JP3417133B2 - Electronic beam drawing device - Google Patents

Electronic beam drawing device

Info

Publication number
JP3417133B2
JP3417133B2 JP08226795A JP8226795A JP3417133B2 JP 3417133 B2 JP3417133 B2 JP 3417133B2 JP 08226795 A JP08226795 A JP 08226795A JP 8226795 A JP8226795 A JP 8226795A JP 3417133 B2 JP3417133 B2 JP 3417133B2
Authority
JP
Japan
Prior art keywords
light
sample
lens
light receiving
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08226795A
Other languages
Japanese (ja)
Other versions
JPH08287862A (en
Inventor
秀寿 佐藤
広之 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP08226795A priority Critical patent/JP3417133B2/en
Publication of JPH08287862A publication Critical patent/JPH08287862A/en
Application granted granted Critical
Publication of JP3417133B2 publication Critical patent/JP3417133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料面の高さを光学的
に検出する高さ検出装置を備えた電子ビ−ム描画装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic beam drawing apparatus equipped with a height detecting device for optically detecting the height of a sample surface.

【0002】[0002]

【従来の技術】図1は電子ビーム描画装置の概略を示し
たものである。真空に保持された電子光学鏡筒1(以
下、カラムと略記)内の電子源2から電子ビーム3が放出
される。電子ビーム3は制御計算機4からの描画データに
基づき偏向制御回路5を介して、偏向器6により試料面9
内である図1のX,Y直交2方向に偏向制御される。この
ように制御された電子ビーム3は、真空試料室7でX,Y
方向に移動可能な試料ステージ8上に固定された試料面9
上で所望のパターンを描画すべく偏向される。偏向され
た電子ビーム3は図2に示す様に通常試料面の法線方向で
ある電子ビーム中心軸21に対し、最大θの開き角度を持
つ。このとき、偏向器によって設定されている試料面と
実際に試料のある面との間に、Z方向の高さ誤差Δhを
生じた場合、電子ビームが到達する試料位置はすなわち
描画位置は所望の位置からΔx=Δh・tanθだけずれて
しまい、描画の位置(倍率)誤差を生じる。例えば、開
き角θが5mrad、Δhが10μmのときΔxは0.05μmに
もなり、描画パターンの位置精度を著しく低下させる。
さらに、試料面の高さ位置に誤差が生じる場合、描画パ
ターンが回転したり、焦点位置がずれることによる描画
パターンのぼけなどを生じ、描画パターンの精度を劣化
させる。
2. Description of the Related Art FIG. 1 shows an outline of an electron beam drawing apparatus. An electron beam 3 is emitted from an electron source 2 in an electron optical barrel 1 (hereinafter abbreviated as a column) held in vacuum. The electron beam 3 is passed through the deflection control circuit 5 based on the drawing data from the control computer 4, and is deflected by the deflector 6 to the sample surface 9
The deflection is controlled in two directions, which are the X and Y orthogonal directions in FIG. The electron beam 3 controlled in this way is X, Y in the vacuum sample chamber 7.
Sample surface 9 fixed on a sample stage 8 movable in any direction
Biased above to draw the desired pattern. As shown in FIG. 2, the deflected electron beam 3 has an opening angle of maximum θ with respect to the electron beam central axis 21 which is usually the normal direction of the sample surface. At this time, when a height error Δh in the Z direction is generated between the sample surface set by the deflector and the surface on which the sample actually exists, the sample position reached by the electron beam, that is, the drawing position is desired. It deviates from the position by Δx = Δh · tan θ, resulting in a drawing position (magnification) error. For example, when the opening angle .theta. Is 5 mrad and .DELTA.h is 10 .mu.m, .DELTA.x is as large as 0.05 .mu.m, remarkably reducing the positional accuracy of the drawing pattern.
Further, when an error occurs in the height position of the sample surface, the drawing pattern is rotated, or the drawing pattern is blurred due to the shift of the focus position, which deteriorates the accuracy of the drawing pattern.

【0003】以上のように電子ビーム描画装置により高
精度な描画を行う際には、試料面9の高さ情報が必要で
ある。それゆえ、電子ビーム描画装置には試料面の高さ
検出器10を備えたものが多い。
As described above, when performing highly accurate drawing by the electron beam drawing apparatus, height information of the sample surface 9 is necessary. Therefore, many electron beam drawing apparatuses are provided with the height detector 10 for the sample surface.

【0004】この高さ検出器10により検出された値を用
いて電子ビーム3が試料面9に到達する位置と所望の電子
ビーム光学特性を合致させるためには以下の方法により
行う。通常の電子ビーム描画装置では、試料ステージ8
がZ方向には移動しないため、図1内に示すように高低
(H面、L面)2つ高さの基準面11をステージ上に設
け、この基準面11を基準として高さ検出器10のゲインと
オフセットを高さ信号処理部12、制御計算機4を介して
校正している。また、この基準面11内には電子ビームが
その位置を最も精度よく検出できる基準マーク(図示せ
ず)を備えている。そして、この2つの基準面11の段差
内の試料面9に対して基準面との内挿補間により高さ検
出を行い、さらに基準マーク上に電子ビーム3を走査
し、その反射電子信号を反射電子検出器で求め電子ビー
ム位置を検出する。そして、これら検出された高さ、電
子ビーム位置の情報から、電子ビームの焦点、偏向感
度、倍率などの電子光学的特性パラメータを決定する。
The following method is used to match the position where the electron beam 3 reaches the sample surface 9 with the desired electron beam optical characteristic by using the value detected by the height detector 10. In the usual electron beam writer, the sample stage 8
Does not move in the Z direction, a reference plane 11 having two heights (H plane and L plane) is provided on the stage as shown in FIG. 1, and the height detector 10 is based on this reference plane 11. The gain and offset of are calibrated via the height signal processing unit 12 and the control computer 4. Further, the reference plane 11 is provided with a reference mark (not shown) capable of detecting the position of the electron beam most accurately. Then, the height of the sample surface 9 in the step between the two reference surfaces 11 is detected by interpolation with the reference surface, and the electron beam 3 is scanned on the reference mark to reflect the reflected electron signal. The position of the electron beam is detected by the electron detector. Then, the electron optical characteristic parameters such as the focus of the electron beam, the deflection sensitivity, and the magnification are determined from the information on the detected height and electron beam position.

【0005】高さ検出器10に求められる機能は、非接
触、高速、ミクロンオーダで試料面9の高さを検出でき
ることである。このため、高さ検出器10には光学的に検
出するものが多い。
The function required for the height detector 10 is that it can detect the height of the sample surface 9 in a non-contact, high-speed, micron order. Therefore, many of the height detectors 10 optically detect.

【0006】従来の高さ検出装置の例として、特公平2-
6216で述べられている高さ検出器の構造を図3に示す。
この検出器は、レーザ光源Lから放射されたレーザ光を
プリズムP1、P2及びP3を経てレンズL1を通して斜め
方向から入射角αで試料面9上に照射し、その反射光を
レンズL2によって、検出器D上に結像させる。そし
て、この検出器Dの出力を演算処理することによって、
試料表面の高さ位置を測定している。
As an example of a conventional height detecting device, Japanese Patent Publication No. 2-
The structure of the height detector described in 6216 is shown in FIG.
This detector irradiates laser light emitted from a laser light source L onto a sample surface 9 from a diagonal direction at an incident angle α through a lens L1 via prisms P1, P2 and P3, and the reflected light is detected by a lens L2. Form an image on the device D. Then, by processing the output of the detector D,
The height position of the sample surface is measured.

【0007】また、図4に示す従来の高さ検出装置のも
う一つの例(特公平3-70164)では、試料面の斜め方向
から光を照射し、その反射光をレンズによって、検出器
上に結像させるという上記特公平2-6216と同じ方法であ
るが、光照射部LI及び受光部LDはそれぞれ一体的に形成
し、かつ荷電ビーム描画装置の真空試料室7に取付けら
れ、容易に挿脱可能に構成している
Further, in another example of the conventional height detecting device (Japanese Patent Publication No. 3-70164) shown in FIG. 4, light is irradiated from an oblique direction of the sample surface, and the reflected light is projected onto the detector by a lens. This is the same method as in Japanese Patent Publication No. 2-6216 described above, except that the light irradiation unit LI and the light receiving unit LD are integrally formed, and are attached to the vacuum sample chamber 7 of the charged beam drawing apparatus, so that they can be easily formed. It is configured to be removable

【0008】[0008]

【発明が解決しようとする課題】上記、従来技術には以
下に述べるような問題がある。
The above-mentioned conventional techniques have the following problems.

【0009】1)図4で示した高さ検出器では、カラムの
径が大きくなるに従って光照射部LI及び受光部LDそれぞ
れの試料に最も近傍のレンズ(101、102)と試料面9間
の距離が長くなり、レンズの焦点距離が長くなるので光
学系全体が大きくなり、微小な光学系の変動(ドリフ
ト)であっても高さ検出器では許容以上の変動となり性
能を劣化させる要因となる。また、試料面での高さ検出
光の位置調整も難しくなる。荷電ビーム描画装置では精
度を保ちつつ偏向範囲を広げた場合、カラム1の外径が
大きくなる。従って、この問題は描画装置の性能向上と
ともに問題となる。 2)光源にレーザ光を使う図3では、レーザ光が単波長あ
るいは狭い帯域の光であるため、レジスト、酸化膜など
可干渉性のある試料面では光干渉を生じる。特にレジス
ト、酸化膜が特定の膜厚になると反射光量が極端に減少
し大きな高さ検出誤差を生じるという問題がある。
1) In the height detector shown in FIG. 4, as the column diameter increases, the distance between the lens (101, 102) closest to the sample of each of the light irradiation part LI and the light receiving part LD and the sample surface 9 is increased. Since the distance becomes long and the focal length of the lens becomes long, the entire optical system becomes large, and even a small optical system fluctuation (drift) will cause fluctuations beyond the allowable range in the height detector, which will cause deterioration of performance. . Further, it becomes difficult to adjust the position of the height detection light on the sample surface. In the charged beam drawing apparatus, when the deflection range is widened while maintaining accuracy, the outer diameter of the column 1 becomes large. Therefore, this problem becomes a problem as the performance of the drawing apparatus is improved. 2) Using laser light as the light source In Fig. 3, since the laser light has a single wavelength or a narrow band of light, optical interference occurs on the sample surface having coherence such as resist and oxide film. In particular, there is a problem that the amount of reflected light is extremely reduced when the resist and the oxide film have a specific thickness, and a large height detection error occurs.

【0010】3)上記2)の課題を回避するために光源に
白色光とスリットを使用し、スリットの像を試料面に結
像した場合でも、レンズが試料面に近い場合、通常使用
されている円形レンズではカラムと試料の間の狭い空間
に配置するため、小さな口径の円形レンズしか使用でき
ないという制約を受ける。この結果、試料面に達する光
量が減少し、高さ検出の精度を劣化させる要因となる。
3) In order to avoid the above problem 2), white light and a slit are used as a light source, and even when the image of the slit is formed on the sample surface, it is usually used when the lens is close to the sample surface. Since the circular lens is placed in a narrow space between the column and the sample, it is limited to use a small diameter circular lens. As a result, the amount of light reaching the sample surface is reduced, which becomes a factor of deteriorating the accuracy of height detection.

【0011】4)通常の電子ビーム描画装置の試料であ
るウエーハやレチクル上にはレジストが均一な厚さで塗
布されている。このレジストは可視光に対し反射率が低
い。このため、高さ検出器でこのレジスト表面を検出す
る場合、検出光の試料面への入射角を80°程度にし、反
射率を高めることが得策である。しかし、入射角が大き
くなるに従い試料への入射光が試料面の近くを通ること
になり、大きな口径のレンズの配置が困難になる。
4) A resist having a uniform thickness is applied on a wafer or reticle, which is a sample of an ordinary electron beam drawing apparatus. This resist has a low reflectance for visible light. Therefore, when detecting the resist surface with the height detector, it is a good idea to increase the reflectance by setting the incident angle of the detection light to the sample surface to about 80 °. However, as the incident angle increases, the incident light on the sample passes near the sample surface, which makes it difficult to arrange a lens having a large aperture.

【0012】本発明の目的は、高精度でコンパクトな高
さ検出器によって描画の高精度化を図ることができる電
子ビーム描画装置を提供することにある。
It is an object of the present invention to provide an electron beam drawing apparatus capable of improving drawing accuracy with a highly accurate and compact height detector.

【0013】[0013]

【課題を解決するための手段】本発明では以下の手段に
より、上記課題を解決する。
The present invention solves the above problems by the following means.

【0014】1)本発明では照射光学系及び受光光学系
それぞれの試料に最も近接した2つの球面平凸レンズの
外形を通常の円形ではなく1つ以上の平面をもつ形状と
し、かつ上記1つ以上の平面が光軸に平行ないしは平行
から角度1度以内に配置された形状とする。光軸を挟む
2つの平行な平面で切り出した形状とする。
1) In the present invention, the outer shapes of the two spherical plano-convex lenses closest to the samples of the irradiation optical system and the light receiving optical system are not regular circles but have a shape having one or more planes, and one or more of the above. The plane is parallel to the optical axis or is arranged within an angle of 1 degree from the parallel. Sandwich the optical axis
The shape is cut out from two parallel planes.

【0015】2)また、上記レンズの平面と試料面のな
す角を光軸の試料に対する入射角に等しくする。
2) The angle between the plane of the lens and the sample surface is made equal to the incident angle of the optical axis with respect to the sample.

【0016】3)さらに、上記2つのレンズを試料室ない
しは、カラムの下に上記平面のうち少なくとも1つ以上
を基準として取付ける。
3) Further, the two lenses are mounted below the sample chamber or column with at least one of the planes as a reference.

【0017】4)上記1)から3)で述べた照射光学系及
び受光光学系それぞれで試料に最も近接した2つの球面
平凸レンズに導電性処理を施す。
4) Conductive treatment is applied to the two spherical plano-convex lenses closest to the sample in each of the irradiation optical system and the light receiving optical system described in 1) to 3) above.

【0018】[0018]

【作用】本発明によれば、スリットよって形成された光
の像に合わせるようにレンズを形成したため入射する光
の光量の増加が図られた。特に球面平凸レンズを配置す
ることにより受光素子上での受光光量が増加し、高さ検
出信号のS/Nの改善がされる。この結果高さ検出器の性
能が向上し、電子ビーム描画装置の精度向上が図れる。
According to the present invention, since the lens is formed so as to match the image of the light formed by the slit, the amount of incident light is increased. In particular, by disposing the spherical plano-convex lens, the amount of received light on the light receiving element is increased, and the S / N of the height detection signal is improved. As a result, the performance of the height detector is improved, and the accuracy of the electron beam drawing apparatus can be improved.

【0019】さらに、複雑な構造でスペースの制約があ
る電子ビーム描画装置の試料室あるいはカラムの下に、
効率よく開口面積の大きな球面凸レンズを容易に配置で
きる。
Further, under the sample chamber or column of the electron beam drawing apparatus having a complicated structure and space limitation,
A spherical convex lens having a large opening area can be efficiently and easily arranged.

【0020】また、この形状の導電性処理を施すことに
より、電子ビ−ムによる反射電子、反射イオン、2次電
子などのレンズへの付着に起因したチャ−ジアップを防
止できる。
Further, by applying the conductive treatment of this shape, it is possible to prevent charge-up caused by adhesion of reflected electrons, reflected ions, secondary electrons, etc. to the lens by the electron beam.

【0021】[0021]

【実施例】本発明の高さ検出装置の実施例を図を用いて
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the height detecting device of the present invention will be described with reference to the drawings.

【0022】図5、図6は本発明の高さ検出器の一実施例
を説明するものである。図5は、本実施例の高さ検出器
の光学系の光路図を示している。図5(1)はZ方向から
の射影図であり、図5(2)側面図、すなわち試料面がX
Y平面にあるとしたときのz方向を含む側面からの射影
図である。図5中一点鎖線は光軸を示し、点線はスリッ
ト中心から発した光線を示す。図6は、図5に示した本発
明の高さ検出器を電子ビーム描画装置に適応した場合の
装置内での構成を示している。
FIGS. 5 and 6 illustrate an embodiment of the height detector of the present invention. FIG. 5 shows an optical path diagram of the optical system of the height detector of this embodiment. FIG. 5 (1) is a projection view from the Z direction, and FIG. 5 (2) is a side view, that is, the sample surface is X.
FIG. 6 is a perspective view from the side including the z direction when it is on the Y plane. In FIG. 5, the alternate long and short dash line indicates the optical axis, and the dotted line indicates the light beam emitted from the slit center. FIG. 6 shows a configuration in the apparatus when the height detector of the present invention shown in FIG. 5 is applied to an electron beam drawing apparatus.

【0023】まず、図5により、光学系の概要を説明す
る。光源51にはハロゲンランプを用い、光源51からでた
白色光をコンデンサレンズ52でスリット53に照射する。
スリットから出射した光は、対物レンズ54を通り、試料
面9に入射角θで斜めの方向から結像する。試料上で反
射した光は、集光レンズ55で集光され受光素子56上に結
像する。いま、図5(1)に示す様に試料面がΔhだけz
方向に変化したとき、受光素子56上でΔdだけ変化した
とする。このとき、集光レンズ55による光学系
First, the outline of the optical system will be described with reference to FIG. A halogen lamp is used as the light source 51, and white light emitted from the light source 51 is applied to the slit 53 by the condenser lens 52.
The light emitted from the slit passes through the objective lens 54 and forms an image on the sample surface 9 at an incident angle θ from an oblique direction. The light reflected on the sample is condensed by the condenser lens 55 and forms an image on the light receiving element 56. Now, as shown in Fig. 5 (1), the sample surface is z by Δh.
It is assumed that the change in the direction occurs by Δd on the light receiving element 56. At this time, the optical system by the condenser lens 55

【0024】倍率がmの場合、ΔhとΔdにはWhen the magnification is m, Δh and Δd are

【数1】の関係があることが知られている。It is known that there is a relationship of [Equation 1].

【0025】(数1) Δd = 2Δhsinθ×m つまり、ΔhはΔdに比例するので、試料高さ変化は受
光素子上の光点位置変化となる。そこで、受光素子56を
半導体位置検出素子(PSD)として光点位置を電気信
号に変換し、信号処理部で適当な信号処理を施すと、試
料の高さを検出できる。
(Equation 1) Δd = 2Δhsinθ × m That is, since Δh is proportional to Δd, the sample height change is a change of the light spot position on the light receiving element. Therefore, the height of the sample can be detected by converting the light spot position into an electric signal by using the light receiving element 56 as a semiconductor position detecting element (PSD) and performing appropriate signal processing in the signal processing section.

【0026】次に、電子ビーム描画装置に本発明の高さ
検出装置を適応したときの構成を図6に示す。100ワット
のハロゲンランプ光源(図示せず)から発せられた光は
ファイバ61により電子ビーム描画装置試料室7に取付け
られた照射部ホルダ62へ挿入される。ファイバ61端面か
ら出た光は焦点距離30mmのコンデンサレンズ63へ入
る。コンデンサレンズを出た光は幅200μm×3mmの矩
形スリット53へ入射する。このとき、矩形スリット53の
長辺は図の紙面に垂直でかつ試料面9と平行になってい
る。スリット53からでた光はミラー64で反射し、スリッ
ト53から約160mm離れた焦点距離80mmの球面凸レン
ズ54に入射する。この球面凸レンズ54が対物レンズであ
る。対物レンズ54を出た光は、160mm離れた試料面9上
に入射角80°でスリット53の像を結像し、反射する。反
射した光は120mm離れた焦点距離80mmの集光レンズ5
5(球面凸レンズ)で集光され、ミラー64を経てPSD6
5上に結像する。集光レンズ55とPSD65間は240mmあ
り、本実施例の受光部の光学系では、受光光学系の倍率
を2倍としたため、試料面9の高さ変化が約3.9倍になっ
て受光位置変化となる。
Next, FIG. 6 shows the configuration when the height detecting device of the present invention is applied to an electron beam drawing device. Light emitted from a 100-watt halogen lamp light source (not shown) is inserted into an irradiation unit holder 62 attached to a sample chamber 7 of an electron beam drawing apparatus by a fiber 61. The light emitted from the end face of the fiber 61 enters a condenser lens 63 having a focal length of 30 mm. The light emitted from the condenser lens enters a rectangular slit 53 having a width of 200 μm × 3 mm. At this time, the long side of the rectangular slit 53 is perpendicular to the paper surface of the drawing and parallel to the sample surface 9. The light emitted from the slit 53 is reflected by the mirror 64 and is incident on the spherical convex lens 54 having a focal length of 80 mm which is separated from the slit 53 by about 160 mm. This spherical convex lens 54 is an objective lens. The light emitted from the objective lens 54 forms an image of the slit 53 on the sample surface 9 at a distance of 160 mm at an incident angle of 80 ° and reflects it. The reflected light is a focusing lens 5 with a focal length of 80 mm 120 mm apart.
It is condensed by 5 (spherical convex lens), passes through the mirror 64 and PSD6
Image on 5. The distance between the condenser lens 55 and the PSD 65 is 240 mm, and in the optical system of the light receiving section of the present embodiment, the magnification of the light receiving optical system is doubled, so that the height change of the sample surface 9 becomes about 3.9 times and the light receiving position changes. Becomes

【0027】本実施例では、入射角が80度と非常に大き
い。このため、試料面に最も近接する2つのレンズ(対
物レンズ54、集光レンズ55)の中心(すなわち光軸)と
試料面9のZ方向の距離が対物レンズ54で約27.8mm、
集光レンズ55で20.8mmである。すなわち、球面凸レン
ズの外形が円形の場合、設置できるレンズの直径はこの
距離以下である。さらに、ステージ8上には基準マーク1
1やxy方向の位置基準である干渉測長計用ミラーなど
がウエーハ面よりも高く設置されている。加えて、対
物、集光レンズ自身のホルダを考慮すると、レンズの外
径を15mmから20mm程度にしかできない。
In this embodiment, the incident angle is as large as 80 degrees. Therefore, the distance in the Z direction between the center (that is, the optical axis) of the two lenses (the objective lens 54 and the condenser lens 55) closest to the sample surface and the sample surface 9 is about 27.8 mm in the objective lens 54,
It is 20.8 mm with the condenser lens 55. That is, when the spherical convex lens has a circular outer shape, the diameter of the lens that can be installed is not more than this distance. In addition, the reference mark 1 on stage 8
The mirrors for interferometers, which are the position reference in the 1 and xy directions, are installed higher than the wafer surface. In addition, considering the holder of the objective and the condenser lens itself, the outer diameter of the lens can only be about 15 mm to 20 mm.

【0028】そこで、本発明では試料面9に近い対物レ
ンズ54と集光レンズ55を通常の球面凸レンズのような円
形外形ではなく、図7で詳細を示す様なレンズの光軸方
向70に平行な2つの平面をもつレンズ71で構成した。さ
らに図7のレンズは光軸から等距離に2つの平面(72、7
3)で切り出した形状である。図6の実施例の高さ検出器
では外径40mmのレンズを平行平面間距離15mmで切り
出した形状とした。
Therefore, in the present invention, the objective lens 54 and the condenser lens 55 close to the sample surface 9 are not in a circular outer shape like an ordinary spherical convex lens, but are parallel to the optical axis direction 70 of the lens as shown in detail in FIG. The lens 71 has two flat surfaces. Furthermore, the lens of FIG. 7 has two planes (72, 7) equidistant from the optical axis.
The shape cut out in 3). In the height detector of the embodiment shown in FIG. 6, a lens having an outer diameter of 40 mm is cut out at a distance between parallel planes of 15 mm.

【0029】このように光軸方向に平行な2つの平面を
もつレンズ形状とすることで直径15mmの球形凸レンズを
使用する場合と比較して、レンズ開口の面積が約3.3倍
になった。 さらに、本発明では対物レンズに迷光防
止、及び試料面上でのスリット像のコントラスト向上を
目的として開口絞り57設けた。この開口絞り57はスリッ
トからの出た光を絞るため、10mm×30mmの矩形開口を持
つ。絞りを設けたことにより、開口面積は減少するがこ
の矩形絞り57による開口面積を直径15mm円形絞りで比較
しても、2倍近く大きい。
By thus forming the lens shape having two planes parallel to the optical axis direction, the area of the lens aperture is about 3.3 times as large as that in the case of using a spherical convex lens having a diameter of 15 mm. Further, in the present invention, the objective lens is provided with the aperture stop 57 for the purpose of preventing stray light and improving the contrast of the slit image on the sample surface. The aperture stop 57 has a rectangular aperture of 10 mm × 30 mm in order to stop the light emitted from the slit. Although the aperture area is reduced by providing the diaphragm, the aperture area of the rectangular diaphragm 57 is almost twice as large as that of the circular diaphragm having a diameter of 15 mm.

【0030】このように図7で示したレンズを使用する
ことにより、試料面9で反射してPSDへ入射する光量
が増加し、光電変換され位置信号となる電流量が増加す
るため信号処理回路でのS/Nが2倍に改善され、検出精
度が向上した。具体的には、反射率10%程度の試料面で
も、0.1μm程度の高さ分解能を得ることができた。本
実施例では図7の切り出したレンズ71の2つの平面のう
ち一方を基準としてホルダ81に接着固定した(図8)。
このホルダ81は6面体のアルミ板で構成され図8に示す
ようにレンズを接着する面の反対側の面は光軸方向に1
0度の傾斜をもつ。そして、レンズの外周部分にはレン
ズ落下防止用及びチャージアップ防止用のための金属の
薄板82を巻付けホルダ81即ち電気的グランドレベルに接
続固定した。さらにホルダ81の10度の傾斜側の面を試
料面に平行な試料室の壁にネジ止めめで取付けた。この
例ではX,Y方向の調整をやりやすくするために押し引
きネジを用いた。この取付け方法により、レンズ光軸が
試料面9に対する入射角が所望の80度になる。従来の円
形外形の球面レンズを使用して外周部分にホルダを設け
る必要があったのに比べ、本発明が、少ない部品でかつ
少ないスペースで取付けられることは明白である。
As described above, by using the lens shown in FIG. 7, the amount of light reflected on the sample surface 9 and incident on the PSD increases, and the amount of current photoelectrically converted into a position signal increases. The S / N at was improved twice and the detection accuracy was improved. Specifically, a height resolution of about 0.1 μm could be obtained even on a sample surface having a reflectance of about 10%. In this embodiment, one of the two planes of the cut-out lens 71 in FIG. 7 is used as a reference and is fixedly bonded to the holder 81 (FIG. 8).
The holder 81 is composed of a hexahedral aluminum plate, and the surface opposite to the surface to which the lens is bonded is 1 in the optical axis direction as shown in FIG.
It has a slope of 0 degrees. Then, a metal thin plate 82 for preventing lens drop and charge-up prevention was connected and fixed to the winding holder 81, that is, an electrical ground level, on the outer peripheral portion of the lens. Further, the surface of the holder 81 on the 10 ° inclined side was attached to the wall of the sample chamber parallel to the sample surface with screws. In this example, push-pull screws are used to facilitate adjustment in the X and Y directions. By this mounting method, the incident angle of the lens optical axis with respect to the sample surface 9 becomes a desired 80 degrees. It is obvious that the present invention can be mounted with a small number of parts and a small space, as compared with the case where the conventional spherical lens having a circular outer shape is used to provide the holder on the outer peripheral portion.

【0031】また、レンズの材料はBK7レンズ用ガラ
ス材料であり、導電性はない。図6で示した試料面9に
最も近い対物レンズ54並びに集光レンズ55には、試料面
からの反射電子や2次電子が直接当たる。そこで、レン
ズ表面に導電性膜をコーティングし、落下防止用の金属
薄板から導通を取り、電子ビーム描画装置のグランド電
位とした。この結果チャージアップにより電子光学系の
特性を悪化させる現象がほとんど生じることがなかっ
た。
The material of the lens is a glass material for BK7 lens and has no conductivity. Reflected electrons and secondary electrons from the sample surface directly strike the objective lens 54 and the condenser lens 55, which are closest to the sample surface 9 shown in FIG. Therefore, a conductive film is coated on the lens surface, conduction is established from a metal thin plate for preventing fall, and this is set to the ground potential of the electron beam drawing apparatus. As a result, the phenomenon of deteriorating the characteristics of the electron optical system due to charge-up hardly occurred.

【0032】[0032]

【発明の効果】以上述べた様に本発明によれば、試料面
の高さ検出器において受光素子上での受光光量を増加さ
せ高さ検出信号のS/Nを改善する。さらに、複雑な構造
でスペースの制約がある荷電ビーム描画装置の試料室あ
るいはカラムの下に、効率よく開口面積の大きな球面凸
レンズを容易に配置できる。
As described above, according to the present invention, in the height detector of the sample surface, the amount of light received on the light receiving element is increased to improve the S / N of the height detection signal. Furthermore, a spherical convex lens having a large aperture area can be efficiently and easily arranged under the sample chamber or column of the charged particle beam drawing apparatus having a complicated structure and limited space.

【0033】この結果、コンパクトで高精度な高さ検出
器を搭載した電子ビーム描画装置を提供できる。
As a result, it is possible to provide a compact electron beam drawing apparatus equipped with a highly accurate height detector.

【0034】[0034]

【図面の簡単な説明】[Brief description of drawings]

【図1】電子ビ−ム描画装置の概略を示した図。FIG. 1 is a diagram showing an outline of an electronic beam drawing apparatus.

【図2】電子ビ−ム開き角と高さ誤差の関係を説明する
図。
FIG. 2 is a diagram for explaining a relationship between an electronic beam opening angle and a height error.

【図3】従来の電子ビ−ム描画装置用試料面高さ検出器
の例(その1)を示す図。
FIG. 3 is a view showing an example (No. 1) of a conventional sample surface height detector for an electron beam drawing apparatus.

【図4】従来の電子ビ−ム描画装置用試料面高さ検出器
の例(その2)を示す図。
FIG. 4 is a diagram showing an example (No. 2) of a conventional sample surface height detector for an electron beam drawing apparatus.

【図5】本発明の高さ検出器の光学系概略を示した図。FIG. 5 is a diagram showing an outline of an optical system of a height detector of the present invention.

【図6】本発明の電子ビ−ム描画装置用高さ検出器の例
を説明する図。
FIG. 6 is a diagram illustrating an example of a height detector for an electronic beam drawing apparatus according to the present invention.

【図7】本発明の高さ検出器用球面凸レンズの外形を説
明する図。
FIG. 7 is a diagram illustrating the outer shape of a spherical convex lens for a height detector of the present invention.

【図8】球面凸レンズの取付け方法を説明する図。FIG. 8 is a diagram illustrating a method of attaching a spherical convex lens.

【符号の説明】[Explanation of symbols]

1…電子光学系鏡筒(カラム)、2…電子源、3…電子
ビ−ム、6…偏向器、7…試料室、8…試料ステ−ジ、
9…試料面、10…高さ検出器、12…高さ信号処理
部、21…電子ビ−ム中心軸、51…ハロゲンランプ、
52…コンデンサレンズ、53…スリット、54…対物
レンズ、55…集光レンズ、56…受光素子、57…絞
り、61…ファイバ、64…ミラ−、65…PSD、7
1…球面凸レンズ、72、73…切断された平面、81
…レンズホルダ、82…金属薄板
DESCRIPTION OF SYMBOLS 1 ... Electro-optical system lens barrel (column), 2 ... Electron source, 3 ... Electron beam, 6 ... Deflector, 7 ... Sample chamber, 8 ... Sample stage,
9 ... Sample surface, 10 ... Height detector, 12 ... Height signal processing unit, 21 ... Electron beam central axis, 51 ... Halogen lamp,
52 ... Condenser lens, 53 ... Slit, 54 ... Objective lens, 55 ... Condensing lens, 56 ... Light receiving element, 57 ... Aperture, 61 ... Fiber, 64 ... Mirror, 65 ... PSD, 7
1 ... Spherical convex lens, 72, 73 ... Cut plane, 81
... Lens holder, 82 ... Metal thin plate

フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 21/027 H01L 21/30 541Z (56)参考文献 特開 平7−134964(JP,A) 特開 平4−203947(JP,A) 特開 昭61−34936(JP,A) 特開 昭58−119642(JP,A) 特開 昭60−53021(JP,A) 特開 昭60−95845(JP,A) 特開 昭61−140803(JP,A) 特開 昭52−103965(JP,A) 特開 平6−67608(JP,A) 特開 平6−67006(JP,A) 特開 平5−290796(JP,A) 特開 平5−231863(JP,A) 実開 昭60−107813(JP,U) 特表 平8−501635(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01J 37/305 G03F 7/20 504 G03F 7/20 521 G21K 5/04 H01J 37/21 H01L 21/027 Continuation of front page (51) Int.Cl. 7 identification code FI H01L 21/027 H01L 21/30 541Z (56) Reference JP-A-7-134964 (JP, A) JP-A-4-203947 (JP, A ) JP-A 61-34936 (JP, A) JP-A 58-119642 (JP, A) JP-A 60-53021 (JP, A) JP-A 60-95845 (JP, A) JP-A 61- 140803 (JP, A) JP 52-103965 (JP, A) JP 6-67608 (JP, A) JP 6-67006 (JP, A) JP 5-290796 (JP, A) JP-A-5-231863 (JP, A) Actual development Sho-60-107813 (JP, U) Special table HEI 8-501635 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01J 37/305 G03F 7/20 504 G03F 7/20 521 G21K 5/04 H01J 37/21 H01L 21/027

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 白色光源 と、前記白色光源から出た光を像
として光可干渉性の試料面を有する試料上に結像させる
照射側光学系と、試料からの反射光を集光し受光素子面
上に結像する受光側光学系と、受光位置の変化を知るた
めの受光素子と、前記受光面上の結像位置の変化を検出
するための検出部を具備した電子ビ−ム描画装置におい
て、光照射光学系および光受光光学系それぞれに備えら
れた球面平凸レンズを有する試料高さ検出装置を備えた
ことを特徴とする電子ビ−ム描画装置。
1. A white light source , an irradiation side optical system that forms an image of light emitted from the white light source on a sample having a light-coherent sample surface, and collects and receives reflected light from the sample. a light receiving side optical system for focusing on the element surface, and a light receiving element for knowing the change in the light receiving position, electron beams equipped with a detector for detecting a change in the imaging position on the light receiving surface - beam drawing An apparatus for writing an electron beam, comprising a sample height detecting device having a spherical plano-convex lens provided in each of a light irradiation optical system and a light receiving optical system.
【請求項2】 白色光源 と、前記光源から出た光を光可干
渉性の試料面を有する試料に斜め方向からレンズにより
結像する照射側光学系あるいは前記光源から出た光が照
射されるスリットとスリットの像を前記試料に斜め方向
から球面平凸レンズにより結像する照射側光学系と、
記試料からの反射光を球面平凸レンズにより集光し受光
素子面上に結像する受光側光学系と、受光位置の変化を
知るための受光素子と、受光素子の受光位置変化を検出
するための検出部を具備した試料の高さを検出する高さ
検出装置を備えた電子ビ−ム描画装置において、前記試料高さ検出装置は、 光照射側および光受光側の光
学系それぞれの試料に最も近接する球面平凸レンズが少
なくとも1つ以上の平面を持つレンズで構成され、前記
1つ以上の平面がレンズ光軸にほぼ平行に配置されてい
ることを特徴とする電子ビ−ム描画装置。
2. A white light source, interference light friendly light emitted from the light source
An optical system on the irradiation side that forms an image with a lens in a diagonal direction on a sample that has an interfering sample surface, or a slit and the image of the slit irradiated with light emitted from the light source are imaged on the sample with a spherical plano-convex lens from an oblique direction. an irradiation-side optical system for the front
In order to detect the change in the light receiving position of the light receiving element and the light receiving side optical system that collects the reflected light from the sample with a spherical plano-convex lens and forms an image on the light receiving element surface height detecting device comprising a electron beam to detect the detection portion of the selected sample includes the - in beam drawing apparatus, the sample height detection device, the optical system of each sample of the light irradiation side and the light receiving side closest to the spherical plano-convex lens is constituted by a lens having at least one or more planes, electron beam wherein the one or more planes, characterized in that it is arranged substantially parallel to the lens optical axis - beam drawing apparatus.
【請求項3】 前記レンズ表面に形成された導電性膜を有
することを特徴とする請求項1記載の電子ビーム描画装
置。
3. The electron beam drawing apparatus according to claim 1, further comprising a conductive film formed on the lens surface.
JP08226795A 1995-04-07 1995-04-07 Electronic beam drawing device Expired - Fee Related JP3417133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08226795A JP3417133B2 (en) 1995-04-07 1995-04-07 Electronic beam drawing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08226795A JP3417133B2 (en) 1995-04-07 1995-04-07 Electronic beam drawing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002323267A Division JP3722110B2 (en) 2002-11-07 2002-11-07 Electronic beam drawing device

Publications (2)

Publication Number Publication Date
JPH08287862A JPH08287862A (en) 1996-11-01
JP3417133B2 true JP3417133B2 (en) 2003-06-16

Family

ID=13769714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08226795A Expired - Fee Related JP3417133B2 (en) 1995-04-07 1995-04-07 Electronic beam drawing device

Country Status (1)

Country Link
JP (1) JP3417133B2 (en)

Also Published As

Publication number Publication date
JPH08287862A (en) 1996-11-01

Similar Documents

Publication Publication Date Title
US4334139A (en) Apparatus for writing patterns in a layer on a substrate by means of a beam of electrically charged particles
US6744057B2 (en) Convergent charged particle beam apparatus and inspection method using same
US4705940A (en) Focus detection in a projection optical system
US4990776A (en) Electron microscope
JPH09320931A (en) Method for measuring imaging characteristic and transfer device by the method
JPS62191812A (en) Optical type image former and mask pattern image former
EP1103860A1 (en) Electron-beam lithography system and alignment method
JPH10318718A (en) Optical height detecting device
JP3417133B2 (en) Electronic beam drawing device
US5936252A (en) Charged particle beam performance measurement system and method thereof
JP2001318302A (en) Focus detecting device and autofocusing microscope
JP3861904B2 (en) Electronic beam drawing device
JP3722110B2 (en) Electronic beam drawing device
JP2001077004A (en) Aligner and electron beam aligner
CN100442435C (en) Electron beam writing equipment and electron beam writing method
TW472298B (en) Electron beam exposure apparatus, adjusting method, and block mask for adjustment
JP3255703B2 (en) Focus detection device
JP3381740B2 (en) Exposure method and projection exposure apparatus
CN115388765B (en) Automatic focusing device for ellipsometry system
JP3222214B2 (en) Target surface position detection device
JPH04162337A (en) Electron beam device
JPH06177024A (en) Electron beam lithography equipment
JPH11304441A (en) Three-dimensional shape measuring device
JPH0739955B2 (en) Surface displacement detector
JP3110363B2 (en) Adjustment method of charged beam writing system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees