JP3382272B2 - Ti-Al intermetallic compound - Google Patents

Ti-Al intermetallic compound

Info

Publication number
JP3382272B2
JP3382272B2 JP32462992A JP32462992A JP3382272B2 JP 3382272 B2 JP3382272 B2 JP 3382272B2 JP 32462992 A JP32462992 A JP 32462992A JP 32462992 A JP32462992 A JP 32462992A JP 3382272 B2 JP3382272 B2 JP 3382272B2
Authority
JP
Japan
Prior art keywords
lamella
hardness
grains
phase
composite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32462992A
Other languages
Japanese (ja)
Other versions
JPH06145932A (en
Inventor
功平 田口
倫彦 綾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP32462992A priority Critical patent/JP3382272B2/en
Publication of JPH06145932A publication Critical patent/JPH06145932A/en
Application granted granted Critical
Publication of JP3382272B2 publication Critical patent/JP3382272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種機器の部品や耐火
構造物あるいは高温用弾性部材などに好適なTi−Al
系金属間化合物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to Ti-Al suitable for parts of various equipments, refractory structures, high temperature elastic members and the like.
Related to intermetallic compounds.

【0002】[0002]

【従来の技術】Ti−Al系金属間化合物は耐熱性,耐
酸化性,耐摩耗性等に優れしかも軽量であるなどの優れ
た性質をもつため、各種用途に使われる素材として有望
視されている。この種の金属間化合物を利用する製品例
としては、高温で使用される外壁材や、タ−ビン部材、
ピストンやバルブシステム等のエンジン部品などが考え
られている。
2. Description of the Prior Art Ti-Al intermetallic compounds have excellent properties such as excellent heat resistance, oxidation resistance, wear resistance and the like, and are lightweight, and are therefore regarded as promising materials for various applications. There is. Examples of products using this type of intermetallic compound include outer wall materials used at high temperatures and turbine members,
Engine parts such as pistons and valve systems are being considered.

【0003】従来のTi−Al系金属間化合物におい
て、TiとAlの組成比がAlの原子%で49〜55%
の範囲にある組織は主としてγ単相(TiAlからなる
多結晶粒組織)であることが知られている。一方、Al
の原子%が49%以下の場合には、γ相とラメラとから
なる複合組織が得られることも報告されている。ラメラ
は、主としてTiAlとTi3 Alとが、おおむね交互
に積層した層状組織である。
In a conventional Ti-Al intermetallic compound, the composition ratio of Ti and Al is 49 to 55% in atomic% of Al.
It is known that the structure in the range is mainly a γ single phase (polycrystalline grain structure composed of TiAl). On the other hand, Al
It is also reported that when the atomic% of is less than 49%, a composite structure composed of γ phase and lamella is obtained. A lamella is a layered structure in which TiAl and Ti 3 Al are mainly alternately laminated.

【0004】γ単相の組織は、ラメラを主体とする組織
に比べると、軽量でありかつ耐熱性と耐摩耗性および耐
酸化性などに関して優れているが、強度にやや劣ること
がわかっている。これに対し、主としてラメラからなる
組織は、強度が高い反面、耐熱性と耐摩耗性および耐酸
化性がやや劣っている。
It is known that the γ single phase structure is lighter in weight and excellent in heat resistance, abrasion resistance and oxidation resistance, but slightly inferior in strength, as compared with a structure mainly composed of lamella. . On the other hand, the structure mainly composed of lamella has high strength, but is slightly inferior in heat resistance, wear resistance and oxidation resistance.

【0005】[0005]

【発明が解決しようとする課題】前述した従来のTi−
Al系金属間化合物は、図1中に1点鎖線で示されるよ
うに、Alが48〜54原子%の範囲にある時に、Al
の原子%が増加するにつれて強度が大幅に低下すること
が知られている。その理由は、γ相がもろくなるためで
ある。このため耐熱性と耐摩耗性および耐酸化性などが
優れているにもかかわらず、強度が不足するため上記の
優れた特質を生かしきれないのが現状である。また、高
温度における強度低下も顕著であるため、高温下での使
用にも問題があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
As shown by the alternate long and short dash line in FIG. 1, the Al-based intermetallic compound has an Al content of 48 to 54 at%.
It is known that the strength decreases significantly as the atomic% of increases. The reason is that the γ phase becomes brittle. Therefore, in spite of excellent heat resistance, wear resistance, oxidation resistance, etc., it is the current situation that the above excellent characteristics cannot be fully utilized due to insufficient strength. Further, since the strength is significantly reduced at high temperature, there is a problem in using at high temperature.

【0006】従って本発明の目的は、軽量でありかつ耐
熱性と耐摩耗性および耐酸化性などの優れた特質と高強
度が両立しかつ高温でも優れた特性を発揮できる軽量な
Ti−Al系金属間化合物を提供することにある。
Therefore, an object of the present invention is a lightweight Ti-Al system which is lightweight and has both excellent characteristics such as heat resistance, abrasion resistance and oxidation resistance and high strength, and can exhibit excellent characteristics even at high temperatures. To provide an intermetallic compound.

【0007】[0007]

【課題を解決するための手段】上記目的を果たすために
開発された本発明は、主としてγ相とラメラ粒とにより
構成される複合組織でかつ上記ラメラ粒とγ相との粒界
が互いに焼結により強固に密着しているTi−Al系金
属間化合物であって、上記複合組織中のTiとAlの組
成比がAlの原子%で50%を越えて54%であり、上
記複合組織中に上記ラメラ粒が分散し、上記複合組織中
における上記ラメラ粒は単独でラメラ粒が存在する時と
は同一成分でも硬さが異なり、上記複合組織中における
上記ラメラ粒の硬さがこの複合組織中における上記γ相
よりも硬く、上記ラメラ粒とγ相の硬さの比(ラメラ硬
さ/γ硬さ)が1.15よりも大きく、かつ、この複合
組織中の上記ラメラ粒とγ相との粒界の密着強度がラメ
ラ粒単独の強度を上回っていることを特徴とするもので
ある。γ相は、主としてTiAlからなる微細結晶粒組
織の集合体であり、TiAlやAlTi等が少量含
まれていてもよい。
The present invention, which was developed to achieve the above object, has a composite structure mainly composed of γ phase and lamella grains, and the grain boundaries of the lamella grains and γ phase are mutually fired. A Ti-Al-based intermetallic compound that is firmly adhered by binding, and is a combination of Ti and Al in the composite structure.
The composition ratio is more than 50% in atomic% of Al and 54%.
The lamella grains are dispersed in the composite structure, the lamella particles in the composite structure have different hardness even when the lamella particles are present independently, and the hardness of the lamella particles in the composite structure is different. Is harder than the γ phase in the composite structure, the ratio of the hardness of the lamella grains to the γ phase (lamella hardness / γ hardness) is larger than 1.15, and the lamella in the composite structure is The adhesive strength of the grain boundary between the grains and the γ phase exceeds the strength of the lamella grains alone. The γ phase is an aggregate of fine crystal grain structures mainly composed of TiAl, and may contain a small amount of Ti 3 Al, Al 3 Ti, or the like.

【0008】本発明の複合組織はTiとAlの反応合成
法(反応焼結)によって特に容易に得られる。この複合
組織において、γ相とラメラ粒とが互いの粒界において
割れが生じない程度あるいはそれ以上の結合力で強固に
密着した状態にある。本発明では、TiとAlの組成比
をAlの原子%で48〜54%とした場合でも、反応焼
結を経ることによってγ相中にラメラ粒の分散した組織
を得る。このような複合組織においてはラメラ粒とγ相
の硬さの比(ラメラ硬さ/γ硬さ)を1.15よりも大
きくすることによって、高強度化を図る上で好ましい結
果が得られる。また、複合組織中に含まれるラメラ粒の
体積%が8〜69%の間で本発明の目的を果たせるが、
29%以上、更には29〜36%とすれば更に好ましい
結果が得られる。
The composite structure of the present invention can be obtained particularly easily by the reaction synthesis method (reaction sintering) of Ti and Al. In this composite structure, the γ-phase and the lamella grains are in a state of being firmly adhered to each other with a bonding force of such a degree that cracks do not occur at grain boundaries of each other or more. In the present invention, even when the composition ratio of Ti and Al is 48 to 54% in atomic% of Al, a structure in which lamella grains are dispersed in the γ phase is obtained by undergoing reaction sintering. In such a composite structure, by setting the ratio of the hardness of the lamella grains to the hardness of the γ phase (lamella hardness / γ hardness) to be larger than 1.15, preferable results can be obtained in order to increase the strength. Moreover, although the volume% of the lamella grains contained in the composite structure is between 8 and 69%, the object of the present invention can be achieved.
More preferable results are obtained when the amount is 29% or more, and more preferably 29 to 36%.

【0009】[0009]

【作用】本発明でいうγ相とラメラ粒の硬さは、γ相と
ラメラ粒が単独の状態で存在している時の硬さではな
く、あくまで複合組織中での硬さを問題にしている。つ
まり本発明の複合組織は、γ相とラメラ粒とがその粒界
において互いに強固に密着したものであり、例えば粒界
が互いに湾状に食い込みかつ金属間結合等によって強固
な密着状態が得られた組織である。このような複合組織
においては、曲げ破断試験を実施するなどして破面を観
察した場合に、粒界に沿って割れが進行するよりも、む
しろ粒内で破壊が生じるような状況が観察される。この
ような複合組織では、γ相とラメラ粒が単独の時とは、
ラメラ粒が同一成分でも異なった硬さになることがあ
り、その理由については推測の域を出ないが、反応焼結
時の粒間の熱膨張差などを初めとして、今だ解明されて
いないファクタが関与していると思われる。Ti−Al
系金属間化合物においてAl組成が50%を越える場
合、熱処理によって平衡状態に至ると組織が全てγにな
ることが知られている。このためAl組成は一般に50
%が上限であった。しかしAl組成が50%以上のTi
−Al系金属間化合物でも、反応を途中で終了させて非
平衡な状態をつくりだすことなどにより、γの粒界に微
細なラメラがより均一に分散した本発明の目的にかなう
組織を得ることが可能である。
The hardness of the γ phase and the lamella grains referred to in the present invention is not the hardness when the γ phase and the lamella grains exist alone, but the hardness in the composite structure is a problem. There is. That is, the composite structure of the present invention is one in which the γ phase and the lamella grains are firmly adhered to each other at their grain boundaries, and for example, the grain boundaries bite into each other in a bay shape and a strong adhesion state is obtained by intermetallic bonding or the like. It is an organized organization. In such a composite structure, when a fracture surface is observed by conducting a bending rupture test or the like, it is observed that the fracture occurs in the grain rather than the crack progresses along the grain boundary. It In such a composite structure, when the γ phase and lamella grains are independent,
The lamella grains may have different hardness even with the same component, and the reason for this is beyond speculation, but it has not yet been elucidated including the difference in thermal expansion between grains during reaction sintering. Factors seem to be involved. Ti-Al
When the Al composition exceeds 50% in intermetallic compounds
When the equilibrium state is reached by heat treatment,
It is known that Therefore, the Al composition is generally 50
% Was the upper limit. However, Ti with Al composition of 50% or more
-Al-based intermetallic compounds can also be
For example, by creating an equilibrium state,
The fine lamellae are more evenly distributed and serve the purpose of the present invention.
It is possible to get an organization.

【0010】本発明では、上述の複合組織にすることに
よって、γ相のもつ優れた特質(軽量性,耐熱性,耐摩
耗性,耐酸化性等)を生かしつつ、γ相の強度的な弱点
を克服して高強度化が図れるようになり、軽量なTi−
Al系金属間化合物の強度を格段に向上させることがで
きた。
In the present invention, the composite structure described above is used, while the excellent characteristics of the γ phase (lightness, heat resistance, wear resistance, oxidation resistance, etc.) are utilized, and the weakness of the γ phase in terms of strength is weakened. Overcoming the problem of higher strength, lightweight Ti-
The strength of the Al-based intermetallic compound was remarkably improved.

【0011】なお本発明は、諸特性の改善を図るために
Si,Nb,Mn,Cr,V等の添加元素や、Ti
2 ,Y2 3 ,Ti5 Si3 ,セラミックス,金属間
化合物の微細強化物を加えたものも同様の効果がある。
In the present invention, in order to improve various characteristics, additional elements such as Si, Nb, Mn, Cr and V, and Ti are used.
B 2, Y 2 O 3, Ti 5 Si 3, ceramics, there is a similar effect plus a fine enhancer of the intermetallic compound.

【0012】[0012]

【実施例】TiとAlの粉末を、下記表1に示す4種類
の組成(No.1〜No.4)となるように混合し、こ
れらの混合体を圧粉成形したのちに、それぞれ加圧しな
がら1350℃で2時間保持し、反応焼結によって、図
3(写真)に一例を示すようなTi−Al系金属間化合
物からなる部材を得た。反応焼結(自己伝播高温合成
法)は、TiとAlの混合粉末等をその反応温度以上に
加熱することによって混合粉末の一部に反応を生じさ
せ、その時に発生する反応熱により次々と反応を伝播さ
せる方法である。図3の写真は、表1中のNo.3の組
織である。
EXAMPLE Ti and Al powders were mixed so as to have four kinds of compositions (No. 1 to No. 4) shown in Table 1 below, and the mixture was compacted and then added. The pressure was maintained for 2 hours at 1350 ° C., and reaction sintering was performed to obtain a member made of a Ti—Al-based intermetallic compound as an example shown in FIG. 3 (photograph). The reaction sintering (self-propagating high temperature synthesis method) causes a reaction of a part of the mixed powder by heating the mixed powder of Ti and Al or the like above the reaction temperature, and the reaction heat generated at that time causes the reaction to occur one after another. Is a method of propagating. The photograph of FIG. There are 3 organizations.

【0013】上記のように反応焼結を利用する製造方法
は、前述の複合組織が容易に得られるため効果が高い
が、他の方法、例えばTiAlとTi3 Alからなる金
属間化合物の粉末を通常の焼結やHIP等を用いた加圧
焼結によって製造することも可能である。
The manufacturing method utilizing reaction sintering as described above is highly effective because the above-mentioned composite structure is easily obtained, but other methods such as powder of intermetallic compound consisting of TiAl and Ti 3 Al are used. It is also possible to manufacture by normal sintering or pressure sintering using HIP or the like.

【0014】[0014]

【表1】 表1中の各実施例は、主としてγ相とこのγ相中に分散
したラメラ粒とにより構成される複合組織であって、図
3の写真中に縞模様となって表れているのがラメラ粒で
ある。γ相はこの写真中にラメラ相よりも黒く見えてい
る組織であり、平均粒径が20〜50μm程度の組織の
集合体であり、これらのγ粒が部材全体にわたってつな
がっている。γ相のAl量は48〜57原子%程度であ
る。
[Table 1] Each of the examples in Table 1 is a composite structure mainly composed of the γ phase and lamella grains dispersed in the γ phase, and the lamella is shown as a striped pattern in the photograph of FIG. It is a grain. The γ phase is a structure that appears blacker than the lamella phase in this photograph, is an aggregate of structures having an average particle size of about 20 to 50 μm, and these γ particles are connected throughout the entire member. The amount of Al in the γ phase is about 48 to 57 atomic%.

【0015】上記各例(No.1〜No.4)の組成か
らなる部材を角柱状に研削加工し、表1に示される2種
類の温度(室温と900℃)で曲げ試験を大気中で実施
することによって、曲げ強度を求めた。この曲げ試験は
図4に示されるような3点曲げ試験機で行った。また、
γ相とラメラ粒の硬さはマイクロビッカース硬さ計で1
00gの錘を用いて測定し、平均硬度を求めた。
A member having the composition of each of the above examples (No. 1 to No. 4) was ground into a prismatic shape, and a bending test was conducted in the atmosphere at two kinds of temperatures shown in Table 1 (room temperature and 900 ° C.). Bending strength was determined by carrying out. This bending test was performed with a three-point bending tester as shown in FIG. Also,
The hardness of γ phase and lamella grains is 1 with a micro Vickers hardness tester.
It measured using the weight of 00g, and calculated | required the average hardness.

【0016】図1は、表1中の各例(No.1〜No.
4)について、Al原子%と曲げ強度との関係をプロッ
トしたものである。図2は、上記各例について、Al原
子%と硬さ(ラメラおよびγ相の硬さ)との関係をプロ
ットしたものである。硬さの絶対値は測定条件によって
変化する場合もあるので、絶対値も重要であるが、むし
ろ硬さの比(ラメラ粒とγ相の硬さの比)がより重要で
ある。
FIG. 1 shows each example (No. 1 to No. 1) in Table 1.
4) is a plot of the relationship between Al atomic% and bending strength. FIG. 2 is a plot of the relationship between Al atomic% and hardness (hardness of lamella and γ phase) in each of the above examples. Since the absolute value of hardness may change depending on the measurement conditions, the absolute value is also important, but rather the ratio of hardness (ratio of hardness of lamella grains to hardness of γ phase) is more important.

【0017】本発明の金属間化合物は複合組織であるか
ら、互いに別組織であるラメラ粒とγ相との間の密着性
がよくなければならない。粒界の密着力が弱いと、割れ
は粒内に及ばずに粒界に沿って進行してゆく。
Since the intermetallic compound of the present invention has a complex structure, the adhesion between the lamella grains and the γ phase, which are separate structures, must be good. If the adhesion at the grain boundaries is weak, the cracks proceed along the grain boundaries without reaching the inside of the grains.

【0018】表1の各例について曲げ試験後の破面を観
察したところ、ほとんどがγ粒内あるいはγ粒同士の粒
界に沿って割れが進行しており、ラメラ粒を迂回して割
れが進行することから、本実施例のラメラ粒が高強度化
に大きな効果があることが判った。また、ラメラ粒内で
破壊したものもまれに観察されたが、その場合でも割れ
はラメラ粒内に進行し、ラメラ粒とγ粒の粒界の密着強
度がラメラ粒単独の強度を上回っていることが確認され
た。
Observation of the fracture surface after the bending test for each of the examples in Table 1 revealed that most of the cracks progressed within the γ grains or along the grain boundaries between the γ grains, and the cracks bypassed the lamella grains. From the progress, it was found that the lamella grains of this example had a great effect on increasing the strength. In addition, it was rarely observed that the fracture occurred in the lamella grains, but even in that case, the cracks progressed into the lamella grains and the adhesion strength at the grain boundary between the lamella grains and the γ grains exceeded the strength of the lamella grains alone. It was confirmed.

【0019】上記のようにラメラ粒とγ相の特に密着性
の高い粒界は、例えば図3の写真において右上に現れて
いるラメラ粒のように、粒径が小さくても粒界の距離が
長くかつ、ラメラ粒界において内側に湾状に凹むように
して食い込んだ形状をなしていることが強度向上に効果
的であることもわかった。
As described above, the grain boundary of the lamella grain and the γ phase having particularly high adhesion has a small grain boundary distance even if the grain size is small like the lamella grain shown in the upper right of the photograph of FIG. It was also found that it is effective to improve the strength that it is long and has a shape that bites into the lamella grain boundary so as to be recessed inward.

【0020】図1中に実線で示すように、本実施例の場
合、Al原子%が48%から52%に増加すると、室温
での強度が大幅に上昇するものが得られるようになっ
た。また900℃の高温では、同図に破線で示すように
室温よりも強度が低下するが、その強度変化の傾向はお
おむね室温の場合と類似していることが判った。すなわ
ち本実施例の組織は高温においても高強度化が図れてい
る。これに対し従来の組織は、図1中に1点鎖線で示す
ように、Al原子%が増加するにつれて強度が漸減する
傾向となる。
As shown by the solid line in FIG. 1, in the case of this example, when the Al atomic% was increased from 48% to 52%, the strength at room temperature was significantly increased. Further, at a high temperature of 900 ° C., the strength was lower than that at room temperature as indicated by the broken line in the figure, but it was found that the tendency of the strength change was generally similar to that at room temperature. That is, the structure of the present example is intended to have high strength even at high temperatures. On the other hand, in the conventional structure, as shown by the alternate long and short dash line in FIG. 1, the strength tends to gradually decrease as the Al atom% increases.

【0021】図2に示されるように、Al原子%が48
%から52%の範囲でラメラの硬度が283HV から3
74HV に上昇すると、その範囲では、図1に示される
ように強度も上昇する。つまりラメラ硬さと曲げ強度と
の間に相関関係があり、硬度の高いラメラ粒は強度向上
に関与している。Al原子%が54%の時には、52%
の場合に比べて曲げ強度が低下するが、これは、ラメラ
硬さの低下によるよりもむしろラメラの体積%が29%
から8%(表1)に激減したことによると推測される。
As shown in FIG. 2, Al atomic% is 48
% To 52% lamella hardness from 283 HV to 3
Increasing to 74 HV also increases the intensity in that range as shown in FIG. That is, there is a correlation between the lamella hardness and the bending strength, and the lamella grains with high hardness are involved in improving the strength. 52% when Al atomic% is 54%
The bending strength is lower than that in the case of No. 1, but this is because the volume% of the lamella is 29% rather than the decrease in the lamella hardness.
It is speculated that this was due to a sharp decrease from 8% to 8% (Table 1).

【0022】つまり、ラメラ体積%も重要で、ラメラ体
積%が少な過ぎると強度向上の効果が発揮できなくなる
と推測される。ただしこの場合も、ラメラ粒の硬さが高
いことによる強度向上効果は認められる。また、実施例
は表1の全てにわたって曲げ試験中の伸びも十分あり、
高強度と合わせて強靭性を有しており、脆さを克服する
ことができた。
That is, the lamella volume% is also important, and it is presumed that if the lamella volume% is too small, the effect of improving strength cannot be exhibited. However, also in this case, the strength improvement effect is recognized due to the high hardness of the lamella grains. In addition, the examples have sufficient elongation during the bending test throughout Table 1,
It has high strength and toughness, and was able to overcome brittleness.

【0023】表1と図1,2から判るように、ラメラ粒
とγ相の硬さの比(ラメラ硬さ/γ硬さ)が1.15よ
りも大きいNo.1〜No.4は、従来の組織に比べて
十分な強度が得られている。これらの実施例ではラメラ
粒の硬度の違う複合組織が得られたが、なぜ硬度が異な
るようになるのかその理由は明らかでない。ラメラ粒の
組成分析結果と硬度とは何の相関もないので、複合組織
であるがゆえに何らかの作用、例えば反応焼結時等にお
ける組織変化や熱膨張等の違いとか、粒間の密着性の違
い等によって、同一成分でも硬度の違いが生じたものと
考えられる。また、図1と図2に示されるように、Al
組成が50%を越えると、曲げ強度と硬さがさらに向上
している。
As can be seen from Table 1 and FIGS. 1 and 2, No. 1 in which the ratio of the hardness of the lamella grains to the γ phase (lamella hardness / γ hardness) is larger than 1.15. 1-No. In No. 4, a sufficient strength is obtained as compared with the conventional structure. In these examples, composite structures having different hardness of lamella grains were obtained, but the reason why the hardness becomes different is not clear. Since there is no correlation between the composition analysis results of lamella grains and hardness, some action due to the composite structure, such as difference in structure change or thermal expansion during reaction sintering, difference in adhesion between grains, etc. It is considered that, due to factors such as the above, differences in hardness occurred even with the same component. In addition, as shown in FIGS. 1 and 2, Al
If the composition exceeds 50%, the bending strength and hardness will be further improved.
is doing.

【0024】前記実施例において、Al原子%が52%
の時に、前述の硬さ比が1.4以上で、またラメラ体積
%が29%以上で強度がピークとなり、51%〜53原
子%の範囲で特に大きな効果が認められ、その範囲であ
れば、室温から900℃までの温度で35kgf/mm2
上の降伏強度が実現された。このような複合組織は、特
に高温弾性部材としてその効果が高い。また、Al組成
が50〜54原子%でラメラ体積%が8〜36体積%の
範囲のものが得られ、前述の硬さ比が1.3以上で特に
これらの効果が発揮される。
In the above embodiment, Al atomic% is 52%
At that time, when the hardness ratio is 1.4 or more and the lamella volume% is 29% or more, the strength has a peak, and a particularly large effect is recognized in the range of 51% to 53 atom%. A yield strength of 35 kgf / mm 2 or more was realized at temperatures from room temperature to 900 ° C. Such a composite structure is particularly effective as a high temperature elastic member. Further, a composition having an Al composition of 50 to 54 atomic% and a lamella volume% of 8 to 36 volume% is obtained, and particularly when the hardness ratio is 1.3 or more, these effects are exhibited.

【0025】ラメラ粒とγ相の粒径比(ラメラ粒径/γ
粒径)については、表1中のNo.1のように、7.5
と大きくても効果があり、逆にNo.4のように1より
小さい場合も、γの粒界に微細にラメラが分散すること
によって強度向上に効果が認められる。また、この粒径
比をコントロールして諸特性を改善することも可能であ
る。
Particle size ratio of lamella grains to γ phase (lamella grain size / γ
No. in Table 1 regarding the particle size). 1 like 7.5
Even if it is large, it is effective, and conversely No. Even when it is smaller than 1 as in 4, the effect of improving the strength is recognized because the lamella is finely dispersed in the grain boundary of γ. It is also possible to control the particle size ratio to improve various characteristics.

【0026】従来のTi−Al系金属間化合物からなる
部材のうち部材全体の組成がTi:Alの組成比でAl
が49〜55原子%の範囲にあるものは、主にγ単相か
らなる組織であって軽量かつ耐酸化性等に優れているに
もかかわらず、その脆さのために使用不可能とされてい
たが、本発明により上記の特質を生かしつつ高強度化と
強靭化が達成され、使用可能な部材となった。前記各実
施例の組織は、1000℃で使用した後にも同等の特性
を有しており使用中に分解することはない。
Among the conventional members made of Ti-Al intermetallic compounds, the composition of the entire member is Al in the composition ratio of Ti: Al.
In the range of 49 to 55 atomic%, it is considered to be unusable due to its brittleness, though it is a structure mainly composed of γ single phase and is lightweight and excellent in oxidation resistance. However, according to the present invention, high strength and toughness were achieved while making use of the above characteristics, and the member became usable. The structures of the above-mentioned respective examples have the same characteristics even after being used at 1000 ° C., and do not decompose during use.

【0027】特に上記の組成範囲において効果が大きい
が、本発明は主としてγ相とラメラ粒とにより構成され
る複合組織でかつ上記ラメラ粒とγ相との粒界が互いに
強固に密着しているTi−Al系金属間化合物であっ
て、上記複合組織中における上記ラメラ粒の硬さがこの
複合組織中における上記γ相よりも硬いTi−Al系金
属間化合物の全てに効果が発揮される。
Although the effect is particularly large in the above composition range, the present invention has a composite structure mainly composed of γ phase and lamella grains and the grain boundaries of the lamella grains and γ phase are firmly adhered to each other. It is a Ti-Al intermetallic compound, and the effect is exerted on all of the Ti-Al intermetallic compounds in which the hardness of the lamella grains in the composite structure is harder than the γ phase in the composite structure.

【0028】[0028]

【発明の効果】本発明によれば、複合組織中のTiとA
lの組成比がAlの原子%で50%を越えて54%であ
り、上記複合組織中に上記ラメラ粒が分散し、上記複合
組織中における上記ラメラ粒は単独でラメラ粒が存在す
る時とは硬さが異なり、上記複合組織中における上記ラ
メラ粒の硬さがこの複合組織中における上記γ相よりも
硬く、上記ラメラ粒とγ相の硬さの比が1.15よりも
大きく、かつ、この複合組織中の上記ラメラ粒とγ相と
の粒界の密着強度がラメラ粒単独の強度を上回っている
ことにより、優れた耐熱性,耐酸化性,耐磨耗性等の特
質を発揮できしかも高強度なTi−Al系金属間化合物
を得ることができる。
According to the present invention, Ti and A in the composite structure are
The composition ratio of 1 is more than 50% and 54% in atomic% of Al.
The lamella grains dispersed in the composite structure,
The above lamella grains in the tissue have lamella grains alone
The hardness is different from that when
The hardness of mellar grains is higher than that of the γ phase in this composite structure.
It is hard and the ratio of hardness of the lamella grains and the γ phase is more than 1.15.
Large and with the lamella grains and γ phase in the composite structure
The adhesion strength of the grain boundaries of the lamellae exceeds that of the lamella grains alone.
As a result, it is possible to obtain a Ti—Al-based intermetallic compound that can exhibit excellent characteristics such as heat resistance, oxidation resistance, and abrasion resistance and that has high strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】Ti−Al系金属間化合物のAlの原子%と曲
げ強度との関係を示す図。
FIG. 1 is a diagram showing the relationship between the atomic percentage of Al in a Ti—Al-based intermetallic compound and bending strength.

【図2】Ti−Al系金属間化合物のAlの原子%と硬
さとの関係を示す図。
FIG. 2 is a diagram showing the relationship between the atomic percentage of Al and hardness of a Ti—Al-based intermetallic compound.

【図3】本発明の一実施例を示す金属間化合物の金属組
織を400倍に拡大して示す顕微鏡写真。
FIG. 3 is a micrograph showing a metal structure of an intermetallic compound showing one example of the present invention at 400 times magnification.

【図4】曲げ試験を実施する装置の概略を示す図。FIG. 4 is a diagram showing an outline of an apparatus for performing a bending test.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 21/00 C22C 14/00 C22F 1/04 C22F 1/18 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) C22C 21/00 C22C 14/00 C22F 1/04 C22F 1/18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主としてγ相とラメラ粒とにより構成され
る複合組織でかつ上記ラメラ粒とγ相との粒界が互いに
焼結により強固に密着しているTi−Al系金属間化合
物であって、上記複合組織中のTiとAlの組成比がA
lの原子%で50%を越えて54%であり、上記複合組
織中に上記ラメラ粒が分散し、上記複合組織中における
上記ラメラ粒は単独でラメラ粒が存在する時とは硬さが
異なり、上記複合組織中における上記ラメラ粒の硬さが
この複合組織中における上記γ相よりも硬く、上記ラメ
ラ粒とγ相の硬さの比(ラメラ硬さ/γ硬さ)が1.1
5よりも大きく、かつ、この複合組織中の上記ラメラ粒
とγ相との粒界の密着強度がラメラ粒単独の強度を上回
っていることを特徴とするTi−Al系金属間化合物。
1. A Ti-Al-based intermetallic compound having a composite structure mainly composed of γ-phase and lamella grains, and the grain boundaries of the lamella grains and γ-phase are firmly adhered to each other by sintering. And the composition ratio of Ti and Al in the composite structure is A
The atomic percentage of 1 is more than 50% and 54%,
The lamella grains are dispersed in the weave, the lamella grains in the composite structure have a hardness different from that when the lamella grains are present alone, and the hardness of the lamella grains in the composite structure is in the composite structure. Is harder than the γ phase, and the hardness ratio of the lamella grains to the γ phase (lamella hardness / γ hardness) is 1.1.
A Ti-Al-based intermetallic compound having a adhesion strength of the grain boundary between the lamella grains and the γ phase in the composite structure is larger than that of the lamella grains alone.
【請求項2】上記複合組織中に含まれるラメラ粒の体積
%が8〜69%である請求項1記載のTi−Al系金属
間化合物。
2. The Ti—Al based intermetallic compound according to claim 1, wherein the lamella grains contained in the composite structure have a volume% of 8 to 69%.
JP32462992A 1992-11-11 1992-11-11 Ti-Al intermetallic compound Expired - Fee Related JP3382272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32462992A JP3382272B2 (en) 1992-11-11 1992-11-11 Ti-Al intermetallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32462992A JP3382272B2 (en) 1992-11-11 1992-11-11 Ti-Al intermetallic compound

Publications (2)

Publication Number Publication Date
JPH06145932A JPH06145932A (en) 1994-05-27
JP3382272B2 true JP3382272B2 (en) 2003-03-04

Family

ID=18167962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32462992A Expired - Fee Related JP3382272B2 (en) 1992-11-11 1992-11-11 Ti-Al intermetallic compound

Country Status (1)

Country Link
JP (1) JP3382272B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI458692B (en) * 2012-10-17 2014-11-01 Univ Nat Taipei Technology Composite packaging materials

Also Published As

Publication number Publication date
JPH06145932A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
KR100436327B1 (en) Sintered hard alloy
Zhu et al. Interfacial characteristics and mechanical properties of TiAl/Ti6Al4V laminate composite (LMC) fabricated by vacuum hot pressing
JPH0448857B2 (en)
JP5152770B1 (en) Method for producing tough cemented carbide
US3257178A (en) Coated metal article
Wang et al. Preparation and mechanical properties of TiCx–(NiCu) 3Al–CuNi2Ti–Ni hybrid composites by reactive pressureless sintering pre-alloyed Cu/Ti3AlC2 and Ni as precursor
JP2000044347A (en) Cbn sintered compact
Peng Fabrication and mechanical properties of microalloyed and ceramic particulate reinforced NiAl-based alloys
JP3382272B2 (en) Ti-Al intermetallic compound
JP2001303233A (en) Member for molten metal excellent in erosion resistance to molten metal and producing method thereof
JPH04114966A (en) Production of diamond-based sintered material having excellent wear resistance
JP3459138B2 (en) TiAl-based intermetallic compound joined body and method for producing the same
US7687023B1 (en) Titanium carbide alloy
Schneibel et al. Mo-Si-B alloy development
JP2004131769A (en) Hyperfine-grained cemented carbide
JPH07197180A (en) High strength and high hardness sintered hard alloy excellent in corrosion resistance
JP3382273B2 (en) Ti-Al intermetallic compound
JP3332615B2 (en) TiAl-based intermetallic compound-based alloy and method for producing the same
Mahesh et al. The study of microstructure and wear behaviour of titanium nitride reinforced aluminium composites
JP2004263251A (en) Group 7a element-containing cemented carbide
JP2004238660A (en) Chromium-containing cemented carbide
JP3382285B2 (en) Method for producing Ti-Al-based intermetallic compound
Yang et al. Study on the fabrication and heat treatment of the sheet material of in situ TiBw/Ti60 composites
US11376817B2 (en) Wear resistant articles and applications thereof
JP3063310B2 (en) Manufacturing method of tungsten carbide based cemented carbide with high strength and high hardness

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees