JP3420866B2 - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JP3420866B2
JP3420866B2 JP23484395A JP23484395A JP3420866B2 JP 3420866 B2 JP3420866 B2 JP 3420866B2 JP 23484395 A JP23484395 A JP 23484395A JP 23484395 A JP23484395 A JP 23484395A JP 3420866 B2 JP3420866 B2 JP 3420866B2
Authority
JP
Japan
Prior art keywords
ultrasonic probe
piezoelectric
piezoelectric body
coupling coefficient
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23484395A
Other languages
Japanese (ja)
Other versions
JPH0984194A (en
Inventor
史郎 斉藤
守 泉
剛史 小林
勝 河内
専治 嶋貫
洋八 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23484395A priority Critical patent/JP3420866B2/en
Priority to DE19637397A priority patent/DE19637397C2/en
Publication of JPH0984194A publication Critical patent/JPH0984194A/en
Priority to US09/038,145 priority patent/US6020675A/en
Application granted granted Critical
Publication of JP3420866B2 publication Critical patent/JP3420866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は超音波診断装置など
に用いられる超音波プローブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic probe used in ultrasonic diagnostic equipment and the like.

【0002】[0002]

【従来の技術】超音波プローブは圧電体を主体として構
成され、超音波を対象物に向けて照射し、その対象物に
おける音響インピーダンスの異なる界面からの反射波を
受信することにより、対象物の内部状態を画像化するた
めに用いられる。このような超音波プローブが採用され
た超音波画像装置には、例えば、人体内部を検査するた
めの医用診断装置および金属溶接内部の探傷を目的とす
る検査装置などが挙げられる。
2. Description of the Related Art An ultrasonic probe is mainly composed of a piezoelectric body, irradiates an ultrasonic wave toward an object, and receives reflected waves from interfaces of the object having different acoustic impedances. Used to image internal states. Examples of the ultrasonic imaging device that employs such an ultrasonic probe include a medical diagnostic device for inspecting the inside of a human body and an inspection device for detecting flaws inside a metal weld.

【0003】医用診断装置においては、人体の断層像
(Bモード像)に加え、心臓、肝臓、頸動脈等を対象に
超音波の血流によるドプラシフトを利用して血流の速度
を2次元でカラー表示することが可能な「カラーフロー
マッピング(CFM)法」の開発により、その診断能は
飛躍的に向上した。近年このCFM法は、子宮や腎臓、
膵臓など人体のあらゆる臓器、器官の診断に用いられ、
今後においては、体表面に超音波プローブを接触させて
例えば心臓の血管にできた血栓を診断することが可能な
高感度装置を目指して研究がなされている。
In a medical diagnostic apparatus, in addition to a tomographic image (B-mode image) of a human body, the velocity of blood flow is two-dimensionally utilized by utilizing Doppler shift due to the blood flow of ultrasonic waves for the heart, liver, carotid artery, etc. With the development of the "color flow mapping (CFM) method" capable of color display, its diagnostic ability has been dramatically improved. In recent years, this CFM method has been applied to the uterus, kidneys,
Used for diagnosis of all organs of the human body, such as the pancreas,
In the future, research is being conducted toward a high-sensitivity device capable of contacting an ultrasonic probe with the body surface to diagnose a thrombus formed in, for example, a blood vessel of the heart.

【0004】Bモード像の場合は、身体的変化による小
さな病変や空隙が明瞭に深部まで見ることのできる高分
解能の画像が、高感度に得られることが要求されてい
る。一方、CFM像などを得ることができるドプラモー
ドの場合は、直径が数μm程度の微小な血球からの反射
エコーを用いるために、前述のBモードの場合に比べて
得られる信号レベルは小さいのでより高感度化が要求さ
れる。
In the case of a B-mode image, it is required that a high-resolution image in which small lesions and voids due to physical changes can be clearly seen to a deep depth can be obtained with high sensitivity. On the other hand, in the case of the Doppler mode capable of obtaining a CFM image or the like, the signal level obtained is smaller than that in the case of the B mode because the reflection echo from a minute blood cell having a diameter of about several μm is used. Higher sensitivity is required.

【0005】ところで、従来、高感度化を達成するため
に超音波プローブ自体または装置側から様々な読みがな
されている。前記Bモードに注目すると超音波送受信素
子である圧電体の影響が大きい。圧電体としては電気機
械結合係数が大きく、かつケーブルや装置浮遊容量分に
よる損失が少ないように送受信回路とのマッチングが取
りやすい誘電率の大きい材料が用いられており、主とし
てジルコン・チタン酸鉛系圧電セラミック(PZT)が
用いられている。
By the way, conventionally, various readings have been made from the ultrasonic probe itself or the device side in order to achieve high sensitivity. Focusing on the B mode, the influence of the piezoelectric body, which is an ultrasonic transmitting / receiving element, is large. As the piezoelectric body, a material with a large electromechanical coupling coefficient and a large permittivity that is easy to match with the transmission / reception circuit is used so that there is little loss due to the stray capacitance of cables and devices, and mainly zircon / lead titanate-based materials are used. Piezoelectric ceramic (PZT) is used.

【0006】一方、超音波プローブは短冊状の圧電体を
10〜200個程度配列したアレイ型超音波プローブが
主流であり、前記素子数は高分解能化の要求に伴って増
加する傾向にある。しかしながら生体との接触性から超
音波放射面の口径を大きくすることができないために前
記素子数の増加に伴って、1素子当たりの大きさが小さ
くなるため送受信回路とのマッチングが取れにくくなっ
てきている。
On the other hand, the mainstream of the ultrasonic probe is an array type ultrasonic probe in which about 10 to 200 strip-shaped piezoelectric bodies are arranged, and the number of elements tends to increase with the demand for higher resolution. However, since it is not possible to increase the diameter of the ultrasonic wave emitting surface due to the contact with the living body, the size per element becomes smaller as the number of elements increases, and it becomes difficult to obtain matching with the transmission / reception circuit. ing.

【0007】このようなことから、誘電率が大きい材料
からなる圧電体を使用したり、米国特許第495832
7号明細書には圧電体を積層構成することが開示され、
ドイツ特許3729731A1にはインピーダンス変換
器を使用することが開示されている。
For this reason, a piezoelectric body made of a material having a large dielectric constant is used, or US Pat. No. 4,958,532 is used.
No. 7 discloses that a piezoelectric body is laminated.
German patent 3729731A1 discloses the use of impedance converters.

【0008】しかしながら、前記PZT系セラミックの
比誘電率が4000を越えると電気機械結合係数が小さ
くなる傾向にあり、感度が低下するという問題が新たに
生じる。
However, when the relative permittivity of the PZT ceramic exceeds 4000, the electromechanical coupling coefficient tends to be small, which causes a new problem that the sensitivity is lowered.

【0009】また、積層構成では送信感度は積層数に応
じて向上するが、受信感度は積層数に反比例し、適用可
能な分野は振動子が通常よりも小さい場合やケーブルが
長い場合など特殊用途に限られる。
Further, in the laminated structure, the transmission sensitivity is improved in accordance with the number of the laminated layers, but the receiving sensitivity is inversely proportional to the number of the laminated layers, and applicable fields are special applications such as when the vibrator is smaller than usual or when the cable is long. Limited to

【0010】またエミッタフォロワなどのインピーダン
ス変換器を使用すると、超音波プローブの大型化を招く
と同時にインピーダンス変換器固有の周波数特性により
狭帯域化を引き起こす。
Further, when an impedance converter such as an emitter follower is used, the size of the ultrasonic probe is increased, and at the same time, the frequency characteristic of the impedance converter narrows the band.

【0011】その他、圧電材料としてニオブ酸リチウム
などの単結晶、チタン酸鉛、メタニオブ酸鉛などのセラ
ミック、ポリフッ化ビニリデンもしくはその共重合体な
どの高分子材料からなる圧電体が知られている。しか
し、これらの圧電体は誘電率と電気機械結合係数が小さ
く実用的ではない。
Other known piezoelectric materials include single crystals such as lithium niobate, ceramics such as lead titanate and lead metaniobate, and high-molecular materials such as polyvinylidene fluoride or copolymers thereof. However, these piezoelectric materials are not practical because of their low dielectric constant and electromechanical coupling coefficient.

【0012】また、圧電体柱や圧電体粉を樹脂に埋め込
んだ構成などの複合圧電体も知られている。その構造と
しては、特公昭54−19151、特開昭60−978
00、特開昭61−53562、特開昭61−1094
00など、製造方法として特開昭57−45290、特
開昭58−21883、特開昭60−54600、特開
昭60−85699、特開昭62−122499、特開
昭62−131700などに提案されている。
Further, a composite piezoelectric body having a structure in which a piezoelectric body column or piezoelectric powder is embedded in a resin is also known. As the structure, Japanese Patent Publication No. 54-19151 and Japanese Patent Laid-Open No. 60-978.
00, JP-A-61-53562, JP-A-61-1094
00, etc., as a manufacturing method, proposed in JP-A-57-45290, JP-A-58-21883, JP-A-60-54600, JP-A-60-85699, JP-A-62-122499 and JP-A-62-131700. Has been done.

【0013】複合圧電体にすると音響インピーダンスが
低下して生体のそれに近づくことと、1−3型や2−2
型などの構成では電気機械結合係数が薄板の場合に比べ
て増加するというメリットがある。複合圧電体には、誘
電率が大きく電気機械結合係数K33も大きいPZT系圧
電セラミックが主として用いられている。
When the composite piezoelectric body is used, the acoustic impedance is lowered to approach that of a living body, and the 1-3 type and 2-2 type are used.
The structure such as the mold has an advantage that the electromechanical coupling coefficient is increased as compared with the case of the thin plate. A PZT-based piezoelectric ceramic having a large dielectric constant and a large electromechanical coupling coefficient K 33 is mainly used for the composite piezoelectric body.

【0014】しかし、現実は樹脂を含むことによる誘電
率低下に比べて電気機械結合係数の向上が小さいという
問題があり、素子面積が大きいシングル型メカニカルプ
ローブやアニュラレイなどに用いられているのみであ
り、主流のフェイズドアレイ、コンベックスアレイ、リ
ニアアレイにはほとんど用いられていない。
However, in reality, there is a problem that the improvement of the electromechanical coupling coefficient is small as compared with the decrease in the dielectric constant due to the inclusion of resin, and it is only used in single type mechanical probes and an annular ray having a large element area. It is rarely used in mainstream phased arrays, convex arrays, and linear arrays.

【0015】[0015]

【発明が解決しようとする課題】以上のように、高感度
の超音波プローブを実現するためにはジルコン・チタン
酸鉛などの高誘電率圧電セラミックを用いたり、インピ
ーダンス変換器を振動子とケーブルの間に接続する方
法、また圧電体を積層構成する方法が知られているが、
いずれも前述したような問題がある。
As described above, in order to realize a highly sensitive ultrasonic probe, a high dielectric constant piezoelectric ceramic such as zircon / lead titanate is used, or an impedance converter is used as a vibrator and a cable. A method of connecting between the two, and a method of laminating the piezoelectric body are known.
Both have the problems described above.

【0016】また、その他の圧電材料についても誘電率
と電気機械結合係数が小さいために超音波プローブの高
感度化には問題がある。また、圧電体と樹脂との複合構
成では、誘電率低下に比べて電気機械結合係数の向上が
小さいという問題があり、汎用超音波プローブには用い
られていない。本発明は以上の点を考慮してなされたも
ので、より高感度な超音波プローブの提供を目的とす
る。
Further, other piezoelectric materials also have a problem in increasing the sensitivity of the ultrasonic probe because of their small dielectric constant and electromechanical coupling coefficient. Further, the composite structure of the piezoelectric body and the resin has a problem that the improvement of the electromechanical coupling coefficient is small as compared with the decrease of the dielectric constant, and is not used for a general-purpose ultrasonic probe. The present invention has been made in view of the above points, and an object thereof is to provide an ultrasonic probe with higher sensitivity.

【0017】[0017]

【課題を解決するための手段】本発明は、電気機械結合
係数K33及びKt との関係がK33t ≧1.6である圧
電単結晶と、音響インピーダンスZpがZp≦4×10
6 kg/m2 sである樹脂との複合圧電体からなる超音
波送受信素子を備えたことを特徴とする超音波プローブ
である。
According to the present invention, a piezoelectric single crystal having a relationship between electromechanical coupling coefficients K 33 and K t of K 33 / t ≥1.6 and an acoustic impedance Zp of Zp ≤4 × 10.
An ultrasonic probe including an ultrasonic wave transmitting / receiving element made of a composite piezoelectric material with a resin of 6 kg / m 2 s.

【0018】以下本発明に係わる超音波プローブについ
て図1を参照して詳細に説明する。単結晶と樹脂からな
る複数の複合圧電体1は、バッキング材2上に互いに分
離して接着されている。圧電体1は、図2に示すように
柱状の圧電体を樹脂に埋め込んだ1−3型や、図3に示
すように短冊状の圧電体を樹脂に埋め込んだ2−2型な
どが用いられる。
The ultrasonic probe according to the present invention will be described in detail below with reference to FIG. A plurality of composite piezoelectric bodies 1 made of a single crystal and a resin are separated and adhered on a backing material 2. As the piezoelectric body 1, a 1-3 type in which a columnar piezoelectric body is embedded in resin as shown in FIG. 2 or a 2-2 type in which a strip-shaped piezoelectric body is embedded in resin as shown in FIG. 3 is used. .

【0019】前記各々の圧電体1は図の矢印A方向に振
動する。第1電極3は、前記各々の圧電体1の超音波送
受信面からその側面及び前記送受信面と反対側の面の一
部に亘って回し込み電極として形成されている。ただし
この第1電極3は回し込み電極でなく、A方向に垂直な
面のみに形成してもよい。また第2電極4は、前記各々
の圧電体1の前記送受信面と反対側の面に前記第1電極
3と所望の間隔を隔ててそれぞれ形成されている。この
ような前記圧電体1、前記第1、第2の電極3,4によ
り超音波送受信素子が構成される。
Each of the piezoelectric bodies 1 vibrates in the direction of arrow A in the figure. The first electrode 3 is formed as a wrap-around electrode extending from the ultrasonic wave transmitting / receiving surface of each piezoelectric body 1 to a side surface thereof and a part of a surface opposite to the transmitting / receiving surface. However, the first electrode 3 may be formed only on the surface perpendicular to the A direction, instead of the wrap-around electrode. The second electrode 4 is formed on the surface of each of the piezoelectric bodies 1 opposite to the transmitting / receiving surface at a desired distance from the first electrode 3. The piezoelectric body 1 and the first and second electrodes 3 and 4 constitute an ultrasonic transmitting / receiving element.

【0020】音響マッチング層5は、前記各々の第1の
電極3を含む前記各圧電体1の超音波送受信面にそれぞ
れ形成されている。図では2層となっているが1層や3
層以上でもよい。音響レンズ6は、前記各音響マッチン
グ層5の全体に亘って形成されている。共通電極板7
は、前記各々の第1電極3に接続されている。個別電極
となる第2の電極4からのリード引き出しはフレキシブ
ル印刷配線板8により、はんだ付けや導電ペーストによ
り接続されている。
The acoustic matching layer 5 is formed on the ultrasonic wave transmitting / receiving surface of each piezoelectric body 1 including each of the first electrodes 3. In the figure there are 2 layers, but 1 layer and 3
It may be more than one layer. The acoustic lens 6 is formed over the entire acoustic matching layer 5. Common electrode plate 7
Are connected to the respective first electrodes 3. The lead lead from the second electrode 4 serving as an individual electrode is connected to the flexible printed wiring board 8 by soldering or conductive paste.

【0021】本発明者らは、K33/Kt ≧1.6(K33
は柱状の長さ方向の結合係数、Ktは薄板状の厚み方向
の結合係数)の圧電単結晶を用いたときに、充填する樹
脂の音響インピーダンスを4×106 kg/m2 s以下
とすることで、電気機械結合係数を低下させることなく
複合圧電体を構成することが可能であることを見出し
た。従って高い電気機械結合係数を維持したまま、音響
インピーダンスを生体に近づけることができる。
The present inventors have found that K 33 / K t ≧ 1.6 (K 33
Is a columnar coupling coefficient in the longitudinal direction, and Kt is a thin plate-shaped coupling coefficient in the thickness direction). When a piezoelectric single crystal is used, the acoustic impedance of the resin to be filled is set to 4 × 10 6 kg / m 2 s or less. By doing so, it has been found that a composite piezoelectric body can be constructed without lowering the electromechanical coupling coefficient. Therefore, the acoustic impedance can be brought close to that of the living body while maintaining a high electromechanical coupling coefficient.

【0022】K33/Kt <1.6の場合は、音響インピ
ーダンス低下と結合係数向上によるプローブ性能向上へ
の寄与分が誘電率低下のマイナス分を上回るが、有意差
である2dB以上の感度向上を満たさない。同時にK33
/Kt <1.6では結合係数の向上度が小さいことか
ら、帯域の有意差である20%を越える広帯域化は達成
されない。
When K 33 / K t <1.6, the contribution to the improvement of the probe performance due to the reduction of the acoustic impedance and the improvement of the coupling coefficient exceeds the minus of the reduction of the dielectric constant, but the sensitivity of 2 dB or more which is a significant difference. Does not meet the improvement. At the same time K 33
When / K t <1.6, the degree of improvement in the coupling coefficient is small, so that the band widening exceeding 20%, which is a significant band difference, cannot be achieved.

【0023】充填樹脂の音響インピーダンスが4×10
6 kg/m2 sよりも大きくなると複合構成化したとき
の結合係数がKt に近づき、音響インピーダンス低下の
プラス分と誘電率低下のマイナス分がほぼ相殺してしま
う。また、あまり音響インピーダンスが小さいと複合圧
電体が機械的に低くなるため、実用上は1×106 kg
/m2 s以上とすることが望ましい。
The acoustic impedance of the filling resin is 4 × 10.
When it is larger than 6 kg / m 2 s, the coupling coefficient in the composite structure approaches K t , and the plus component of the acoustic impedance reduction and the minus component of the dielectric constant almost cancel each other out. Also, if the acoustic impedance is too low, the composite piezoelectric body will be mechanically low, so in practice 1 × 10 6 kg
/ M 2 s or more is desirable.

【0024】圧電単結晶としては少なくともチタン酸鉛
を含む固溶系圧電単結晶を用いることが好ましく、例え
ばPb[B1,B2)1-x Tix ]O3 と表わしたと
き、X=0.05〜0.55、B1:Zn,Mg,N
i,Sc,In及びYbの少なくとも一種、B2 :Nb
及びTaの少なくとも一種であることが望ましい。
As the piezoelectric single crystal, it is preferable to use a solid solution type piezoelectric single crystal containing at least lead titanate. For example, when expressed as Pb [B1, B2) 1-x Ti x ] O 3 , X = 0.05. ~ 0.55, B1: Zn, Mg, N
At least one of i, Sc, In and Yb, B 2 : Nb
And at least one of Ta.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施例を説明す
る。 実施例1 まず、出発原料として化学的に高純度のPbO、Zn
O、Nb25 、TiO2 を用い、これらを純度補正し
た後、亜鉛ニオブ酸鉛(PZN)とチタン酸鉛(PT)
とが91:9のモル比で秤量し、さらにフラックスとし
て同量のPbOを添加した。この粉末に純水を添加し、
ZrO2 ボールが収納されたボールミルで1時間混合し
た。得られた混合物の水分を除去した後、ライカイ機で
十分に粉砕し、さらにゴム容器に入れて2トン/cm2
の圧力でラバープレスを行った。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. Example 1 First, as a starting material, chemically high-purity PbO and Zn were used.
O, Nb 2 O 5 and TiO 2 were used and their purity was corrected, then zinc lead niobate (PZN) and lead titanate (PT) were used.
Was weighed at a molar ratio of 91: 9, and the same amount of PbO was added as a flux. Add pure water to this powder,
The mixture was mixed for 1 hour in a ball mill containing ZrO 2 balls. After removing the water content of the obtained mixture, the mixture was sufficiently crushed with a lychee machine and further placed in a rubber container to obtain 2 ton / cm 2
The rubber press was performed under the pressure of.

【0026】ゴム型から取り出した固形物600gを直
径50mm、容量250ccの白金容器に入れ、900
℃まで4時間で昇温して溶解した。冷却後、さらに前記
固形物を400g入れ、白金製の蓋で密閉し、前記容器
を電気炉の中心に設置した。1260℃の温度まで5時
間で昇温し、0.8℃/hrの速度で800℃まで徐冷
した後、室温まで冷却した。その後、前記白金製容器に
30%濃度の硝酸を添加し、8時間煮沸して固溶系単結
晶を取り出した。
600 g of the solid substance taken out from the rubber mold was put in a platinum container having a diameter of 50 mm and a capacity of 250 cc, and 900
The temperature was elevated to 4 ° C. in 4 hours to dissolve. After cooling, 400 g of the solid material was further put therein, the container was sealed with a platinum lid, and the container was set at the center of the electric furnace. The temperature was raised to 1260 ° C. in 5 hours, gradually cooled to 800 ° C. at a rate of 0.8 ° C./hr, and then cooled to room temperature. Then, 30% nitric acid was added to the platinum container and boiled for 8 hours to take out a solid solution type single crystal.

【0027】得られた単結晶は矢じりの形状をなし、大
きさは約20mm角であった。前記単結晶の一部を粉砕
し、X線回折を行って、結晶構造を調べたところ、ペロ
ブスカイト構造を有することが確認された。その後、前
記単結晶をラウエカメラを用いて〈001〉軸の方位を
出し、この軸に垂直にカッターで切断した。
The obtained single crystal had an arrowhead shape and a size of about 20 mm square. When a part of the single crystal was crushed and subjected to X-ray diffraction to examine the crystal structure, it was confirmed to have a perovskite structure. After that, the single crystal was oriented in the <001> axis using a Laue camera and cut with a cutter perpendicular to this axis.

【0028】その切断面を#2000の研磨材で厚さ5
00μmに研磨後、スパッタ法によりTi/Au電極を
両面に形成した。次に、この単結晶をシリコーンオイル
に浸して200℃に上げた後、1kV/mmの電界を印
加したまま40℃まで冷却して分極処理を施した。その
後、ダイシングソーにより300μm角の棒状に加工し
たもので電気機械結合係数K33を測定し、薄板の状態で
t を測定した。その結果、K33が92%、Kt が55
%になり、K33/Kt =1.67≧1.6になった。
The cut surface was made to a thickness of 5 with a # 2000 abrasive.
After polishing to 00 μm, Ti / Au electrodes were formed on both surfaces by a sputtering method. Next, this single crystal was immersed in silicone oil, heated to 200 ° C., cooled to 40 ° C. while applying an electric field of 1 kV / mm, and subjected to polarization treatment. After that, the electromechanical coupling coefficient K 33 was measured using a dicing saw processed into a rod shape of 300 μm square, and K t was measured in the state of a thin plate. As a result, K 33 was 92% and K t was 55.
%, And K 33 / K t = 1.67 ≧ 1.6.

【0029】次に複合圧電体にするため、厚さ500μ
mの単結晶をダイシングソーで50μm厚のブレードに
より、200μmピッチで深さ450μm(50μmの
切り残し)の溝をアレイ状に入れた後、エポキシ樹脂の
切断溝に充填して硬化させた。なお、用いたエポキシ樹
脂の音響インピーダンスは、3×106 kg/m2 sで
あった。次に、先の切断溝に対して直角に同様の切断溝
を形成してエポキシ樹脂を充填し、硬化させた。その
後、切り残し部を研磨して厚さが400μmになるよう
にして、両面にTi/Au電極をスパッタにより形成し
て複合圧電体とした。この状態で電気機械結合係数を測
定したところ88%となり、極めて大きな値が得られ
た。
Next, in order to form a composite piezoelectric material, the thickness is 500 μm.
After a groove having a depth of 450 μm (remaining uncut portion of 50 μm) was formed in an array at a pitch of 200 μm with a blade having a thickness of 50 μm using a dicing saw, a single crystal of m was filled in the cutting groove of the epoxy resin and cured. The acoustic impedance of the epoxy resin used was 3 × 10 6 kg / m 2 s. Next, a similar cutting groove was formed at a right angle to the previous cutting groove, filled with an epoxy resin, and cured. Then, the uncut portion was polished to a thickness of 400 μm, and Ti / Au electrodes were formed on both surfaces by sputtering to obtain a composite piezoelectric body. When the electromechanical coupling coefficient was measured in this state, it was 88%, which was an extremely large value.

【0030】本実施例では、以上の方法で1−3型複合
圧電体を作製したが、作製方法はこれに特定する必要は
ない。例えば、単結晶を最初からフルカットしても良い
し、最初からマトリクス状にカットして、その後樹脂を
充填しても良い。また、切り残し部を完全に除去しなく
ても良い。
In this embodiment, the 1-3 type composite piezoelectric material was manufactured by the above method, but the manufacturing method is not limited to this. For example, the single crystal may be fully cut from the beginning, or may be cut into a matrix from the beginning and then filled with resin. Further, the uncut portion may not be completely removed.

【0031】以上のことは2−2型構造においても同様
である。さらに、本実施例のようにエポキシ樹脂を2段
階に分けて充填する場合は、その種類を変えても良い。
複合圧電体を作製後、再分極処理を施しても良い。
The same applies to the 2-2 type structure. Further, when the epoxy resin is filled in two stages as in this embodiment, the type may be changed.
After manufacturing the composite piezoelectric body, repolarization treatment may be performed.

【0032】次にこの複合圧電体を用いてアレイ型超音
波プローブを試作した。まず、回し込み電極部形成のた
め、一方の電極をエッチングにより緑にほぼ平行に1本
のスリットを入れた。次に、端部を導電ペーストにより
導通をとって回し込み電極とした。本実施例では回し込
み電極を作製したが、これにこだわる必要はない。
Next, an array type ultrasonic probe was prototyped using this composite piezoelectric material. First, in order to form a wrap-around electrode portion, one slit was formed by etching one electrode substantially parallel to green. Next, the end portion was electrically connected with a conductive paste to form a rolled electrode. In this example, the wrap-around electrode was manufactured, but it is not necessary to be particular about this.

【0033】次に、電極(Ti/Au)3,4を形成し
た複合圧電体1にフレキシブル配線基板8と共通電極板
7を導電ペーストを用いて接続し、超音波放射面側に音
響マッチング層5を形成した後、バッキング材2にエポ
キシ樹脂で接着した。次にダイシングソーにより厚さ5
0μmのブレードで、200μmピッチで切断した。こ
れに音響レンズ6を接着した。これに静電容量110p
F/m、長さ2mの同軸ケーブルを前記フレキシブル配
線基板8に接続してアレイプローブを試作した。なお、
本実施例ではダイシングソーによりアレイ分割を行った
が、電極エッチングにより実施しても良い。
Next, the flexible wiring substrate 8 and the common electrode plate 7 are connected to the composite piezoelectric body 1 on which the electrodes (Ti / Au) 3 and 4 are formed by using a conductive paste, and an acoustic matching layer is formed on the ultrasonic wave emitting surface side. After forming No. 5, it was adhered to the backing material 2 with an epoxy resin. Next, use a dicing saw to set the thickness
The blade was cut at a pitch of 200 μm with a blade of 0 μm. The acoustic lens 6 was bonded to this. This has a capacitance of 110p
An array probe was prototyped by connecting a coaxial cable of F / m and a length of 2 m to the flexible wiring board 8. In addition,
In this embodiment, the array is divided by the dicing saw, but it may be divided by electrode etching.

【0034】この超音波プローブについてパルスエコー
法により反射エコーを測定したところ、全ての素子から
2.48±0.1MHz以内の中心周波数を有するエコ
ーが受信され、−6dBの比帯域は平均で93%になっ
た。この帯域は、従来よりも広範囲のドプラリファレン
ス周波数を設定できる値であった。
When the reflection echo was measured by the pulse echo method for this ultrasonic probe, an echo having a center frequency within 2.48 ± 0.1 MHz was received from all the elements, and the -6 dB ratio band was 93 on average. %Became. This band has a value that allows a wider range of Doppler reference frequencies to be set than before.

【0035】比較例1 ジルコン・チタン酸鉛型圧電セラミックを用いて複合圧
電体を作製し、アレイ型超音波プローブを試作した。ま
ず、K33とKt を測定したところ、それぞれ75%、5
0%になりK33/Kt =1.5<1.6になった。複合
圧電体化においては、本実施例と同様に1−3型構成と
し、切断ピッチや充填樹脂なども同一条件とした。複合
圧電体の電気機械結合係数を測定したところ70%であ
った。
Comparative Example 1 A composite piezoelectric body was produced using a zircon / lead titanate type piezoelectric ceramic, and an array type ultrasonic probe was manufactured. First, when K 33 and K t were measured, they were 75% and 5 respectively.
It became 0% and K33 / Kt = 1.5 <1.6. In forming the composite piezoelectric body, the 1-3 type structure was used as in this example, and the cutting pitch and the filling resin were also set to the same conditions. The electromechanical coupling coefficient of the composite piezoelectric material was measured and found to be 70%.

【0036】次に複合圧電体の厚さは、本実施例よりも
厚く550μmとしてプローブを試作した。パルスエコ
ー特性を測定したところ、中心周波数は2.52MHz
となり本実施例とほぼ同じになった。このように厚さを
変えても中心周波数がほぼ同じになったのは圧電体の音
速と結合係数の違いによる。また、エコー波形の波高値
は、実施例1に比べて−7dB、−6dB比帯域は76
%になり、実施例1が高感度でかつ広帯域特性であっ
た。
Next, a probe was manufactured by making the thickness of the composite piezoelectric material 550 μm, which is thicker than that of this embodiment. When the pulse echo characteristics were measured, the center frequency was 2.52 MHz
This is almost the same as the present embodiment. The reason why the center frequencies are almost the same even when the thickness is changed is due to the difference in the acoustic velocity and the coupling coefficient of the piezoelectric body. Further, the peak value of the echo waveform is −7 dB as compared with the first embodiment, and the −6 dB ratio band is 76.
%, And Example 1 had high sensitivity and broadband characteristics.

【0037】比較例2 実施例1と同様な複合圧電体を、音響インピーダンスが
5×106 kg/m2sの樹脂を充填することにより作
製した。結合係数を測定したところ、82%になり比較
例1に比べて大きくなったが実施例1よりも小さいもの
であった。
Comparative Example 2 A composite piezoelectric material similar to that of Example 1 was prepared by filling a resin having an acoustic impedance of 5 × 10 6 kg / m 2 s. When the coupling coefficient was measured, it was 82%, which was larger than that of Comparative Example 1, but smaller than that of Example 1.

【0038】この複合圧電体を用いて試作したアレイ型
超音波プローブのパルスエコー特性を測定したところ、
エコー波形の波高値は実施例1に比べ−2dB、−6d
B比帯域は89%になり、実施例1よりも劣るものであ
った。
When the pulse echo characteristics of an array type ultrasonic probe manufactured using this composite piezoelectric material were measured,
The peak values of the echo waveform are -2 dB and -6 d as compared with the first embodiment.
The B ratio band was 89%, which was inferior to that of Example 1.

【0039】比較例3 実施例1と同じ圧電単結晶を用いて、複合化せずにアレ
イ型超音波プローブを試作した。パルスエコー特性を測
定したところ、エコー波形の波高値が実施例1に比べて
−4dB、−6dB比帯域は85%になり、比較例1よ
りも良かったが実施例1、比較例2よりも劣った。
Comparative Example 3 Using the same piezoelectric single crystal as in Example 1, an array type ultrasonic probe was manufactured as a prototype without being compounded. When the pulse echo characteristics were measured, the peak value of the echo waveform was -4 dB and -6 dB ratio band was 85% as compared with Example 1, which was better than Comparative Example 1 but better than Example 1 and Comparative Example 2. inferior.

【0040】以上圧電単結晶は、亜鉛ニオブ酸鉛とチタ
ン酸鉛の固溶系についての実施例や比較例を示したが、
Znの代わりにMg,Ni,Sc,In,Ybの少なく
とも一部を用いた場合、またNbを一部Taで置換した
ものでも同様の結果が得られる。
Although the piezoelectric single crystal has been shown in Examples and Comparative Examples in the solid solution system of lead zinc niobate and lead titanate,
Similar results are obtained when at least a part of Mg, Ni, Sc, In or Yb is used instead of Zn, or when Nb is partially replaced by Ta.

【0041】なお、前記実施例では圧電単結晶をフラッ
クス法により育成したが、ブリッジマン法やキロプーロ
ス法(溶融引き上げ法)、ゾーンメルティング法、水熱
育成法などで作製してもよい。
Although the piezoelectric single crystal was grown by the flux method in the above-mentioned examples, it may be manufactured by the Bridgman method, the Kyropoulos method (melting pulling method), the zone melting method, the hydrothermal growth method or the like.

【0042】前記実施例では、電極をスパッタ法により
形成したが、銀焼き付け法や蒸着法を用いてもよい。ま
た、電極材料もTi/Auに代えて、Ni/AuやCr
/Auなどの所定の導電率と密着強度を有するものであ
れば制限されない。
Although the electrodes are formed by the sputtering method in the above-mentioned embodiment, a silver baking method or a vapor deposition method may be used. Also, the electrode material is Ni / Au or Cr instead of Ti / Au.
There is no limitation as long as it has a predetermined conductivity and adhesion strength such as / Au.

【0043】[0043]

【発明の効果】以上説明したように、本発明によれば圧
電単結晶の電気機械結合係数がK33/Kt ≧1.6で、
樹脂の音響インピーダンスZpがZp≦4×106 kg
/m2sにした複合圧電体を超音波放送受信素子とした
超音波プローブを構成することにより、感度向上を達成
することが可能になる。さらに広帯域特性を得ることが
でき、広範囲のドプラリファレンス周波数を設定するこ
とができるので医用診断装置などの診断能向上に顕著な
効果を奏する。
As described above, according to the present invention, the electromechanical coupling coefficient of the piezoelectric single crystal is K 33 / K t ≧ 1.6,
The acoustic impedance Zp of the resin is Zp ≦ 4 × 10 6 kg
The sensitivity can be improved by configuring the ultrasonic probe using the composite piezoelectric material having a thickness of / m 2 s as an ultrasonic broadcast receiving element. Further, a wide band characteristic can be obtained and a wide range of Doppler reference frequencies can be set, so that a remarkable effect can be obtained in improving the diagnostic ability of the medical diagnostic apparatus and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る超音波プローブの構成を示す斜
視図。
FIG. 1 is a perspective view showing a configuration of an ultrasonic probe according to the present invention.

【図2】 本発明に係る複合圧電体の構造を示す斜視
図。
FIG. 2 is a perspective view showing the structure of a composite piezoelectric body according to the present invention.

【図3】 本発明に係る複合圧電体の別の構造を示す斜
視図。
FIG. 3 is a perspective view showing another structure of the composite piezoelectric body according to the present invention.

【符号の説明】[Explanation of symbols]

1…圧電体 2…バッキング材 3,4…第1,2の電極 5…音響マッチング層 6…音響レンズ 7…アース板(共通電極板) 8…フレキシブル配線基板 21…圧電体 22…樹脂 1 ... Piezoelectric body 2 ... Backing material 3,4 ... first and second electrodes 5 ... Acoustic matching layer 6 ... Acoustic lens 7 ... Ground plate (common electrode plate) 8 ... Flexible wiring board 21 ... Piezoelectric body 22 ... Resin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河内 勝 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝 研究開発センター内 (72)発明者 嶋貫 専治 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝 研究開発センター内 (72)発明者 山下 洋八 神奈川県川崎市幸区柳町70番地 株式会 社東芝 柳町工場内 (56)参考文献 特開 昭58−56375(JP,A) 特開 平6−38963(JP,A) 特開 平5−347797(JP,A) 特開 昭61−109400(JP,A) (58)調査した分野(Int.Cl.7,DB名) H04R 17/00 332 A61B 8/00 G01N 29/24 H01L 41/09 H01L 41/18 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masaru Kawauchi 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Inside Toshiba Research & Development Center (72) Inventor, Senji Shimanuki Komukai-shi Toshiba, Kawasaki-shi, Kanagawa No. 1 in Toshiba R & D Center Co., Ltd. (72) Inventor Yohachi Yamashita 70 Yanagimachi, Saiwai-ku, Kawasaki City, Kanagawa Stock Company Toshiba Yanagimachi Plant (56) Reference JP-A-58-56375 (JP, A) Kaihei 6-38963 (JP, A) JP 5-347797 (JP, A) JP 61-109400 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H04R 17 / 00 332 A61B 8/00 G01N 29/24 H01L 41/09 H01L 41/18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電気機械結合係数K33及びKt との関係が
33/Kt ≧1.6である圧電単結晶と、音響インピー
ダンスZpがZp≦4×106 kg/m2 sである樹脂
との複合圧電体からなる超音波送受信素子を備えたこと
を特徴とする超音波プローブ。
1. A piezoelectric single crystal having a relationship between electromechanical coupling coefficients K 33 and K t of K 33 / K t ≧ 1.6 and an acoustic impedance Zp of Zp ≦ 4 × 10 6 kg / m 2 s. An ultrasonic probe comprising an ultrasonic transmitting / receiving element made of a composite piezoelectric material with a resin.
【請求項2】樹脂の音響インピーダンスZpが1×10
6 ≦4×106 kg/m2 sであることを特徴とする請
求項1記載の超音波プローブ。
2. The acoustic impedance Zp of the resin is 1 × 10.
6. The ultrasonic probe according to claim 1, wherein 6 ≦ 4 × 10 6 kg / m 2 s.
【請求項3】圧電単結晶が、Pb[(B1,B2)1-x
Tix ]O3 と表わしたとき、x=0.05〜0.55
で、B1がZn、Mg、Ni,Sc、In及びYbの少
なくとも一種、B2がNb及びTaの少なくとも一種で
あることを特徴とする請求項1記載の超音波プローブ。
3. A piezoelectric single crystal made of Pb [(B1, B2) 1-x
When expressed as Ti x ] O 3 , x = 0.05 to 0.55
2. The ultrasonic probe according to claim 1, wherein B1 is at least one of Zn, Mg, Ni, Sc, In and Yb, and B2 is at least one of Nb and Ta.
JP23484395A 1995-09-13 1995-09-13 Ultrasonic probe Expired - Lifetime JP3420866B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23484395A JP3420866B2 (en) 1995-09-13 1995-09-13 Ultrasonic probe
DE19637397A DE19637397C2 (en) 1995-09-13 1996-09-13 Ultrasonic measuring head and method for producing an oxide monocrystal
US09/038,145 US6020675A (en) 1995-09-13 1998-03-11 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23484395A JP3420866B2 (en) 1995-09-13 1995-09-13 Ultrasonic probe

Publications (2)

Publication Number Publication Date
JPH0984194A JPH0984194A (en) 1997-03-28
JP3420866B2 true JP3420866B2 (en) 2003-06-30

Family

ID=16977242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23484395A Expired - Lifetime JP3420866B2 (en) 1995-09-13 1995-09-13 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JP3420866B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11155932B2 (en) 2017-08-09 2021-10-26 Jfe Mineral Company, Ltd. Method for producing piezoelectric single crystal ingot and piezoelectric single crystal ingot

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60043112D1 (en) * 1999-08-09 2009-11-19 Sonavation Inc PIEZOELECTRIC THIN LASER FEEDBACK PRINTING KEY
US7288069B2 (en) 2000-02-07 2007-10-30 Kabushiki Kaisha Toshiba Ultrasonic probe and method of manufacturing the same
JP2003061957A (en) * 2001-08-28 2003-03-04 Seiko Instruments Inc Piezoelectric transducer and pulse wave detector using piezoelectric transducer
US8454518B2 (en) 2006-01-31 2013-06-04 Panasonic Corporation Ultrasonic probe
EP2014236A4 (en) * 2006-04-28 2016-05-11 Konica Minolta Inc Ultrasonic probe
JP5065763B2 (en) * 2007-05-18 2012-11-07 Jfeミネラル株式会社 Piezoelectric single crystal element
CN102112060B (en) * 2008-10-14 2013-02-06 奥林巴斯医疗株式会社 Ultrasonic probe
KR101299966B1 (en) * 2010-11-22 2013-08-26 주식회사 휴먼스캔 High power ultrasound imaging probe
CN108903968B (en) * 2018-05-03 2024-04-23 中国科学院苏州生物医学工程技术研究所 Ultrasonic transducer, ultrasonic imaging system and manufacturing method of ultrasonic transducer
CN111112037A (en) * 2020-01-20 2020-05-08 重庆医科大学 Lens type multi-frequency focusing ultrasonic transducer, transduction system and method for determining axial length of acoustic focal region of lens type multi-frequency focusing ultrasonic transducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11155932B2 (en) 2017-08-09 2021-10-26 Jfe Mineral Company, Ltd. Method for producing piezoelectric single crystal ingot and piezoelectric single crystal ingot

Also Published As

Publication number Publication date
JPH0984194A (en) 1997-03-28

Similar Documents

Publication Publication Date Title
US5402791A (en) Piezoelectric single crystal, ultrasonic probe, and array-type ultrasonic probe
US7572224B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
US5295487A (en) Ultrasonic probe
US6020675A (en) Ultrasonic probe
US6238481B1 (en) Method of manufacturing ultrasonic probe and ultrasonic diagnostic apparatus
Saitoh et al. An improved phased array ultrasonic probe using 0.91 Pb (Zn1/3Nb2/3) O3–0.09 PbTiO3 single crystal
US6153967A (en) Ultrasonic probe and ultrasonic diagnostic apparatus
US20100001619A1 (en) Perovskite-type oxide single crystal and method of manufacturing the same, composite piezoelectric material, piezoelectric vibrator, ultrasonic probe, and ultrasonic diagnostic apparatus
JP3420866B2 (en) Ultrasonic probe
JP4936597B2 (en) Ultrasonic probe and ultrasonic probe manufacturing method
JP2004120283A (en) Ultrasonic wave probe
KR100480876B1 (en) Ultrasonic probe comprising new piezoelectric single crystal
JP2001276067A (en) Ultrasonic probe, method for manufacturing the same and ultrasonic diagnostic device
JP3362966B2 (en) Piezoelectric single crystal, ultrasonic probe and array type ultrasonic probe
JP3258111B2 (en) Ultrasonic transmitting / receiving element, ultrasonic probe, and ultrasonic transmitter
JP3396647B2 (en) Ultrasonic oscillator and driving method of ultrasonic oscillator
JP3251727B2 (en) Ultrasonic probe
JP3943731B2 (en) Piezoelectric plate for ultrasonic transducer and manufacturing method thereof
JP3679957B2 (en) Ultrasonic probe and manufacturing method thereof
JP3529600B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus using the same
JP3413025B2 (en) Piezoelectric element
JP2004104629A (en) Ultrasonic probe
JP2011077572A (en) Ultrasonic transducer and producing method thereof, and ultrasonic probe
JP3249247B2 (en) Ultrasound diagnostic equipment
Snook et al. Design of a high frequency annular array for medical ultrasound

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 11

EXPY Cancellation because of completion of term