JP3419481B2 - Ti-Al intermetallic compound - Google Patents

Ti-Al intermetallic compound

Info

Publication number
JP3419481B2
JP3419481B2 JP35017892A JP35017892A JP3419481B2 JP 3419481 B2 JP3419481 B2 JP 3419481B2 JP 35017892 A JP35017892 A JP 35017892A JP 35017892 A JP35017892 A JP 35017892A JP 3419481 B2 JP3419481 B2 JP 3419481B2
Authority
JP
Japan
Prior art keywords
lamella
grains
phase
intermetallic compound
phases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35017892A
Other languages
Japanese (ja)
Other versions
JPH06172899A (en
Inventor
功平 田口
倫彦 綾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP35017892A priority Critical patent/JP3419481B2/en
Publication of JPH06172899A publication Critical patent/JPH06172899A/en
Application granted granted Critical
Publication of JP3419481B2 publication Critical patent/JP3419481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種機器の部品や耐火
構造物あるいは高温用弾性部材などに好適なTi−Al
系金属間化合物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to Ti-Al suitable for parts of various equipments, refractory structures, high temperature elastic members and the like.
Related to intermetallic compounds.

【0002】[0002]

【従来の技術】Ti−Al系金属間化合物は耐熱性,耐
酸化性,耐摩耗性等に優れしかも軽量であるなどの優れ
た性質をもつため、各種用途に使われる素材として有望
視されている。この種の金属間化合物を利用する製品例
としては、高温で使用される外壁材や、タ−ビン部材、
ピストンやバルブシステム等のエンジン部品などが考え
られている。
2. Description of the Prior Art Ti-Al intermetallic compounds have excellent properties such as excellent heat resistance, oxidation resistance, wear resistance and the like, and are lightweight, and are therefore regarded as promising materials for various applications. There is. Examples of products using this type of intermetallic compound include outer wall materials used at high temperatures and turbine members,
Engine parts such as pistons and valve systems are being considered.

【0003】Ti−Al系金属間化合物の組織の一態様
として、ラメラを含む組織が知られている。ラメラは、
主としてγ(TiAl)からなる板状の相と、主として
α2(Ti3 Al)からなる板状の相とがおおむね交互
に積層した層状組織であり、その1つの塊をラメラ粒と
呼ぶ。ラメラの強度はきわめて高い。
A lamella-containing structure is known as one aspect of the structure of the Ti-Al intermetallic compound. The lamella is
It has a layered structure in which plate-like phases mainly composed of γ (TiAl) and plate-like phases mainly composed of α 2 (Ti 3 Al) are alternately laminated, and one lump thereof is called a lamella grain. Lamella strength is extremely high.

【0004】主としてラメラからなる従来のTi−Al
系金属間化合物は、図6の写真に示されるようにラメラ
粒の粒界に、他の相としてのγ相が連続して存在する組
織である。γ相は主としてTiAlからなり、Ti3
lやAl3 Ti等が少量含まれている場合もある。図6
中に縞模様となっているのがラメラ粒であり、ラメラ粒
を取り囲む黒い部分がγ相である。図7は上記金属間化
合物の一部を更に拡大した写真であり、黒く見える部分
がラメラ粒界に存在するγ相である。
Conventional Ti-Al consisting mainly of lamella
The intermetallic compound is a structure in which a γ phase as another phase is continuously present at the grain boundaries of the lamella grains as shown in the photograph of FIG. The γ phase is mainly composed of TiAl and contains Ti 3 A
1 and Al 3 Ti may be contained in a small amount in some cases. Figure 6
The striped pattern is the lamella grains, and the black portion surrounding the lamella grains is the γ phase. FIG. 7 is a photograph in which a part of the intermetallic compound is further enlarged, and the black portion is the γ phase existing in the lamella grain boundary.

【0005】図6に示される従来のラメラ粒は形状の異
方性が小さく、粒が球に近い形状となっている。また、
従来のラメラ粒の粒界には、上記γ相がラメラ粒を囲む
ようにしておおむね連続しており、図7に拡大して示す
ように互いに隣り合うラメラ同志の間にγ相が介在して
おり、ラメラ同志が直接接したりラメラ同志が互いに食
い込み合う箇所は少ない。図6,7はいずれも反射電子
線組成像である。反射電子線組成像は電子顕微鏡写真の
一種で、重い元素は白く、軽い元素は黒く写るため組成
の分布を観察しやすい。
The conventional lamella grains shown in FIG. 6 have a small shape anisotropy and have a shape close to a sphere. Also,
At the grain boundaries of conventional lamella grains, the γ phase is generally continuous so as to surround the lamella grains, and the γ phase is present between adjacent lamellas as shown in an enlarged scale in FIG. 7. There are few places where the lamellae come into direct contact with each other and the lamellae dig into each other. 6 and 7 are reflected electron beam composition images. A backscattered electron beam composition image is a type of electron micrograph. Heavy elements appear white and light elements appear black, making it easy to observe the composition distribution.

【0006】[0006]

【発明が解決しようとする課題】前記ラメラ組織を含む
Ti−Al系金属間化合物は、特に高温で変形する際に
ラメラ粒界のγ相が弱点となり、このラメラ粒界のγ相
に沿って破壊した例が数多く見られた。図8は、前記T
i−Al系金属間化合物(Ti−44at%Al)からな
る試験片を800℃で曲げ破断試験を行った時の破面の
二次電子線像である。図8からも判るように、従来の組
織は主にラメラ粒の粒界において破壊が生じており、ラ
メラ粒界が弱いことが判る。
In the Ti-Al intermetallic compound containing the lamella structure, the γ phase of the lamella grain boundary becomes a weak point particularly when it is deformed at a high temperature, and the γ phase of the lamella grain boundary along There were many examples of destruction. FIG. 8 shows the T
2 is a secondary electron beam image of a fractured surface when a bending fracture test was performed at 800 ° C. on a test piece made of an i-Al based intermetallic compound (Ti-44 at% Al). As can be seen from FIG. 8, in the conventional structure, the fracture mainly occurs at the grain boundaries of the lamella grains, and the lamella grain boundaries are weak.

【0007】上記のようにラメラ粒界(γ相)で破壊を
生じると、ラメラ組織のもつ優れた性質(強度の高い性
質)を十分に生かすことができない。また、クリープ破
断特性を改善するために、Si添加によってラメラ組織
に微細Ti5 Si3 等の析出物を析出させることなども
提案されているが、所定の析出物を得るには手間のかか
る難しい処理操作が必要であり、この場合でもラメラ粒
界のγ相が弱点となることは避けられない。
When the fracture occurs at the lamella grain boundary (γ phase) as described above, the excellent properties (high strength properties) of the lamella structure cannot be fully utilized. Further, in order to improve the creep rupture property, it has been proposed to deposit fine precipitates such as Ti 5 Si 3 in the lamellar structure by adding Si, but it is difficult and difficult to obtain a predetermined precipitate. A treatment operation is required, and even in this case, it is inevitable that the γ phase of the lamella grain boundary becomes a weak point.

【0008】従って本発明の目的は、ラメラ組織を含む
Ti−Al系金属間化合物においてラメラ組織のもつ優
れた高強度性を生かすことができ、特に、高温でも優れ
た特性を発揮できるようにすることにある。
Therefore, an object of the present invention is to enable the Ti-Al-based intermetallic compound containing a lamella structure to take advantage of the excellent high strength possessed by the lamella structure, and in particular to exhibit excellent properties even at high temperatures. Especially.

【0009】[0009]

【課題を解決するための手段】上記目的を果たすために
開発された本発明は、ラメラ組織を含むTi−Al系金
属間化合物において、互いに隣り合うラメラ粒同志が、
連続する他の相を間に介することなく直接ラメラ同志の
界面において結合し、互いに隣接する上記ラメラ粒の粒
界が凹凸形状をなしており、その凹凸部が互いに食い込
み合い、かつ、上記凹凸部における相手側のラメラ粒へ
の食い込み長さがラメラ層間隔以上であり、食い込む側
のラメラ粒と食い込まれる側のラメラ粒同士で、双方の
α相が互いに直接結合しているとともに双方のγ相が
互いに直接結合し、上記凹凸部における相手側のラメラ
粒への食い込み長さがラメラ層間隔の3倍以上の箇所で
は、上記食い込む側のラメラ粒の凸部の幅方向両側にそ
れぞれγ相が存在し、該γ相が、食い込まれる側のラメ
ラ粒のγ相と直接結合し、かつ、上記幅方向両側に存在
する一対のγ相の内側にα 相が単独で挟まれている
か、あるいはα とγの層状組織が挟まれていることを
特徴とするものである。これらのラメラ粒は、上記凹凸
状粒界において互いに三次元的に食い込み合っている。
Means for Solving the Problems The present invention, which was developed to achieve the above object, is a Ti--Al intermetallic compound containing a lamella structure, in which adjacent lamella grains are
Bonded directly at the interface of the lamellas without interposing another continuous phase, the grain boundaries of the lamella grains adjacent to each other form an uneven shape, and the uneven portions bite into each other, and the uneven portion. In the other side, the bite length into the lamella grains on the other side is not less than the lamella layer interval, and in the bite side lamella grains and the bite side lamella grains, both α 2 phases are directly bound to each other and both γ The phases are directly bonded to each other, and the lamella on the other side in the uneven portion
When the bite length into the grain is more than 3 times the lamella layer spacing
On both sides in the width direction of the convex part of the lamella grain on the biting side.
There is a γ phase in each, and the γ phase is the lame on the side where it is bitten.
Directly binds to the gamma phase of the grit and exists on both sides in the width direction
The α 2 phase is independently sandwiched inside the pair of γ phases
Or, that the layered structure of α 2 and γ is sandwiched
It is a feature. These lamella grains three-dimensionally bite into each other at the uneven grain boundaries.

【0010】[0010]

【作用】本発明者らの行った実験により、ラメラ粒界に
γ相などの他の相を実質的になくすことによって、高温
強度が著しく向上することが確認された。すなわち、ラ
メラ組織を含むTi−Al系金属間化合物のラメラ粒界
が前記の状態となるように制御することにより、従来、
粒界で破壊する場合が多かったこの種の金属間化合物の
粒界での破壊を極端に減らすことができるようになり、
ラメラ粒内で破壊を生じるようにすることにより、ラメ
ラ粒自体のもつ高強度な特性を十分に引き出すことがで
きるようになった。特に、その効果は高温において顕著
であり、耐熱軽量部材としての性能を大幅に向上でき
た。また、高温でのクリープ性能も向上する。
The experiments conducted by the present inventors have confirmed that the high temperature strength is remarkably improved by substantially eliminating other phases such as the γ phase in the lamella grain boundaries. That is, by controlling the lamella grain boundaries of the Ti-Al intermetallic compound containing a lamella structure to be in the above state,
It became possible to extremely reduce the breakage at the grain boundary of this kind of intermetallic compound that was often broken at the grain boundary,
By causing the fracture in the lamella grains, the high-strength characteristics of the lamella grains themselves can be sufficiently brought out. In particular, the effect was remarkable at high temperatures, and the performance as a heat-resistant lightweight member could be significantly improved. Also, the creep performance at high temperature is improved.

【0011】なお本発明は、諸特性の改善を図るために
Si,Nb,Mn,Cr,V,Pb等の添加元素や、T
iB2 ,Y2 3 ,Ti5 Si3 等のセラミックス,金
属間化合物の微細強化物を添加するか、析出させるなど
して改質されたラメラ組織を含むTi−Al系金属間化
合物にも効果がある。上記添加元素等を加えることによ
り、ラメラが形成される組成幅(35〜50at%Al)
が変化することがあるが、要するにラメラが主として存
在する全ての組織に対して有効性がある。
In the present invention, additive elements such as Si, Nb, Mn, Cr, V and Pb, and T are added in order to improve various characteristics.
iB 2, Y 2 O 3, Ti 5 Si 3 or the like ceramics, or the addition of a fine enhancer of the intermetallic compound, in Ti-Al system intermetallic compound comprising lamellar structure that has been modified by, for example, to deposit effective. Composition width in which lamella is formed by adding the above-mentioned additional elements (35 to 50 at% Al)
Can vary, but in short it is effective against all tissues where lamella is predominantly present.

【0012】また本発明における組成幅は、TiとAl
の2元素の組成比が35〜50at%Alの範囲でラメラ
が形成されるので有効である。ただし、特に45〜47
at%Alの範囲で特に高強度なTi−Al系金属間化合
物からなる耐熱部材が得られる。
The composition width in the present invention is Ti and Al.
It is effective because a lamella is formed in the composition ratio of the two elements of 35 to 50 at% Al. However, especially 45 to 47
In the range of at% Al, a heat resistant member made of a Ti—Al based intermetallic compound having particularly high strength can be obtained.

【0013】[0013]

【実施例】TiとAlの粉末を、Ti−46at%Alの
組成となるように乾式のボールミルで混合し、この混合
体をロータリスェージングマシンによって圧粉成形した
のちに、それぞれPHIPで加圧(例えば 350kgf/cm
2 )しながら1350℃まで昇温するとともに、真空雰
囲気中で2時間保持し、反応焼結を生じさせたのちに室
温程度までガス冷却することによって、図2の反射電子
線組成像に示すようなTi−Al系金属間化合物からな
る部材を得た。
EXAMPLE Ti and Al powders were mixed in a dry ball mill so as to have a composition of Ti-46 at% Al, the mixture was compacted by a rotary shaving machine, and then pressed with PHIP. (For example, 350kgf / cm
2 ) While raising the temperature to 1350 ° C., holding in a vacuum atmosphere for 2 hours to cause reaction sintering, and then gas cooling to about room temperature, as shown in the reflected electron beam composition image of FIG. A member made of a Ti-Al-based intermetallic compound was obtained.

【0014】PHIPはアルミナ粉末等の圧力媒体を用
いた擬似等方圧プレスである。反応焼結(自己伝播高温
合成法)は、TiとAlの混合粉末等をその反応温度以
上に加熱することによって混合粉末の一部に反応を生じ
させ、その時に発生する反応熱により次々と反応を伝播
させる方法である。反応焼結を利用する製造方法によれ
ば上記組織が容易に得られるが、他の方法、例えばTi
AlとTi3 Alからなる金属間化合物の粉末を通常の
焼結やHIP等を用いた加圧焼結によって製造する方法
や、溶製材を鍛造するなどして微細な組織にし、再結晶
温度に保持することによっても製造可能である。
PHIP is a pseudo isotropic press using a pressure medium such as alumina powder. The reaction sintering (self-propagating high temperature synthesis method) causes a reaction of a part of the mixed powder by heating the mixed powder of Ti and Al or the like above the reaction temperature, and the reaction heat generated at that time causes the reaction to occur one after another. Is a method of propagating. Although the above structure can be easily obtained by the manufacturing method utilizing reaction sintering, other methods such as Ti are used.
A method of producing a powder of an intermetallic compound consisting of Al and Ti 3 Al by normal sintering or pressure sintering using HIP, or by forging a molten material into a fine structure to obtain a recrystallization temperature. It can also be manufactured by holding.

【0015】上記実施例の組織は、主としてラメラ粒に
より構成されている。図2において同一方向の縞模様と
なっている塊が1つのラメラ粒である。図中に黒く見え
る縞が主としてγからなる板状の相、白く見える部分が
主としてα2 からなる板状の相である。このラメラ粒は
形状の異方性が大きく、ラメラの縞に沿う方向にやや長
くなる傾向がある。図3に拡大して示すように、互いに
隣り合うラメラ同志は直接粒界において結合しており、
ラメラ同志の粒界が互いに大きく食い込み合っている箇
所が多く見られる。従ってラメラ粒界に、ラメラ粒以外
の相であるγ相が連続していることはほとんどなく、ラ
メラ粒同志が直接接しているとともに、ラメラ同志が互
いの粒界において三次元的に複雑に食い込み合ってい
る。
The structure of the above embodiment is mainly composed of lamella grains. A lump having a striped pattern in the same direction in FIG. 2 is one lamella grain. In the figure, the black stripes are the plate-like phase mainly consisting of γ, and the white stripes are the plate-like phase mainly consisting of α 2 . The lamella grains have large shape anisotropy and tend to be slightly longer in the direction along the lamella stripes. As shown in the enlarged view of FIG. 3, the lamellas adjacent to each other are directly bonded at the grain boundary,
There are many places where the grain boundaries of lamellae dig into each other greatly. Therefore, the γ-phase, which is a phase other than lamella grains, is rarely continuous to the lamella grain boundary, and the lamella grains are in direct contact with each other and the lamella grains bite into each other in a three-dimensional complex manner. Matching.

【0016】上記実施例の組織の特徴として、次に述べ
るようなことがあげられる。 [特徴1] ラメラ粒界に他の相が実質的に存在せず、
ラメラとラメラが直接接しており、かつ縞の先端が大き
く凹凸形状をなしている。この凹凸の程度は、図1に示
されるように、凹凸部における食い込み長さHがラメラ
の層間隔dの3倍以上となっている箇所が多く見られ
る。 [特徴2] ラメラ同志がその粒界においてほぼ完全に
一体化している。すなわち、α2 (白く見える部分)が
直接結合し、α2 の板状の結晶粒同志が粒界を介して直
接金属結合をなしている。すなわち、同種の結晶粒同志
の結晶粒界と同じ結合形態であり、きわめて強固な結合
形態である。このような組織では、顕微鏡で2000倍
程度に拡大しても別の相は観察されない。2000倍以
上で別の相が観察されても、強度上、実質的に問題には
ならない。 [特徴3] ラメラ粒界において一方のラメラが他方の
ラメラ内に食い込む凸部においては、凸部の幅方向両側
にそれぞれγ相(黒い縞の部分)が必ず存在し、一対の
γ相の内側にα2 相(白く見える部分)が単独で挟まれ
ているか、あるいは一対のγ相の内側にα2 とγの層状
組織が挟まれている。いずれにしても、大きな凹凸が見
られる粒界の凸部には、その両側にγ相が存在してい
る。
The features of the structure of the above embodiment are as follows. [Characteristic 1] There is substantially no other phase in the lamella grain boundary,
The lamellas are in direct contact with each other, and the tips of the stripes are large and uneven. As for the degree of the unevenness, as shown in FIG. 1, there are many places where the biting length H in the uneven portion is three times or more the layer interval d of the lamella. [Characteristic 2] Lamella comrades are almost completely integrated at the grain boundary. That is, α 2 (the part that looks white) is directly bonded, and the plate-like crystal grains of α 2 are directly metal-bonded via the grain boundary. That is, the bond form is the same as that of the crystal grain boundaries of the same type of crystal grains, and the bond form is extremely strong. In such a structure, another phase is not observed even when magnified about 2000 times with a microscope. Even if another phase is observed at 2000 times or more, there is practically no problem in terms of strength. [Characteristic 3] In the convex part where one lamella bites into the other lamella at the lamella grain boundary, the γ phase (black stripes) is always present on both sides in the width direction of the convex part, and inside the pair of γ phases. The α 2 phase (the part that looks white) is sandwiched by itself, or the layered structure of α 2 and γ is sandwiched inside the pair of γ phases. In any case, the γ phase exists on both sides of the convex portion of the grain boundary where large irregularities are seen.

【0017】上記実施例の組織を柱状の曲げ試験片に加
工し、800℃で大気中で曲げ試験を実施したところ、
103.8kgf/mm2 で破断した。この試験片の破面は、図
4の二次電子線像に示されるように破面のほとんどがラ
メラ粒内で破壊を生じ、しかも破面は凹凸が鋭くかつ細
かくなっており、ラメラ粒界が強いことが判る。
The structure of the above example was processed into a columnar bending test piece, and a bending test was conducted at 800 ° C. in the atmosphere.
It broke at 103.8 kgf / mm 2 . As shown in the secondary electron beam image of FIG. 4, most of the fracture surfaces of this test piece fractured within the lamella grains, and the fracture surface had sharp and fine irregularities. It turns out that is strong.

【0018】破面を観察したところ、ラメラ同志の粒界
の一部の凹凸の浅い箇所において、ごくまれに粒界で剥
がれている部分が認められた。この部分を更に拡大して
詳しく観察したところ、図5の二次電子線像に見られる
ように、凹凸が2方向(写真の対角線方向)に列をなし
ていることが判り、本実施例のラメラ粒界のかみ合いが
三次元的なものであることが確認された。単なる二次元
的なかみ合いの場合には凹凸が一方向に並ぶはずである
が、本実施例の組織ではそのような例は全く見られず、
上記のようにラメラ粒界が三次元的にかみ合うことがラ
メラ粒界の強度を向上させ、前記の高強度な組織を得る
上で更に効果を高めていることがわかった。
When the fracture surface was observed, it was found that a part of the grain boundaries of the lamellae, where the irregularities were shallow, was rarely separated at the grain boundaries. When this portion was further magnified and observed in detail, it was found that as shown in the secondary electron beam image of FIG. 5, the irregularities were arranged in rows in two directions (diagonal direction of the photograph), and in this example, It was confirmed that the meshing of the lamella grain boundaries was three-dimensional. In the case of mere two-dimensional meshing, the irregularities should be arranged in one direction, but in the organization of this example, no such example is seen.
It was found that the three-dimensional meshing of the lamella grain boundaries as described above improves the strength of the lamella grain boundaries and further enhances the effect in obtaining the above-described high-strength structure.

【0019】上記実施例の組織において、粒界の凹凸部
における食い込み長さHが層間隔dよりも大きいことが
望ましく、更にはHがdの3倍以上であれば更に好まし
い結果が得られる。凹凸が浅い箇所(例えばHがdと同
程度)では、上記実施例の組織でも粒界の一部で剥がれ
る例がまれに見られた。凹凸の大きな箇所では剥がれた
例は観察されず、粒界の凹凸を大きくすることの効果が
大であることが確認された。このように本実施例の組織
は、ラメラ粒界が強固になることによって、ラメラ組織
の高強度性を十分に引き出すことができ、高温でも高い
強度が達成された。
In the structures of the above-mentioned examples, it is desirable that the bite length H in the uneven portion of the grain boundary is larger than the layer interval d, and further more preferable results are obtained if H is 3 times or more of d. In a portion where the unevenness is shallow (for example, H is about the same as d), it is rare that the structure of the above-mentioned embodiment is peeled off at a part of the grain boundary. No peeling example was observed at a place with a large unevenness, and it was confirmed that the effect of increasing the unevenness of the grain boundary was great. As described above, in the structure of this example, the lamella grain boundary was strengthened, so that the high strength of the lamella structure could be sufficiently brought out, and the high strength was achieved even at a high temperature.

【0020】これに対し比較例は、Ti−44at%Al
の組成となるように混合された混合体を圧粉成形したの
ちに、PHIPで1350℃・2時間保持により、図6
に示される組織を得たが、ラメラ粒界にγ相がおおむね
連続する組織となっている。この比較例を前記実施例と
同様に800℃で曲げ破断試験を行ったところ、実施例
よりもはるかに低い荷重(82.4kgf/mm2 )で破壊して
しまった。比較例の破断後の破面は、図8に示されるよ
うに多くが粒界に沿って破壊しており、破面が粗く、ぼ
こぼことしているなど、ラメラ粒界が弱い組織であった
ことが判る。このため比較例の組織では、強度の高いラ
メラ組織の特性を十分に引き出すことができない。
On the other hand, the comparative example is Ti-44 at% Al.
After compacting the mixture mixed so as to have the composition shown in FIG.
The structure shown in Fig. 4 was obtained, but the structure is such that the γ phase is generally continuous in the lamella grain boundaries. When this comparative example was subjected to a bending rupture test at 800 ° C. in the same manner as the above-mentioned examples, it broke under a load (82.4 kgf / mm 2 ) much lower than that of the examples. As shown in FIG. 8, the fracture surface after rupture of the comparative example was mostly fractured along the grain boundary, and the fracture surface was rough and uneven, and the lamella grain boundary was a weak structure. I understand. Therefore, the structure of the comparative example cannot sufficiently bring out the characteristics of the lamella structure having high strength.

【0021】なお本発明は前記実施例の組成に限定され
るものではなく、要するにラメラが主として存在する組
織、あるいは母相中にラメラ粒が分散しかつラメラ粒同
志が接する組織においても効果が発揮される。また、前
記比較例ではラメラ粒の粒界にγ相が連続して形成され
てしまっているが、比較例と同一の組成でも、熱処理条
件を変えるなどして本発明に適合するような組織にする
ことは可能である。
The present invention is not limited to the composition of the above-mentioned embodiment, and in short, the effect is exerted even in a structure in which lamellae are mainly present, or in a structure in which lamellae particles are dispersed in the matrix and lamellae particles are in contact with each other. To be done. Further, in the comparative example, the γ phase has been continuously formed at the grain boundaries of the lamella grains, but even with the same composition as the comparative example, a structure suitable for the present invention is obtained by changing the heat treatment conditions. It is possible to do so.

【0022】[0022]

【発明の効果】本発明によれば、ラメラの結晶粒同士が
別の相を介すことなくきわめて強固に結合し、ラメラの
もつ優れた特性を発揮させることができ、特に高温で優
れた強度を発揮するTi−Al系金属間化合物を得るこ
とができる。
According to the present invention, lamella crystal grains are
It is possible to obtain a Ti-Al-based intermetallic compound that can be bonded extremely strongly without the interposition of another phase and can exhibit the excellent properties of the lamella, and that exhibits particularly excellent strength at high temperatures.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すTi−Al系金属間化
合物のラメラ組織の一部の拡大図。
FIG. 1 is an enlarged view of a part of a lamellar structure of a Ti—Al-based intermetallic compound showing an example of the present invention.

【図2】本発明の一実施例を示すTi−Al系金属間化
合物の金属組織を300倍に拡大して示す顕微鏡写真。
FIG. 2 is a micrograph showing a metal structure of a Ti—Al-based intermetallic compound, showing one embodiment of the present invention, magnified 300 times.

【図3】図2に示された金属組織の一部を2000倍に
拡大して示す顕微鏡写真。
FIG. 3 is a micrograph showing a part of the metal structure shown in FIG. 2 at a magnification of 2000 times.

【図4】図2に示された金属組織の破断試験後の破面を
85倍に拡大して示す顕微鏡写真。
FIG. 4 is a micrograph showing a fractured surface of the metal structure shown in FIG. 2 after a fracture test, magnified 85 times.

【図5】図2に示された金属組織の粒界での破壊部を5
000倍に拡大して示す顕微鏡写真。
FIG. 5 shows fractured portions at the grain boundaries of the metallographic structure shown in FIG.
A micrograph showing a magnification of 000.

【図6】比較例を示す金属組織を300倍に拡大して示
す顕微鏡写真。
FIG. 6 is a micrograph showing a metal structure showing a comparative example at 300 times magnification.

【図7】図6に示された金属組織の一部を2000倍に
拡大して示す顕微鏡写真。
FIG. 7 is a micrograph showing a part of the metal structure shown in FIG. 6 at a magnification of 2000 times.

【図8】図6に示された金属組織の破断試験後の破面を
85倍に拡大して示す顕微鏡写真。
FIG. 8 is a micrograph showing a fractured surface of the metal structure shown in FIG. 6 after a fracture test, magnified 85 times.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 14/00 C22F 1/18 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C22C 14/00 C22F 1/18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ラメラ組織を含むTi−Al系金属間化合
物において、互いに隣り合うラメラ粒同志が、連続する
他の相を間に介することなく直接ラメラ同志の界面にお
いて結合し、互いに隣接する上記ラメラ粒の粒界が凹凸
形状をなしており、その凹凸部が互いに食い込み合い、
かつ、上記凹凸部における相手側のラメラ粒への食い込
み長さがラメラ層間隔以上であり、食い込む側のラメラ
粒と食い込まれる側のラメラ粒同士で、双方のα相が
互いに直接結合しているとともに双方のγ相が互いに直
接結合し 上記凹凸部における相手側のラメラ粒への食い込み長さ
がラメラ層間隔の3倍以上の箇所では、上記食い込む側
のラメラ粒の凸部の幅方向両側にそれぞれγ相が存在
し、該γ相が、食い込まれる側のラメラ粒のγ相と直接
結合し、かつ、上記幅方向両側に存在する一対のγ相の
内側にα 相が単独で挟まれているか、あるいはα
γの層状組織が挟まれている ことを特徴とするTi−A
l系金属間化合物。
1. In a Ti—Al-based intermetallic compound containing a lamella structure, adjacent lamella grains are directly bonded to each other at the interface of the lamellas without interposing another continuous phase, and are adjacent to each other. The grain boundaries of lamella grains have an irregular shape, and the irregularities bite into each other,
And, the biting length to the lamella grains on the other side in the uneven portion is a lamella layer interval or more, and between the lamella grains on the biting side and the lamella grains on the biting side, both α 2 phases are directly bonded to each other. And the γ phases of both are directly bonded to each other, and the bite length into the mating lamella grain in the above-mentioned uneven portion
Is the bite side at a location where the lamella layer spacing is three times or more.
Γ phases exist on both sides in the width direction of the convex part of the lamella grains of
However, the γ-phase directly interacts with the γ-phase of the lamella grains on the bite side.
Of a pair of γ-phases that are bonded and that are present on both sides in the width direction
Or inside alpha 2 phase is sandwiched alone or in alpha 2 and
Ti-A characterized in that the layered structure of γ is sandwiched
l-based intermetallic compound.
【請求項2】互いに隣接する上記ラメラ粒の粒界同志が
互いに三次元的に食い込み合っている請求項1記載のT
i−Al系金属間化合物。
2. The T according to claim 1, wherein the grain boundaries of the lamella grains adjacent to each other are three-dimensionally engaged with each other.
i-Al-based intermetallic compound.
JP35017892A 1992-12-04 1992-12-04 Ti-Al intermetallic compound Expired - Fee Related JP3419481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35017892A JP3419481B2 (en) 1992-12-04 1992-12-04 Ti-Al intermetallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35017892A JP3419481B2 (en) 1992-12-04 1992-12-04 Ti-Al intermetallic compound

Publications (2)

Publication Number Publication Date
JPH06172899A JPH06172899A (en) 1994-06-21
JP3419481B2 true JP3419481B2 (en) 2003-06-23

Family

ID=18408748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35017892A Expired - Fee Related JP3419481B2 (en) 1992-12-04 1992-12-04 Ti-Al intermetallic compound

Country Status (1)

Country Link
JP (1) JP3419481B2 (en)

Also Published As

Publication number Publication date
JPH06172899A (en) 1994-06-21

Similar Documents

Publication Publication Date Title
US5744254A (en) Composite materials including metallic matrix composite reinforcements
JP2629151B2 (en) Compressed article and method for producing the same
Li et al. Synthesis and microstructure of Ti3AlC2 by mechanically activated sintering of elemental powders
JPS6353236A (en) High strength aluminum alloy having high fatique strength and high tenacity
JPS61195945A (en) Cobalt-chromium hard alloy
US5632827A (en) Aluminum alloy and process for producing the same
Boonruang et al. Impact property of TiAl3–Ti laminated composite fabricated from metallic sandwich
JP3419481B2 (en) Ti-Al intermetallic compound
JP3316084B2 (en) Heavy metal alloy and method for producing the same
JP3459138B2 (en) TiAl-based intermetallic compound joined body and method for producing the same
JPH0832934B2 (en) Manufacturing method of intermetallic compounds
JP3382285B2 (en) Method for producing Ti-Al-based intermetallic compound
Vajpai et al. Studies on the mechanism of the structural evolution in Cu–Al–Ni elemental powder mixture during high energy ball milling
JP3475236B2 (en) Manufacturing method of wrought aluminum alloy
US3301671A (en) Aluminous sintered parts and techniques for fabricating same
US4536234A (en) Method for refining microstructures of blended elemental powder metallurgy titanium articles
Slama et al. Diffraction crystallite size effects on mechanical properties of nanocrystalline (Ti0. 8W0. 2) C
JPH08311586A (en) Alpha plus beta titanium alloy matrix composite, titanium alloy material for various products, and titanium alloy product
JPS63290249A (en) Ferrous sintered alloy combining heat resistance with wear resistance
JP3382272B2 (en) Ti-Al intermetallic compound
JP2852414B2 (en) Particle-reinforced titanium-based composite material and method for producing the same
Liu et al. Synthesis of heterogeneity-improved heterostructured 2024Al alloy with excellent synergy of strength and ductility via powder thixoforming
JP3382273B2 (en) Ti-Al intermetallic compound
JP2795587B2 (en) Aluminum matrix composite containing plate-like aluminum oxide particles
JPH04202736A (en) Hyper-eutectic al-si base alloy powder showing excellent deformability by hot powder metal forging

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees