JP3413817B2 - Crystalline glass composition for coating - Google Patents

Crystalline glass composition for coating

Info

Publication number
JP3413817B2
JP3413817B2 JP23870893A JP23870893A JP3413817B2 JP 3413817 B2 JP3413817 B2 JP 3413817B2 JP 23870893 A JP23870893 A JP 23870893A JP 23870893 A JP23870893 A JP 23870893A JP 3413817 B2 JP3413817 B2 JP 3413817B2
Authority
JP
Japan
Prior art keywords
glass
coating
thermal expansion
powder
glass composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23870893A
Other languages
Japanese (ja)
Other versions
JPH0769676A (en
Inventor
浩之 大下
昭治 柴田
和夫 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP23870893A priority Critical patent/JP3413817B2/en
Publication of JPH0769676A publication Critical patent/JPH0769676A/en
Application granted granted Critical
Publication of JP3413817B2 publication Critical patent/JP3413817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Landscapes

  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は被覆用結晶性ガラス組成
物に関し、より具体的にはフェライト材料を用いた厚膜
回路の被覆に用いられる被覆用結晶性ガラス組成物に関
するものである。 【0002】 【従来の技術】厚膜技術の進歩により、様々な電子部品
が小型化、集積化されている。特に最近では、小型化が
難しいとされていたインダクタ、トランスのような電源
部品やノイズフィルター等についても、フェライト材料
と導体とを交互に積層した構造の厚膜回路を用いること
によって、小型化が実現しつつある。 【0003】ところで厚膜技術を用いてこれらの部品を
作製する場合、回路を外部から電気的、化学的、機械的
に保護する必要があり、そのために表面を保護すること
ができる被覆用ガラスが必要となる。 【0004】 【発明が解決しようとする課題】この被覆用ガラスに
は、フェライト材料の熱膨張係数(90〜100×10
-7/℃)に適合するように、30〜700℃において8
5〜105×10-7/℃程度の比較的高い熱膨張係数を
有すること、耐熱性を有すること、電気絶縁性を有する
こと等の特性が要求される。 【0005】しかしながら従来の厚膜回路はアルミナ基
板上に形成されるため、その回路を保護する被覆用ガラ
スは、熱膨張係数がアルミナのそれ(70〜80×10
-7/℃)に合わせられている。そのため従来の被覆用ガ
ラスを、上記したフェライト材料の被覆用として使用し
た場合、熱膨張係数の不整合からストレスが生じ、クラ
ック、剥離等の問題を生じ易くなり好ましくない。 【0006】他方、高膨張の被覆用ガラスとして、特公
平1−48210号や特開平4−82294号にMgO
−B23 −SiO2 系の鋼鈑被覆用結晶性ガラスが開
示されている。これらのガラスは何れもアルカリ金属酸
化物を含まず、耐熱性や電気絶縁性が良好なものである
が、110×10-7/℃以上の高い熱膨張係数を示すた
め、この用途に用いた場合は、やはりフェライト材料と
の熱膨張差により、焼成後のガラス被膜に無数のクラッ
クが発生してしまうという問題が生じる。 【0007】本発明の目的は、フェライト材料を用いた
厚膜回路の被覆用ガラスとして要求される諸条件を満足
し、特にフェライト材料に適合した熱膨張係数を示す被
覆用結晶性ガラス組成物を提供することである。 【0008】 【課題を解決するための手段】本発明者等は種々の実験
を行った結果、MgO−B23 −SiO2 系の無アル
カリガラスにおいて、ガラス成分としてAl23 を一
定量含有させることによって、上記目的を達成できるこ
とを見いだし、本発明として提案するものである。 【0009】即ち、本発明の被覆用結晶性ガラス組成物
ガラス粉末80〜100重量部と、フィラー粉末0〜
20重量部とからなり、該ガラス粉末は、重量百分率で
MgO 35〜45%、B 2 3 18〜28%、SiO
2 9〜17%、Al 2 3 3〜20%、BaO 0〜9
%、その他の成分0〜4%からなり、本質的にアルカリ
金属酸化物を含有せず、焼成するとマグネシウムボーレ
ート結晶及び/又はマグネシウムアルミノシリケート結
晶を析出する性質を有することを特徴とする。 【0010】 【作用】本発明の被覆用結晶性ガラス組成物は、焼成す
るとマグネシウムボレート結晶やマグネシウムアルミノ
シリケート結晶等が析出し、フェライト材料に適合した
85〜105×10-7/℃程度の熱膨張係数を示す。ま
た焼成後はガラス成分が殆ど残存しないために高い耐熱
性を有し、再度熱処理を行っても流動することはない。
しかもアルカリ金属酸化物を含有せず、また緻密な焼成
体となるため、電気絶縁性にも優れている。 【0011】以下、本発明の被覆用結晶性ガラス組成物
において、ガラス粉末の組成を上記のように限定した理
由を示す。 【0012】MgOが35%未満の場合、ガラスの結晶
化が十分進まず、耐熱性が悪くなり、45%を超えると
溶解性が悪くなり、均質なガラスが得難くなる。 【0013】B23 が18%未満の場合は溶解性が悪
くなり、28%を超えると耐熱性が劣化する。 【0014】SiO2 が9%未満では耐熱性が劣ると同
時に溶解時にガラスの安定性が悪くなり、17%を超え
ると溶解が困難となる。 【0015】本発明においてAl23 は熱膨張係数を
下げる効果を有し、また焼成時の流動性を向上させて有
効量のフィラー粉末の導入を可能にする成分である。A
23 が3%未満では熱膨張係数が高くなり過ぎてフ
ェライト材料との熱膨張差が大きくなり焼成後にクラッ
クが発生する。またフィラー粉末を添加した場合に流動
性が悪くなり、緻密なガラス表面が得られなくなり好ま
しくない。一方20%を越えるとガラスの溶解性が悪く
なるとともに、失透性が強くなって成型し難くなる。 【0016】BaOが9%を超えるとガラスが不安定に
なって成型時に失透性が著しく強くなる。 【0017】なお上記した成分の他にもSnO2 、P2
5 等の他成分を合量で%以下添加しても差し支えな
い。しかしながら電気絶縁性を悪化させるアルカリ金属
酸化物の添加は避けなければならない。 【0018】また本発明の被覆用結晶性ガラス組成物
は、熱膨張係数の微調整のためにジルコニア(ZrO
2 )、アルミナ(Al23)、ジルコン(ZrO2
SiO2)等のフィラー粉末を20重量部以下含有して
もよい。フィラー粉末の割合をこのように限定したの
は、フィラー粉末が20重量部を越えると、即ちガラス
粉末が80重量部未満になると緻密なガラス焼成面が得
られなくなり好ましくないためである。なおフィラー粉
末は、平均粒径が1〜5μmのものを使用することが望
ましい。 【0019】次に本発明の被覆用結晶性ガラス組成物を
用いた厚膜回路の被覆方法を説明する。 【0020】まず上記した組成を有するように調合した
ガラス原料を1400〜1500℃で0.5〜2時間溶
融する。次いで溶融ガラスをフィルム状等に成形した
後、粉砕し、分級してガラス粉末を作製する。なおガラ
ス粉末の平均粒径は2〜5μm程度であることが好まし
い。 【0021】さらに必要に応じて上記ガラス粉末にフィ
ラー粉末を添加し、混合する。 【0022】次いでガラス粉末、或はガラス粉末とフィ
ラー粉末との混合粉末を有機ビークルと混ぜてペースト
状にし、スクリーン印刷法により、厚膜回路上に均一に
塗布する。なお使用する有機ビークルは特に限定される
ものではなく、例えばエチルセルロース樹脂、アクリル
樹脂等をテルピネオール、ブチルカルビトールアセテー
ト等の溶剤に溶解させたものを用いることができる。 【0023】その後、800〜900℃で焼成すること
により、ガラス粉末が軟化流動して回路表面を一様に覆
い、同時に多量の結晶を析出する。このようにして厚膜
回路上にガラス被覆を施すことができる。 【0024】 【実施例】以下、本発明の被覆用結晶性ガラス組成物を
実施例に基づいて説明する。 【0025】(実施例1)表1及び2は本発明の実施例
(試料No.1〜8)及び比較例(試料No.9)を示
している。 【0026】 【表1】 【0027】 【表2】【0028】各試料は次のようにして調製した。 【0029】表中の組成になるように調合したガラス原
料を1500℃で約2時間溶融した後、一対のローラー
間を通してフィルム状に成形した。次いで得られたフィ
ルム状成形物をボールミルを用いて粉砕し、分級して、
平均粒径3μmのガラス粉末を得、試料No.1〜6及
び9とした。また試料No.6のガラス粉末に、平均粒
径2μmのアルミナ粉末やジルコン粉末を添加して試料
No.7及び8とした。 【0030】このようにして得られた試料について熱膨
張係数を測定した。また各試料をエチルセルロースのタ
ーピネオール溶液と混練して粘度1500ps.程度の
ペーストを得た。このペーストを、熱膨張係数が97×
10-7/℃のMn−Znフェライト板表面に印刷し、1
00〜150℃で溶剤を乾燥させた後、ベルト炉にて8
50℃で10分間焼成し、膜厚15〜20μmのガラス
被膜を形成した。続いてこの焼成物を用いて、ガラス被
膜のクラックの有無及び耐熱性について評価した。これ
らの結果を各表に示す。 【0031】表1及び表2から明らかなように、本発明
の実施例である試料No.1〜8は、熱膨張係数が9
5.5〜104.0×10-7/℃であり、フェライト板
に被覆したところ、クラックの発生は認められなかっ
た。また耐熱性が良好であることがわかった。 【0032】一方、比較例である試料No.9は、耐熱
性が良好であったものの、アルミナを含有していないた
めに熱膨張係数が112×10-7/℃と高く、クラック
の発生が無数に認められた。 【0033】なお熱膨張係数は、試料を棒状にプレス成
形し、850℃で焼成した後、ディラトメーターにて測
定した熱膨張曲線から算出した。耐熱性は、ガラス被覆
したフェライト板に対して室温から850℃まで加熱す
るサイクルを5回繰り返し行った後、ガラス被膜の形状
の変化やクラックの状態を観察し、これらが認められな
かったものを良、認められたものを不良とした。 【0034】 【発明の効果】以上説明したように、本発明の被覆用結
晶性ガラス組成物は、要求される諸条件を満足し、特に
フェライト材料に適した熱膨張係数を示すため、フェラ
イト材料を用いた厚膜回路の被覆用として好適である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystalline glass composition for coating, and more particularly to a crystal for coating used for coating a thick film circuit using a ferrite material. The present invention relates to a functional glass composition. 2. Description of the Related Art Various electronic components have been miniaturized and integrated with the progress of thick film technology. In particular, power supply components such as inductors and transformers, which have been considered difficult to miniaturize, and noise filters, etc., have recently been reduced in size by using a thick-film circuit with a structure in which ferrite materials and conductors are alternately stacked. Realizing. When these parts are manufactured by using the thick film technology, it is necessary to protect the circuit from the outside electrically, chemically and mechanically. Therefore, a glass for coating capable of protecting the surface is required. Required. [0004] The glass for coating has a thermal expansion coefficient (90 to 100 × 10) of a ferrite material.
-7 / ° C), at 30 to 700 ° C
Characteristics such as a relatively high coefficient of thermal expansion of about 5 to 105 × 10 −7 / ° C., heat resistance, and electrical insulation are required. However, since a conventional thick film circuit is formed on an alumina substrate, the coating glass for protecting the circuit has a thermal expansion coefficient of 70 to 80 × 10
-7 / ° C). Therefore, when the conventional glass for coating is used for coating the above-mentioned ferrite material, stress is generated due to mismatch of thermal expansion coefficients, and problems such as cracks and peeling are liable to occur, which is not preferable. On the other hand, as coating glass having high expansion, MgO is disclosed in JP-B 1-48210 and JP-A-4-82294.
-B 2 O 3 -SiO 2 system steel plate covering crystalline glass is disclosed. Each of these glasses does not contain an alkali metal oxide and has good heat resistance and electrical insulation properties, but has a high coefficient of thermal expansion of 110 × 10 −7 / ° C. or more. In this case, there is a problem that countless cracks are generated in the glass coating after firing due to the difference in thermal expansion from the ferrite material. An object of the present invention is to provide a crystalline glass composition for coating which satisfies various conditions required for a glass for coating a thick film circuit using a ferrite material and which exhibits a thermal expansion coefficient particularly suitable for the ferrite material. To provide. [0008] The present inventors have SUMMARY OF THE INVENTION As a result of various experiments, the alkali-free glass of the MgO-B 2 O 3 -SiO 2 system, the for Al 2 O 3 glass component constant The present inventors have found that the above objects can be achieved by including them in an amount, and propose the present invention. That is, the crystalline glass composition for coating according to the present invention comprises 80 to 100 parts by weight of glass powder and 0 to 100 parts by weight of filler powder.
20 parts by weight, and the glass powder is in weight percentage
MgO 35~45%, B 2 O 3 18~28%, SiO
2 9~17%, Al 2 O 3 3~20%, BaO 0~9
%, Other components 0-4%, essentially alkali
Contains no metal oxides.
Crystal and / or magnesium aluminosilicate
It has the property of precipitating crystals . When the crystalline glass composition for coating of the present invention is fired, magnesium borate crystals, magnesium aluminosilicate crystals, etc. are precipitated, and a heat of about 85 to 105 × 10 −7 / ° C. suitable for ferrite material. Indicates the expansion coefficient. In addition, since the glass component hardly remains after firing, it has high heat resistance and does not flow even if heat treatment is performed again.
Moreover, since it does not contain an alkali metal oxide and is a dense fired body, it has excellent electrical insulation properties. The reasons for limiting the composition of the glass powder in the coating crystalline glass composition of the present invention as described above will be described below. When the content of MgO is less than 35%, the crystallization of the glass does not proceed sufficiently, and the heat resistance deteriorates. When the content exceeds 45%, the solubility deteriorates and it becomes difficult to obtain a homogeneous glass. When the content of B 2 O 3 is less than 18%, the solubility deteriorates, and when it exceeds 28%, the heat resistance deteriorates. If the content of SiO 2 is less than 9%, the heat resistance is inferior, and at the same time, the stability of the glass during melting is deteriorated. In the present invention, Al 2 O 3 is a component that has an effect of lowering the coefficient of thermal expansion, improves the fluidity at the time of firing, and allows an effective amount of filler powder to be introduced. A
If l 2 O 3 is less than 3%, the coefficient of thermal expansion becomes too high, the difference in thermal expansion from the ferrite material becomes large, and cracks occur after firing. In addition, when the filler powder is added, the fluidity becomes poor, and a dense glass surface cannot be obtained, which is not preferable. On the other hand, if it exceeds 20%, the melting property of the glass deteriorates, and the devitrification becomes strong, which makes molding difficult. If the content of BaO exceeds 9%, the glass becomes unstable and the devitrification during molding becomes extremely strong. In addition to the above components, SnO 2 , P 2
Other components such as O 5 may be added in a total amount of 4 % or less. However, the addition of alkali metal oxides that deteriorate electrical insulation must be avoided. Further, the crystalline glass composition for coating of the present invention is made of zirconia (ZrO) for fine adjustment of the coefficient of thermal expansion.
2 ), alumina (Al 2 O 3 ), zircon (ZrO 2.
20 parts by weight or less of a filler powder such as SiO 2 ) may be contained. The reason for limiting the proportion of the filler powder in this manner is that if the filler powder exceeds 20 parts by weight, that is, if the glass powder is less than 80 parts by weight, a dense fired glass surface cannot be obtained, which is not preferable. It is desirable to use filler powder having an average particle size of 1 to 5 μm. Next, a method for coating a thick film circuit using the crystalline glass composition for coating of the present invention will be described. First, a glass raw material prepared to have the above composition is melted at 1400 to 1500 ° C. for 0.5 to 2 hours. Next, after the molten glass is formed into a film or the like, it is pulverized and classified to produce a glass powder. The average particle size of the glass powder is preferably about 2 to 5 μm. Further, if necessary, a filler powder is added to the above glass powder and mixed. Next, glass powder or a mixed powder of glass powder and filler powder is mixed with an organic vehicle to form a paste, which is uniformly applied on a thick film circuit by a screen printing method. The organic vehicle used is not particularly limited. For example, an organic vehicle obtained by dissolving an ethylcellulose resin, an acrylic resin or the like in a solvent such as terpineol or butyl carbitol acetate can be used. Thereafter, by firing at 800 to 900 ° C., the glass powder softens and flows, uniformly covering the circuit surface, and at the same time depositing a large amount of crystals. In this way, a glass coating can be applied on the thick film circuit. EXAMPLES The crystalline glass composition for coating of the present invention will be described below with reference to examples. (Example 1) Tables 1 and 2 show Examples (Sample Nos. 1 to 8) and Comparative Examples (Sample No. 9) of the present invention. [Table 1] [Table 2] Each sample was prepared as follows. The glass raw materials prepared to have the compositions shown in the table were melted at 1500 ° C. for about 2 hours, and then formed into a film by passing between a pair of rollers. Next, the obtained film-shaped molded product is pulverized using a ball mill and classified,
A glass powder having an average particle size of 3 μm was obtained. 1 to 6 and 9. Sample No. Sample No. 6 was prepared by adding alumina powder or zircon powder having an average particle size of 2 μm to the glass powder of Sample No. 6. 7 and 8. The sample thus obtained was measured for the coefficient of thermal expansion. Each sample was kneaded with a terpineol solution of ethylcellulose to give a viscosity of 1500 ps. A degree of paste was obtained. This paste has a coefficient of thermal expansion of 97 ×
Print on the surface of Mn-Zn ferrite plate of 10 -7 / ° C.
After drying the solvent at 00 to 150 ° C.,
Baking was performed at 50 ° C. for 10 minutes to form a glass coating having a thickness of 15 to 20 μm. Subsequently, using the fired product, the presence or absence of cracks in the glass coating and the heat resistance were evaluated. These results are shown in each table. As is clear from Tables 1 and 2, the sample No. 1 to 8 have a coefficient of thermal expansion of 9
The temperature was 5.5 to 104.0 × 10 −7 / ° C., and no cracks were observed when the ferrite plate was coated. It was also found that the heat resistance was good. On the other hand, the sample No. Sample No. 9, which had good heat resistance, had a high thermal expansion coefficient of 112 × 10 −7 / ° C. because it did not contain alumina, and countless cracks were observed. The thermal expansion coefficient was calculated from a thermal expansion curve measured by a dilatometer after a sample was press-molded into a rod shape and fired at 850 ° C. Heat resistance was determined by repeating the cycle of heating the glass-coated ferrite sheet from room temperature to 850 ° C. five times, and then observing changes in the shape of the glass coating and cracks. Good and those which were recognized were regarded as bad. As described above, the crystalline glass composition for coating of the present invention satisfies the required conditions and exhibits a thermal expansion coefficient particularly suitable for ferrite materials. It is suitable for coating a thick-film circuit using the same.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C03C 1/00 - 14/00 C04B 41/80 - 41/91 WPIContinuation of front page (58) Field surveyed (Int. Cl. 7 , DB name) C03C 1/00-14/00 C04B 41/80-41/91 WPI

Claims (1)

(57)【特許請求の範囲】 【請求項1】 ガラス粉末80〜100重量部と、フィ
ラー粉末0〜20重量部とからなり、該ガラス粉末は、
重量百分率でMgO 35〜45%、B 2 3 18〜2
8%、SiO 2 9〜17%、Al 2 3 3〜20%、B
aO 0〜9%、その他の成分0〜4%からなり、本質
的にアルカリ金属酸化物を含有せず、焼成するとマグネ
シウムボーレート結晶及び/又はマグネシウムアルミノ
シリケート結晶を析出する性質を有することを特徴とす
る被覆用結晶性ガラス組成物。
(57) [Claim 1] 80 to 100 parts by weight of glass powder,
From 0 to 20 parts by weight of the glass powder,
35 to 45% MgO by weight percent, B 2 O 3 18~2
8%, SiO 2 9~17%, Al 2 O 3 3~20%, B
consisting of 0-9% of aO and 0-4% of other components
It does not contain alkali metal oxides,
Cium borate crystal and / or magnesium alumino
Characterized by the ability to precipitate silicate crystals
Crystalline glass composition for coating.
JP23870893A 1993-08-30 1993-08-30 Crystalline glass composition for coating Expired - Fee Related JP3413817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23870893A JP3413817B2 (en) 1993-08-30 1993-08-30 Crystalline glass composition for coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23870893A JP3413817B2 (en) 1993-08-30 1993-08-30 Crystalline glass composition for coating

Publications (2)

Publication Number Publication Date
JPH0769676A JPH0769676A (en) 1995-03-14
JP3413817B2 true JP3413817B2 (en) 2003-06-09

Family

ID=17034102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23870893A Expired - Fee Related JP3413817B2 (en) 1993-08-30 1993-08-30 Crystalline glass composition for coating

Country Status (1)

Country Link
JP (1) JP3413817B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070134609A1 (en) * 2005-12-14 2007-06-14 3M Innovative Properties Company Orthodontic articles with silicon nitride coatings

Also Published As

Publication number Publication date
JPH0769676A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
JP4839539B2 (en) Lead-free glass, glass frit, glass paste, electronic circuit components and electronic circuits
JPH02289445A (en) Glass composition for coating
US20080305249A1 (en) Use of conductor compositions in electronic circuits
JP4874492B2 (en) Glass composition and glass-forming material containing the composition
JP2011084447A (en) Non-lead glass and composite material
JP3413817B2 (en) Crystalline glass composition for coating
JP3172592B2 (en) Adhesive or sealing glass
JP2001322832A (en) Sealing composition
JP2695587B2 (en) Glass ceramics composition
JP2666222B2 (en) Sealing material
JPH06247742A (en) Electronic parts
JPS60103075A (en) Composition for ceramic substrate
JPS6221739B2 (en)
JPH03126639A (en) Glass composition for coating
JP3086267B2 (en) Insulator glass composition
JPH0232587A (en) Composite for circuit substrate and electronic parts using composite therefor
JPS6243937B2 (en)
JP7506566B2 (en) Sealing and coating materials
JPS6243938B2 (en)
WO2021221175A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JPH0416420B2 (en)
JP2832374B2 (en) Insulator glass composition
JP2510136B2 (en) Glass composition for insulating layer
JP3610100B2 (en) Heating element composition
JPH03183640A (en) Resistor paste and ceramic substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees