits for the accelerator lever 12 to become neutral. If the accelerator lever 12 becomes neutral, the timer NT is counted up in step S831,
In step S832, the timer NT is counted up until the time reaches 0.5 seconds.
2 is turned on, and the process returns to step S802. FIG. 6 is a flowchart of the speed control. In step S2201, the traveling speed is set according to the degree of rotation of the accelerator lever 12. In step S2202, the horn switch invalid flag HF is 1, ie, whether the horn switch 15 has failed or not. If the bumper sensor invalid flag BF is 1 in S2203, that is, if the bumper sensor 16 is out of order, the set speed is limited to a low speed in Step S2205, and an alarm is displayed in Step S2206. If both are normal, the alarm is turned off in step S2204. If the actual speed becomes the target speed in step S2207, the deceleration start speed S is set to the actual speed in step S2214, and the deceleration start motor output D is returned as the current motor output in step S2215. If it is determined in step S2208 that the actual speed is lower than the target speed, acceleration is performed in step S2209, and a drive system abnormality test 1 is performed in step S2210. If the actual speed is equal to or higher than the target speed, step S221
In step S2212, the drive system abnormality inspection 2 is performed, and the drive system abnormality inspection 3 is performed in step S2213. As shown in FIG. 7, the deceleration control includes a normal deceleration control in step S231, a relay reverse braking in step S232, and a reverse braking in step S233.
As shown in FIG. 8, the normal deceleration control is performed through the drive system abnormality inspection 2 in step S2212 and the drive system abnormality inspection 3 in step S2213, and after 1.2 seconds or more have elapsed since the start of deceleration in step S2311 or the actual speed in step S2313 0.2km /
h, or if the determination in step S2313 whether the actual traveling direction is opposite to the set traveling direction is YES, the process proceeds to step S2.
18 and if all are ON, step S23
If it is NO in the determination of whether the motor output in step 14 is the minimum or not, the deceleration in step S2335 is performed and the process returns to before the drive system abnormality inspection 2 in step S2212. As shown in FIG. 9, in the relay reverse rotation control, the motor output is completely stopped in step S2321, waits for 0.1 millisecond in step 2322, and after the traveling direction is determined in step S2323, steps S2324, S2325, S2
At 326 and S2627, the relay is switched so that the driving force is applied in the direction opposite to the traveling direction. 2 in step S2338
Wait for 5 milliseconds and proceed to the next process. In the reverse rotation braking control, as shown in FIG. 10, the motor output is started in step S2331, and in step S231,
In step S2213, the drive system abnormality inspection 3 is performed, and 1.2 seconds or more have elapsed since the start of deceleration in step S2333, whether the actual speed in step S2334 is less than 0.2 km / h, When it is determined that the traveling direction is the reverse direction, if any is YES, the process proceeds to the next process. If all the determinations are NO, the motor output is increased in step S2336 and the process returns to before step S2213. In the operation stop control S24, as shown in FIG. 11, from the complete stop of the motor output in step S2401, the electromagnetic brake is braked in step S2403 via the forward / reverse switching relay OFF in step S2402. The electromagnetic brake 22 is a negative-acting electromagnetic brake that is braked when power is turned off. As shown in FIG. 12, the electromagnetic brake intermittent ON processing control S5 is performed by the electromagnetic brake 22 in step S501.
The intermittent ON processing timer X is set to 0, and step S502
If the actual speed is higher than 0.5 km / h in step S506, the timer X is set to 0.5 seconds. If the actual speed is higher than 1 km / h in steps S503 and S507, the timer X is set to 1 second. S508
If the actual speed is higher than 2 km / h, the timer X is set to 2 seconds. If the timer X is not 0 in step S505, the electromagnetic brake 22 is released for 25 milliseconds in step S509, and the electromagnetic brake 22 is released for 100 milliseconds in step S510. Braking is performed, the timer X is counted down in step S511, and the process returns to before step S505. Therefore, the higher the actual traveling speed is, the longer the intermittent ON time of the electromagnetic brake 22 is. When emergency stop control S26 is performed upon detection of an abnormality in the motor 1 or the motor control circuit 17, FIG.
As shown in FIG. 3, the output of the motor 1 is set to 0 in step S261.
In step S262, the electromagnetic brake intermittent ON processing timer X is set to 2 seconds, and it is determined whether or not the timer X in step S263 has become 0, so that the electromagnetic brake 22 is released for 25 milliseconds in step S266 and the electromagnetic brake 22 in step S267 is released. The braking for 100 milliseconds and the countdown of the timer X in step S268 are performed, and the timer X is set to 0.
, The alarm is turned on in step S264, and the
The operation stop control of step S 265 is performed, the power supply is turned off in step S 265, and the process ends. In the adjustment mode S4 for adjusting the neutral position of the accelerator lever 12, as shown in FIG. 14, the timer AT for releasing the adjustment mode is set to 0 in step S401, and step S40 is performed.
It is determined whether or not the horn switch 15 is ON. If the horn switch 15 is ON, the timer AT is counted up in step S403, and if the timer AT in step S404 has passed 1.5 seconds or more, the horn switch invalid flag HF is determined in step S405.
Is set to 1 for parking control. Horn switch 15 is OF
If F, the neutral position is adjusted by performing various adjustment function processing in step S406, and the power is turned off in step S407.
If F is reached, the operation stop processing of step S24 is performed, and the process ends. Control SC1 of drive system abnormality inspection 1 during acceleration
Is 2 in the judgment of step SC101 as shown in FIG.
The following inspection process is started every 5 milliseconds. Step SC10
2, whether the motor current is less than 2 A, the regenerative current is less than 1 A in step SC103, the actual speed is lower than the target set speed by 2 km / h or more in step SC104, or step SC1
05 is NO for any judgment whether the motor output is 80% or more
If so, the timer E for abnormality detection 1 is determined in step SC108.
When T1 is set to 0, the timer ET1 of step SC107 is set to 1
It is determined whether the count is larger than 2 counts, and if it is larger, the abnormality detection flag EF is set to 1 and the control returns to the original control. If all of the above determinations are YES, the timer ET1 for abnormality detection 1 in step SC106 is counted up, and the flow shifts to step SC107. Control SC2 of drive system abnormality inspection 2 during deceleration
Enters the above inspection process every 25 milliseconds in step SC201, as shown in FIG. Whether the motor current in step SC202 is less than 2A, the regenerative current in step SC203 is less than 1A, or the actual speed in step SC204 is 3.5k
m / h or more, the motor output D at the start of deceleration in step SC205 is 4% or more, the current motor output in step SC206 is D / 2 or more, and the actual speed in step SC207 is (speed S- at the start of deceleration). If any of the determinations is greater than 0.2 km / h), the timer ET2 for abnormality detection 2 is set to 0. If all of these determinations are YES, the timer ET2 is counted up, and step SC2
If the timer ET2 counts 4 counts or more, that is, 0.1 second has elapsed in the judgment of 09, the abnormality detection flag EF is set to 1. In the drive system abnormality inspection 3 during deceleration, as shown in FIG. 17, the above-described inspection process is started every 25 msec in step SC301. Whether the motor current in step SC302 is less than 2A, the regenerative current in step SC303 is less than 1A, the actual speed in step SC304 is 3.5 km / h or more, or the acceleration for 0.3 seconds in step SC305 is 0.3 km / h or more. If all the determinations are YES, the process proceeds to a determination as to whether or not the normal deceleration of SC306 is being performed.
In step SC, the timer ET2 for abnormality detection 2 of
Move before 309. If it is determined that the normal deceleration is being performed in step SC306, the motor output in step SC310 is reduced to 8%.
If NO, proceed to step SC312, if YES, proceed to step SC307 to determine whether reverse braking is being performed. If YES, proceed to step SC311 to determine whether the motor output is 12% or more. If NO, proceed to step SC311. If the answer is YES, the process proceeds to Step SC312.
The timer ET2 of 08 is counted up. Step S
In C309, the timer ET2 counts 4 counts or more, ie, 0.1
After the elapse of seconds, the abnormality detection flag EF is determined in step SC313.
Is set to 1.

【図面の簡単な説明】 【図1】実施例の制御ブロック図である。 【図2】実施例の制御フローチャート図である。 【図3】実施例の制御フローチャート図である。 【図4】実施例の制御フローチャート図である。 【図5】実施例の制御フローチャート図である。 【図6】実施例の制御フローチャート図である。 【図7】実施例の制御フローチャート図である。 【図8】実施例の制御フローチャート図である。 【図9】実施例の制御フローチャート図である。 【図10】実施例の制御フローチャート図である。 【図11】実施例の制御フローチャート図である。 【図12】実施例の制御フローチャート図である。 【図13】実施例の制御フローチャート図である。 【図14】実施例の制御フローチャート図である。 【図15】実施例の制御フローチャート図である。 【図16】実施例の制御フローチャート図である。 【図17】実施例の制御フローチャート図である。 【符号の説明】 1 駆動モータ 10 制御手段 17 制御手段 22 電磁ブレーキ[Brief description of the drawings] FIG. 1 is a control block diagram of an embodiment. FIG. 2 is a control flowchart of the embodiment. FIG. 3 is a control flowchart of the embodiment. FIG. 4 is a control flowchart of the embodiment. FIG. 5 is a control flowchart of the embodiment. FIG. 6 is a control flowchart of the embodiment. FIG. 7 is a control flowchart of the embodiment. FIG. 8 is a control flowchart of the embodiment. FIG. 9 is a control flowchart of the embodiment. FIG. 10 is a control flowchart of the embodiment. FIG. 11 is a control flowchart of the embodiment. FIG. 12 is a control flowchart of the embodiment. FIG. 13 is a control flowchart of the embodiment. FIG. 14 is a control flowchart of the embodiment. FIG. 15 is a control flowchart of the embodiment. FIG. 16 is a control flowchart of the embodiment. FIG. 17 is a control flowchart of the embodiment. [Explanation of symbols] 1 Drive motor 10 control means 17 control means 22 Electromagnetic brake

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B60L 1/00 - 3/12 B60L 7/00 - 13/00 B60L 15/00 - 15/42 ──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) B60L 1/00-3/12 B60L 7 /00-13/00 B60L 15/00-15/42

Claims (1)

(57)【特許請求の範囲】 【請求項1】駆動モータ(1)の回動を制動する負作動
電磁ブレーキ(22)を有し、緊急停止制御時該電
磁ブレーキ(22)に断続的通電して制動作用する
制動指令を出力する制御手段(10),(17)を設け
てなる電動車の制御装置。
(57) [Claims] 1. Negative operation for braking the rotation of the drive motor (1)
Of having an electromagnetic brake (22), an emergency stop control time of the control means for outputting a brake command for braking action by the intermittent energization to the electromagnetic brake (22) (10), formed by providing a (17) Electric vehicle control device.
JP8949598A 1998-03-18 1998-03-18 Electric vehicle control device Expired - Lifetime JP3421687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8949598A JP3421687B2 (en) 1998-03-18 1998-03-18 Electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8949598A JP3421687B2 (en) 1998-03-18 1998-03-18 Electric vehicle control device

Publications (2)

Publication Number Publication Date
JPH11275705A JPH11275705A (en) 1999-10-08
JP3421687B2 true JP3421687B2 (en) 2003-06-30

Family

ID=13972352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8949598A Expired - Lifetime JP3421687B2 (en) 1998-03-18 1998-03-18 Electric vehicle control device

Country Status (1)

Country Link
JP (1) JP3421687B2 (en)

Also Published As

Publication number Publication date
JPH11275705A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
JP2004330950A (en) Travel safety device for vehicle
EP1349131A4 (en) Vehicle collision preventing apparatus
KR20170011150A (en) Apparatus for controlling safety autonomous parking system and method thereof
JP2002541017A5 (en)
JPH04185204A (en) Small motor-driven vehicle
CN103003101A (en) Vehicle warning sound emitting apparatus
JP2000233664A (en) Automatic travel vehicle
JP3421687B2 (en) Electric vehicle control device
JP3750129B2 (en) Electric vehicle control device
JP3418701B2 (en) Electric vehicle control device
JP2002171796A (en) Electric brake device
JPH07108850A (en) Vehicular safety device
JPH10151964A (en) Follow-up traveling controller for vehicle
JP6183613B2 (en) Automatic brake control device
JP2017224064A (en) Vehicle operation support device
JP3295566B2 (en) Automatic driving vehicle braking method
JP3747488B2 (en) Relay mounting structure
JP2001062746A (en) Power screw driver
JP3890932B2 (en) Leading vehicle tracking control device
JP4140388B2 (en) Emergency stop device for moving body and failure determination method for emergency stop device for moving body
JPH0723329Y2 (en) Drive controller for automated guided vehicles
JP2522843Y2 (en) Actuators for vehicle steering
JPS6330593Y2 (en)
JPH10157586A (en) Braking force keeping device
JPH0535662B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term