JP3420480B2 - Non-radiative dielectric line - Google Patents

Non-radiative dielectric line

Info

Publication number
JP3420480B2
JP3420480B2 JP26005997A JP26005997A JP3420480B2 JP 3420480 B2 JP3420480 B2 JP 3420480B2 JP 26005997 A JP26005997 A JP 26005997A JP 26005997 A JP26005997 A JP 26005997A JP 3420480 B2 JP3420480 B2 JP 3420480B2
Authority
JP
Japan
Prior art keywords
dielectric line
parallel plate
insulating film
conductor
radiative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26005997A
Other languages
Japanese (ja)
Other versions
JPH1197913A (en
Inventor
哲也 岸野
健 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP26005997A priority Critical patent/JP3420480B2/en
Priority to US09/104,089 priority patent/US6094106A/en
Priority to DE19828488A priority patent/DE19828488B4/en
Publication of JPH1197913A publication Critical patent/JPH1197913A/en
Application granted granted Critical
Publication of JP3420480B2 publication Critical patent/JP3420480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Waveguides (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は非放射性誘電体線路
に関し、例えばミリ波集積回路等に組み込まれて、高周
波信号のガイドとして用いられる非放射性誘電体線路に
関する。 【0002】 【従来の技術】従来の非放射性(Non Radiative Dielec
tricで、以下、NRDという)誘電体線路は、図4に示
すように、誘電体線路1の上下に平行平板導体2、3を
配置して構成され、このようなNRD誘電体線路は、平
行平板導体2、3の間隔がλ/2以下のとき、波長がλ
より大きい高周波信号は遮断されて平行平板導体2、3
間の空間には侵入できない。そして、平行平板導体2、
3の間に誘電体線路1を挿入すると、その誘電体線路1
に沿って高周波信号が伝搬でき、その高周波信号からの
放射波は平行平板導体2、3の遮断効果によって抑制さ
れる。前記波長λは近似的に真空中を伝搬する高周波信
号(電磁波)の波長に等しい。尚、図4において、誘電
体線路1の理解を容易にするために、上側の平行平板導
体3の一部を切り欠いて記載した。 【0003】従来用いられてきた非放射性誘電体線路で
は、強度を保つため、平行平板導体の厚みを通常0.5
mm以上にし、また、誘電体線路の厚みを、通常2mm
程度とし、その合計厚みは約3mm以上であった。 【0004】そして、非放射性誘電体線路には、付属電
子回路、例えばバイアス供給、フィルター、コンピュー
ターとのインターフェースなど、一般に非放射性誘電体
線路を伝搬する電磁波よりも低い周波数の電子回路を設
ける必要があった。 【0005】図5に、非放射性誘電体線路の上部に電子
回路等が取り付けられた絶縁基板を配置したモジュール
の一例を示すもので、図において平行平板導体2、3の
間には誘電体線路1が介装されて非放射性誘電体線路が
形成されており、この非放射性誘電体線路の上部には、
絶縁基板4が配置されている。 【0006】誘電体線路1の手前側先端には、高周波信
号の入力用の発振装置5が配置され、誘電体線路1の中
途にはダイオード等の半導体素子が収容された高周波信
号の変調装置6が設けられている。 【0007】一方、絶縁基板4の上面には、変調信号の
発振器や集積回路等の付属電子部品7が配置され、これ
らは導体パターン8により相互に接続されている。 【0008】そして、非放射性誘電体線路の発振装置
5、変調装置6と、絶縁基板4表面の導体パターン8と
は、平行平板導体3とは導通しないようにして挿通し、
かつ絶縁基板4を挿通した導体9により接続されてい
る。 【0009】つまり、従来は、付属電子部品7は、平行
平板導体2、3の外部に装着され、平行平板導体2、3
内部の発振装置5等と、平行平板導体3に開けられた穴
を介して接続されていた。これはバイアス供給線などが
どうしても誘電体線路を横切る形になり、平行平板導体
内部に全電子回路を搭載できないためである。 【0010】 【発明が解決しようとする課題】このような従来の非放
射性誘電体線路では、非放射性誘電体線路をモジュール
として考えたとき、絶縁基板4の厚みを考慮すると、そ
の総厚みは5mm以上となり、例えば、非放射性誘電体
線路をコンピューターに内蔵するためカード型にする際
に、この厚みがネックとなっていた。 【0011】このような問題を解決したものとして、平
行平板導体内部に付属電子部品を搭載した非放射性誘電
体線路が開示されている(例えば、電子情報通信学会1
996年ソサエティ大会予稿集C−28、C−40)。 【0012】この非放射性誘電体線路は、平行平板導体
の間に、この平行平板導体と平行な絶縁基板を配置し、
これを一対の誘電体線路により挟持し固定してなるもの
であり、付属電子部品は絶縁基板に搭載されていた。 【0013】しかしながら、このような非放射性誘電体
線路では、一対の平行平板導体の間隔が2mm程度であ
り、その間に絶縁基体を平行平板導体と平行に固定する
必要があり、さらに、このような絶縁基体を誘電体線路
に固定する必要があり、製造が困難で、量産には不適で
あった。 【0014】本発明は、非放射性誘電体線路の付属電子
部品を平行平板導体内部に収容し、非放射性誘電体線路
の厚みを薄くできるとともに、容易に製造することがで
きる非放射性誘電体線路を提供することを目的とする。 【0015】 【課題を解決するための手段】本発明の非放射性誘電体
線路は、波長λの高周波信号を伝搬する誘電体線路と、
この誘電体線路を挟持する一対の平行平板導体とから構
成され、前記一対の平行平板導体の間隔が、前記高周波
信号の波長λの1/2以下である非放射性誘電体線路に
おいて、前記平行平板導体の誘電体線路側の面に比誘電
率5以下、厚さ0.3mm以下の絶縁性フィルムを設け
てなるとともに、該絶縁性フィルム上に導体パターンを
形成し、該導体パターンに前記絶縁性フィルム上に設け
られた電子部品を接続してなるものである。 【0016】 【作用】通常、誘電体線路と平行平板導体の間に空隙を
設けたり、絶縁性フィルムを挟んだりすると、誘電体線
路を伝搬する電磁波に摂動が起こり、反射や放射の原因
となることが知られている。 【0017】本発明者等は、この絶縁性フィルムをごく
薄くすることにより、誘電体線路を伝搬する電磁波に影
響を与えることなく、平行平板導体と誘電体線路との間
に絶縁性フィルムを挟み込むことができ、さらにその絶
縁性フィルム上に誘電体線路を横切る形で導体パターン
を作製できることを見出し、本発明に至った。 【0018】本発明によれば、平行平板導体表面の絶縁
性フィルム上に、比較的自由に導体パターンを作製し、
それに付属電子部品を装着して付属電子回路とすること
ができる。このため付属電子部品を平行平板内部に収容
することができ、従来のように、非放射性誘電体線路の
上部に付属電子部品を搭載した絶縁基板を配置する必要
がなく、付属電子部品を備えた非放射性誘電体線路の厚
みが、例えば従来5mm以上であったものを3mm程度
に薄くすることができる。 【0019】さらに、従来のように、絶縁基板を、平行
平板導体の間に、平行に固定する必要がなく、単に平行
平板導体の誘電体線路側の面に絶縁性フィルムを設け、
この絶縁性フィルム上に導電パターンを形成し、付属電
子部品を搭載できるため、製造が容易となり、量産に最
適となる。 【0020】また、絶縁性フィルムにおいて、誘電体線
路などの部品の装着位置にあらかじめ公知の手段、例え
ば印刷により印をつけておくことにより、これらの部品
を所望の位置に確実に取り付けることができる。 【0021】さらに、本発明の非放射性誘電体線路で
は、付属電子部品が外表面に露出しておらず、付属電子
部品が強度のある平行平板導体の間に配置されているた
め、破損等がなく、信頼性の面でも有利である。 【0022】 【発明の実施の形態】本発明の非放射性誘電体線路の基
本構成を図1に示す。尚、図1において、誘電体線路、
絶縁性フィルムの理解を容易にするために、上側の平行
平板導体の記載は省略した。 【0023】図1において、符号11は誘電体線路であ
り、符号12は下側の平行平板導体を示している。この
平行平板導体12の上面、即ち、誘電体線路11側の面
には、絶縁性フィルム13が設けられ、この絶縁性フィ
ルム13の上面には導体パターン14が印刷されてい
る。導体パターン14には電子部品が接続される。 【0024】図2は、このような非放射性誘電体線路の
具体例を示すもので、図において平行平板導体12の間
には誘電体線路11が介装されて非放射性誘電体線路が
形成されている。尚、図2においても、上側の平行平板
導体の記載は省略した。 【0025】下側の平行平板導体12の上面には絶縁性
フィルム13が設けられ、この絶縁性フィルム13の上
面に誘電体線路11が配置されている。誘電体線路11
の手前側先端には、高周波信号の発振装置17が配置さ
れ、誘電体線路11の中途にはダイオード等の半導体素
子が収容された高周波信号の変調装置19が設けられて
いる。 【0026】一方、絶縁性フィルム13の上面には、導
体パターン14が形成され、この導体パターン14には
変調信号の発振器や集積回路等の付属電子部品21が接
続されている。 【0027】絶縁性フィルム13は、非放射性誘電体線
路の伝搬特性を大きく劣化させないものなら何でも良い
が、おおむね比誘電率5以下、厚さ0.3mm以下が望
ましい。これは、比誘電率5よりも大きい場合や、厚み
が0.3mmよりも大きい場合には、上記したように、
誘電体線路11を伝搬する電磁波に摂動が起こり、反射
や放射の原因となるからである。絶縁性フィルム13と
しては、例えば、アセテートフィルム、テフロンフィル
ム、ポリエチレンシート、PETフィルムラミネート紙
等の樹脂フィルムがある。ガラスペースト、ガラス−セ
ラミックスペースト、セラミックペーストを塗布し、熱
処理して絶縁性フィルムを形成しても良い。 【0028】絶縁性フィルム13を平行平板導体12に
設ける場合には、絶縁性フィルム13を、接着剤、粘着
テープなどで平行平板導体12に張り付けられるが、絶
縁性フィルム13に電子部品21、誘電体線路11など
を取り付けた後、これを平行平板導体12に張り付けて
も良いし、また、絶縁性フィルム13を平行平板導体1
2に張り付けた後電子部品21、誘電体線路11を絶縁
性フィルム13に取り付けても良い。 【0029】導体パターン14の厚さ、材質、絶縁性フ
ィルム13上への形成方法は任意であるが、誘電体線路
11の直下を通る部分の厚みを0.1mm以下とするこ
とが望ましい。 【0030】さらに、その絶縁性フィルム13上の所定
の位置には誘電体線路11、高周波電子部品21などの
部品が取り付けられるが、このとき、部品の取り付け位
置を正確に合わせるために、印刷などで絶縁性フィルム
13に取り付け位置を示しておくことが望ましい。 【0031】また、電子部品21の導体パターン14上
への接続方法は、導電性ペースト、導電性接着剤、はん
だなど、どのような方法でも良い。また、誘電体線路1
1を取り付けるには通常接着剤が使用されるが、これ
も、強度を保ち、特性を劣化させることの無いものであ
れば、どんなものでもかまわない。 【0032】尚、絶縁性フィルム13は、平行平板導体
12の全面を被覆するようなものであっても、また、一
部を被覆するようなものであっても良いことは勿論であ
る。 【0033】例えば、電子部品、導体パターンを設ける
部分のみに絶縁性フィルムを設けても良い。 【0034】 【実施例】先ず、Cuから成り、100×100×8m
mの2枚の平行平板導体を用意し、下側の平行平板導体
の上面に、縦50mm、横20mm、厚さ0.08mm
のアセテートフィルムに3つの導体パターン(幅2m
m、長さ18mm)を蒸着したものを、図1に示すよう
に接着材で接着した。 【0035】この後、コージェライトから成り、高さ
2.25mm×巾1mm×長さ100mmの誘電体線路
を、前記絶縁性フィルムを横切るように、下側の平行平
板導体上に配置した後、上側の平行平板導体を誘電体線
路上面に接着し、図1に示すような本発明の非放射性誘
電体線路を作製した。尚、図1では、平行平板導体の全
面に絶縁性フィルムを設けた例であるが、この実施例で
は一部に設けることになる。 【0036】一方、本発明者等は、絶縁性フィルムの貼
付しないで、上記と同様にして非放射性誘電体線路を作
製し、ミリ波(数10〜数100GHz帯)透過特性に
ついて、上記本発明のものと比較したグラフを図3に示
す。このグラフより、本発明と従来の非放射性誘電体線
路では、高周波信号の透過特性が殆ど変化ないことが判
る。つまり、誘電体線路と平行平板導体の間に絶縁性フ
ィルムを設けても高周波信号の透過特性が殆ど変わら
ず、この絶縁性フィルムに電子部品を搭載できることが
判る。 【0037】 【発明の効果】本発明の非放射性誘電体線路は、付属電
子部品を平行平板導体内部に収容することができ、これ
により非放射性誘電体線路の厚みを画期的に薄くできる
とともに、製造が容易であるため量産に適しており、さ
らに、外部からの振動、衝撃等に対する信頼性が向上
し、さらにまた、絶縁性フィルムに印をつけることによ
り、誘電体線路等を正確な位置に容易に取り付けること
ができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-radiative dielectric line, and more particularly, to a non-radiative dielectric line incorporated in a millimeter wave integrated circuit or the like and used as a guide for high-frequency signals. About. 2. Description of the Related Art Conventional non-radiative (Non Radiative Dielec)
As shown in FIG. 4, the dielectric line is formed by arranging parallel plate conductors 2 and 3 above and below the dielectric line 1. When the interval between the plate conductors 2 and 3 is λ / 2 or less, the wavelength is λ.
Larger high-frequency signals are cut off and parallel plate conductors 2, 3
You cannot enter the space between them. And the parallel plate conductor 2,
3, the dielectric line 1 is inserted between the dielectric lines 1.
A high-frequency signal can be propagated along, and a radiation wave from the high-frequency signal is suppressed by the blocking effect of the parallel plate conductors 2 and 3. The wavelength λ is approximately equal to the wavelength of a high-frequency signal (electromagnetic wave) propagating in a vacuum. In FIG. 4, a part of the upper parallel plate conductor 3 is cut away to facilitate understanding of the dielectric line 1. In a nonradiative dielectric line conventionally used, the thickness of a parallel plate conductor is usually set at 0.5 to maintain strength.
mm or more, and the thickness of the dielectric line is usually 2 mm.
And the total thickness was about 3 mm or more. [0004] In addition, it is necessary to provide an electronic circuit having a frequency lower than that of an electromagnetic wave propagating through the non-radiative dielectric line, such as an auxiliary electronic circuit, such as a bias supply, a filter, and an interface with a computer. there were. FIG. 5 shows an example of a module in which an insulating substrate on which an electronic circuit or the like is mounted is disposed above a non-radiative dielectric line. In the figure, a dielectric line is provided between parallel plate conductors 2 and 3. 1 is interposed to form a non-radiative dielectric line, and on the non-radiative dielectric line,
An insulating substrate 4 is provided. An oscillator 5 for inputting a high-frequency signal is arranged at the front end of the dielectric line 1, and a modulator 6 for a high-frequency signal containing a semiconductor element such as a diode is provided in the middle of the dielectric line 1. Is provided. On the other hand, on the upper surface of the insulating substrate 4, attached electronic components 7 such as a modulation signal oscillator and an integrated circuit are arranged, and are connected to each other by a conductor pattern 8. The oscillation device 5 and the modulation device 6 of the non-radiative dielectric line and the conductor pattern 8 on the surface of the insulating substrate 4 are inserted through the parallel plate conductor 3 so as not to conduct.
In addition, they are connected by a conductor 9 inserted through the insulating substrate 4. That is, conventionally, the attached electronic component 7 is mounted outside the parallel plate conductors 2 and 3, and
It was connected to the internal oscillating device 5 and the like via a hole formed in the parallel plate conductor 3. This is because a bias supply line or the like inevitably crosses the dielectric line, and all electronic circuits cannot be mounted inside the parallel plate conductor. [0010] In such a conventional non-radiative dielectric line, when the non-radiative dielectric line is considered as a module, the total thickness thereof is 5 mm in consideration of the thickness of the insulating substrate 4. As described above, for example, when a nonradiative dielectric line is incorporated in a computer to be a card type, this thickness has been a bottleneck. As a solution to this problem, there has been disclosed a non-radiative dielectric waveguide in which an attached electronic component is mounted inside a parallel plate conductor (for example, IEICE 1).
996 Society Conference Proceedings C-28, C-40). In the nonradiative dielectric waveguide, an insulating substrate parallel to the parallel plate conductor is arranged between the parallel plate conductors.
This is sandwiched and fixed by a pair of dielectric waveguides, and the attached electronic components are mounted on an insulating substrate. However, in such a nonradiative dielectric line, the distance between the pair of parallel plate conductors is about 2 mm, and it is necessary to fix the insulating base in parallel with the parallel plate conductors between them. It is necessary to fix the insulating base to the dielectric line, which is difficult to manufacture and unsuitable for mass production. According to the present invention, there is provided a non-radiative dielectric line in which an electronic component attached to the non-radiative dielectric line is accommodated in a parallel plate conductor, the thickness of the non-radiative dielectric line can be reduced, and the non-radiative dielectric line can be easily manufactured. The purpose is to provide. [0015] A non-radiative dielectric line according to the present invention comprises: a dielectric line for transmitting a high-frequency signal having a wavelength λ;
A non-radiative dielectric line, comprising a pair of parallel plate conductors sandwiching the dielectric line, wherein a distance between the pair of parallel plate conductors is equal to or less than の of a wavelength λ of the high-frequency signal. Relative dielectric on the surface of the conductor on the dielectric line side
A ratio of 5 or less, an insulating film having a thickness of 0.3 mm or less is provided , and a conductor pattern is formed on the insulating film.
Formed and provided on the insulating film on the conductive pattern.
The electronic components are connected to each other. Normally, when a gap is provided between a dielectric line and a parallel plate conductor or an insulating film is interposed, a perturbation occurs in an electromagnetic wave propagating through the dielectric line, causing reflection and radiation. It is known. By making the insulating film very thin, the present inventors sandwich the insulating film between the parallel plate conductor and the dielectric line without affecting the electromagnetic wave propagating through the dielectric line. The present inventors have found that a conductive pattern can be formed on the insulating film so as to cross the dielectric line, and have reached the present invention. According to the present invention, a conductor pattern is relatively freely formed on an insulating film on the surface of a parallel plate conductor,
Attachment electronic parts can be attached to it to form an attachment electronic circuit. For this reason, the attached electronic components can be accommodated inside the parallel plate, and there is no need to arrange an insulating substrate on which the attached electronic components are mounted above the non-radiative dielectric line as in the conventional case, and the attached electronic components are provided. The thickness of the non-radiative dielectric line can be reduced to about 3 mm, for example, which is conventionally 5 mm or more. Further, unlike the related art, it is not necessary to fix the insulating substrate in parallel between the parallel plate conductors, and an insulating film is simply provided on the surface of the parallel plate conductor on the dielectric line side,
Since a conductive pattern can be formed on the insulating film and an attached electronic component can be mounted thereon, the manufacturing becomes easy and it is optimal for mass production. Further, by marking the mounting positions of components such as the dielectric line on the insulating film in advance by a known means, for example, printing, these components can be securely mounted at desired positions. . Furthermore, in the non-radiative dielectric waveguide of the present invention, the attached electronic components are not exposed on the outer surface, and the attached electronic components are arranged between the strong parallel plate conductors, so that damage or the like is caused. It is also advantageous in terms of reliability. FIG. 1 shows a basic configuration of a nonradiative dielectric line according to the present invention. In FIG. 1, a dielectric line,
To facilitate understanding of the insulating film, the description of the upper parallel plate conductor is omitted. In FIG. 1, reference numeral 11 denotes a dielectric line, and reference numeral 12 denotes a lower parallel plate conductor. An insulating film 13 is provided on the upper surface of the parallel plate conductor 12, that is, the surface on the side of the dielectric line 11, and a conductive pattern 14 is printed on the upper surface of the insulating film 13. Electronic components are connected to the conductor pattern 14. FIG. 2 shows a specific example of such a nonradiative dielectric line. In the figure, a dielectric line 11 is interposed between parallel plate conductors 12 to form a nonradiative dielectric line. ing. Note that, also in FIG. 2, the description of the upper parallel plate conductor is omitted. An insulating film 13 is provided on the upper surface of the lower parallel plate conductor 12, and the dielectric line 11 is disposed on the upper surface of the insulating film 13. Dielectric line 11
A high-frequency signal oscillating device 17 is disposed at the front end of the device, and a high-frequency signal modulating device 19 containing a semiconductor element such as a diode is provided in the middle of the dielectric line 11. On the other hand, a conductor pattern 14 is formed on the upper surface of the insulating film 13, and an attached electronic component 21 such as a modulation signal oscillator and an integrated circuit is connected to the conductor pattern 14. The insulating film 13 may be any material as long as it does not significantly deteriorate the propagation characteristics of the non-radiative dielectric line, but it is preferable that the relative dielectric constant is 5 or less and the thickness is 0.3 mm or less. This is, as described above, when the relative dielectric constant is greater than 5, or when the thickness is greater than 0.3 mm,
This is because the electromagnetic wave propagating through the dielectric line 11 is perturbed and causes reflection and radiation. Examples of the insulating film 13 include a resin film such as an acetate film, a Teflon film, a polyethylene sheet, and a PET film laminated paper. A glass paste, a glass-ceramic paste, or a ceramic paste may be applied and heat-treated to form an insulating film. When the insulating film 13 is provided on the parallel plate conductor 12, the insulating film 13 is attached to the parallel plate conductor 12 with an adhesive, an adhesive tape or the like. After attaching the body line 11 or the like, this may be attached to the parallel plate conductor 12 or the insulating film 13 may be attached to the parallel plate conductor 1.
2, the electronic component 21 and the dielectric line 11 may be attached to the insulating film 13. Although the thickness and material of the conductor pattern 14 and the method of forming the conductor pattern 14 on the insulating film 13 are arbitrary, it is desirable that the thickness of the portion immediately below the dielectric line 11 be 0.1 mm or less. Further, components such as the dielectric line 11 and the high-frequency electronic component 21 are attached to predetermined positions on the insulating film 13, and at this time, printing or the like is performed in order to accurately adjust the attachment positions of the components. It is desirable to indicate the mounting position on the insulating film 13 by using. The electronic component 21 may be connected to the conductor pattern 14 by any method such as a conductive paste, a conductive adhesive, and a solder. Also, dielectric line 1
Adhesive is usually used to attach 1, but any adhesive can be used as long as it maintains strength and does not degrade the characteristics. The insulating film 13 may cover the entire surface of the parallel plate conductor 12, or may cover a part of the parallel plate conductor 12. For example, an insulating film may be provided only on a portion where electronic components and conductor patterns are provided. EXAMPLE First, 100 × 100 × 8 m made of Cu
m, two parallel plate conductors having a length of 50 mm, a width of 20 mm, and a thickness of 0.08 mm are provided on the upper surface of the lower parallel plate conductor.
Acetate film with three conductor patterns (2m width)
m, 18 mm in length) were adhered with an adhesive as shown in FIG. Thereafter, a dielectric line made of cordierite and having a height of 2.25 mm × a width of 1 mm × a length of 100 mm is arranged on the lower parallel plate conductor so as to cross the insulating film. The upper parallel plate conductor was bonded to the upper surface of the dielectric line to produce a non-radiative dielectric line of the present invention as shown in FIG. Although FIG. 1 shows an example in which an insulating film is provided on the entire surface of the parallel plate conductor, in this embodiment, it is provided in a part. On the other hand, the present inventors prepared a non-radiative dielectric line in the same manner as described above without attaching an insulating film, and examined the transmission characteristics of millimeter waves (several tens to several hundreds GHz bands) of the present invention. FIG. 3 shows a graph in comparison with that of FIG. From this graph, it can be seen that the transmission characteristics of the high-frequency signal hardly change in the present invention and the conventional nonradiative dielectric line. That is, even if an insulating film is provided between the dielectric line and the parallel plate conductor, the transmission characteristics of high-frequency signals hardly change, and it can be seen that electronic components can be mounted on this insulating film. According to the non-radiative dielectric line of the present invention, the attached electronic components can be accommodated inside the parallel plate conductor, whereby the thickness of the non-radiative dielectric line can be remarkably reduced. It is suitable for mass production due to its easy manufacturing, furthermore, the reliability against external vibrations and shocks is improved, and by marking the insulating film, the dielectric line etc. can be positioned accurately. Can be easily attached to

【図面の簡単な説明】 【図1】 本発明の非放射性誘電体線路の基本構成の斜
視図である。 【図2】 本発明の具体的な非放射性誘電体線路の構成
を示す斜視図である。 【図3】 本実施例と比較例の非放射性誘電体線路の透
過損失を示す図である。 【図4】 従来の非放射性誘電体線路を示す斜視図であ
る。 【図5】 従来の非放射性誘電体線路モジュールの分解
斜視図である。 【符号の説明】 11・・・誘電体線路 12・・・平行平板導体 13・・・絶縁性フィルム 14・・・導体パターン 21・・・電子部品
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a basic configuration of a nonradiative dielectric waveguide of the present invention. FIG. 2 is a perspective view showing a specific configuration of a non-radiative dielectric line of the present invention. FIG. 3 is a diagram illustrating transmission losses of non-radiative dielectric waveguides of the present example and a comparative example. FIG. 4 is a perspective view showing a conventional non-radiative dielectric line. FIG. 5 is an exploded perspective view of a conventional non-radiative dielectric line module. [Description of Reference Numerals] 11: dielectric line 12: parallel plate conductor 13: insulating film 14: conductor pattern 21: electronic component

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−64608(JP,A) 特開 平9−186525(JP,A) 特開 平9−23109(JP,A) 特開 平11−55011(JP,A) 特開 平11−46103(JP,A) 特開 昭58−215804(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01P 3/16 H01P 5/08 H05K 9/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-9-64608 (JP, A) JP-A-9-186525 (JP, A) JP-A-9-23109 (JP, A) JP-A-11- 55011 (JP, A) JP-A-11-46103 (JP, A) JP-A-58-215804 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01P 3/16 H01P 5 / 08 H05K 9/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】波長λの高周波信号を伝搬する誘電体線路
と、この誘電体線路を挟持する一対の平行平板導体とか
ら構成され、前記一対の平行平板導体の間隔が、前記高
周波信号の波長λの1/2以下である非放射性誘電体線
路において、前記平行平板導体の誘電体線路側の面に
誘電率5以下、厚さ0.3mm以下の絶縁性フィルムを
設けてなるとともに、該絶縁性フィルム上に導体パター
ンを形成し、該導体パターンに前記絶縁性フィルム上に
設けられた電子部品を接続してなることを特徴とする非
放射性誘電体線路。
(57) Claims: 1. A dielectric line for transmitting a high-frequency signal having a wavelength of λ, and a pair of parallel plate conductors sandwiching the dielectric line. interval, said at nonradiative dielectric waveguide which is a half or less of the wavelength λ of the high frequency signal, the ratio on the surface of the dielectric waveguide side of the parallel flat conductors
An insulating film having a dielectric constant of 5 or less and a thickness of 0.3 mm or less is provided , and a conductor pattern is formed on the insulating film.
Formed on the insulating film on the conductive pattern.
A non-radiative dielectric line characterized by connecting provided electronic components .
JP26005997A 1997-06-25 1997-09-25 Non-radiative dielectric line Expired - Fee Related JP3420480B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP26005997A JP3420480B2 (en) 1997-09-25 1997-09-25 Non-radiative dielectric line
US09/104,089 US6094106A (en) 1997-06-25 1998-06-24 Non-radiative dielectric waveguide module
DE19828488A DE19828488B4 (en) 1997-06-25 1998-06-25 Module with a radiation-free dielectric waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26005997A JP3420480B2 (en) 1997-09-25 1997-09-25 Non-radiative dielectric line

Publications (2)

Publication Number Publication Date
JPH1197913A JPH1197913A (en) 1999-04-09
JP3420480B2 true JP3420480B2 (en) 2003-06-23

Family

ID=17342742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26005997A Expired - Fee Related JP3420480B2 (en) 1997-06-25 1997-09-25 Non-radiative dielectric line

Country Status (1)

Country Link
JP (1) JP3420480B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5742988B2 (en) * 2008-09-25 2015-07-01 ソニー株式会社 Millimeter wave transmission equipment
JP2010103982A (en) 2008-09-25 2010-05-06 Sony Corp Millimeter wave transmission device, millimeter wave transmission method, and millimeter wave transmission system

Also Published As

Publication number Publication date
JPH1197913A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
JP3500268B2 (en) High frequency input / output terminal and high frequency semiconductor element storage package using the same
US5952709A (en) High-frequency semiconductor device and mounted structure thereof
JP4133747B2 (en) Input / output coupling structure of dielectric waveguide
US6870438B1 (en) Multi-layered wiring board for slot coupling a transmission line to a waveguide
KR100282274B1 (en) Transmission circuit using strip line in three dimensions
US5929728A (en) Imbedded waveguide structures for a microwave circuit package
US5414394A (en) Microwave frequency device comprising at least a transition between a transmission line integrated on a substrate and a waveguide
US7746191B2 (en) Waveguide to microstrip line transition having a conductive footprint for providing a contact free element
US6483406B1 (en) High-frequency module using slot coupling
AU7261000A (en) Feed structure for electromagnetic waveguides
JP2001320208A (en) High frequency circuit, module and communication equipment using the same
CN110098485A (en) Small spacing micro-strip antenna array
US20080074204A1 (en) High-Frequency Oscillator Circuit and Transmitter-Receiver
US6622370B1 (en) Method for fabricating suspended transmission line
JP5153771B2 (en) Terminator
JPH10303333A (en) Package for high frequency
JP3420480B2 (en) Non-radiative dielectric line
JP3305589B2 (en) Mounting structure of high frequency semiconductor device
JPH11340701A (en) Connection structure for high frequency transmission line
WO2022042318A1 (en) Spoof surface plasmon polariton transmission line structure, circuit board and electronic device
JP3309056B2 (en) Package for storing high-frequency elements
JPH0773282A (en) High frequency circuit device
WO2001018901A1 (en) Feed structure for electromagnetic waveguides
JP3071761B2 (en) Mounting structure of high frequency semiconductor device
JP3472490B2 (en) Dielectric line module

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees