JP3412223B2 - Ceramic filter and method of manufacturing the same - Google Patents

Ceramic filter and method of manufacturing the same

Info

Publication number
JP3412223B2
JP3412223B2 JP35104693A JP35104693A JP3412223B2 JP 3412223 B2 JP3412223 B2 JP 3412223B2 JP 35104693 A JP35104693 A JP 35104693A JP 35104693 A JP35104693 A JP 35104693A JP 3412223 B2 JP3412223 B2 JP 3412223B2
Authority
JP
Japan
Prior art keywords
base material
silicon nitride
fibers
ceramics
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35104693A
Other languages
Japanese (ja)
Other versions
JPH07185240A (en
Inventor
千尋 河合
貴宏 松浦
晃 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP35104693A priority Critical patent/JP3412223B2/en
Publication of JPH07185240A publication Critical patent/JPH07185240A/en
Application granted granted Critical
Publication of JP3412223B2 publication Critical patent/JP3412223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱衝撃性に優れ、小
さな細孔径と高い気孔率を有するセラミックスフィルタ
ー、及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic filter having excellent thermal shock resistance, a small pore size and a high porosity, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、耐熱性が高く、高強度で、且つ耐
熱衝撃性に優れた各種フィルターや触媒担体の必要性が
高まっている。例えば、自動車の排気ガス中に含まれる
CO2や窒素酸化物、黒煙を除去するためのフィルター
や触媒担体には、1000℃を越える耐熱性が要求され
る。又、火力発電所や化学プラントにおける排気ガスの
脱硫フィルター、溶融金属中のスラグ除去フィルターに
ついても同様である。
2. Description of the Related Art In recent years, there has been an increasing need for various filters and catalyst carriers having high heat resistance, high strength and excellent thermal shock resistance. For example, a filter or a catalyst carrier for removing CO 2 , nitrogen oxides, and black smoke contained in automobile exhaust gas is required to have a heat resistance higher than 1000 ° C. The same applies to a desulfurization filter for exhaust gas in a thermal power plant or a chemical plant and a slag removal filter for molten metal.

【0003】かかる要求に対して、多孔質セラミックス
からなるフィルターや触媒担体が検討されている。通
常、多孔質セラミックスからなるフィルターの構造は、
強度保持のために必要な多孔質セラミックス基材の上
に、圧粉体の充填率や焼結条件等を変えることにより気
孔径を制御した多孔質セラミックス膜を積層した多層構
造となっている。しかし、このようなフィルターは原料
粉末を焼結して作製するため、気孔率は最大でも40体
積%程度に過ぎない。
In response to such demands, filters and catalyst carriers made of porous ceramics have been studied. Usually, the structure of the filter made of porous ceramics is
It has a multi-layer structure in which a porous ceramics film having a controlled pore diameter is laminated on the porous ceramics substrate required for maintaining strength by changing the filling rate of the green compact and the sintering conditions. However, since such a filter is manufactured by sintering raw material powder, the porosity is only about 40% by volume at the maximum.

【0004】又、フィルターとして最も重要な透過性能
は、下記数式1に示すHagen−Poisuiiie
の式から、基本的にはフィルターの細孔径と気孔率に依
存して決定される。つまり、細孔径が大きく、フィルタ
ーの膜厚が小さいほど、フィルターとしての透過流量が
大きくなる、即ち圧力損失が小さくなる。
Further, the most important transmission performance as a filter is Hagen-Poisiuiie shown in the following formula 1.
It is basically determined from the formula (1) depending on the pore size and porosity of the filter. That is, the larger the pore diameter and the smaller the film thickness of the filter, the larger the permeation flow rate as the filter, that is, the smaller the pressure loss.

【0005】[0005]

【数1】dQ/dt=nπr4△P/8ηl (ここで、Q:流量、t:時間、n:細孔数、r:細孔
半径、△P:差圧、η:流体粘度、l:膜厚)
## EQU1 ## dQ / dt = nπr 4 ΔP / 8ηl (where Q: flow rate, t: time, n: number of pores, r: pore radius, ΔP: differential pressure, η: fluid viscosity, l : Film thickness)

【0006】ところが、上記した通常の多層構造を具え
たフィルターでは、基材部分は細孔径が大きいために気
孔率が小さくても濾過の際の圧力損失は少ないが、膜部
分は細孔径が小さくなるため圧力損失が急激に増大す
る、即ちフィルターとしての透過性能に劣るという欠点
があった。しかも、気孔率が最大でも40体積%程度と
小さいため、フィルターに付着した濾過物に逆圧を負荷
して除去する際にも除去され難く、フィルターの再生機
能が低いという欠点があった。
However, in the filter having the above-mentioned ordinary multi-layer structure, since the base material portion has a large pore diameter, the pressure loss during filtration is small even if the porosity is small, but the membrane portion has a small pore diameter. Therefore, there is a drawback that the pressure loss rapidly increases, that is, the permeation performance as a filter is poor. Moreover, since the porosity is as small as about 40% by volume at the maximum, it is difficult to remove even when the filtered matter attached to the filter is loaded by applying a back pressure, and there is a drawback that the regeneration function of the filter is low.

【0007】そこで、気孔率を向上させたセラミックス
フィルターとして、網目状の金属円筒基材の外周に、ア
ルミナ等の酸化物系セラミックスの連続繊維を交差させ
て多層に巻き付けた構造のものが報告されている(例え
ば、M. A. Barriset al.、 SAE Rep
ort、920139、1992年)。
Therefore, as a ceramics filter having an improved porosity, there has been reported a structure in which continuous fibers of oxide ceramics such as alumina are crossed and wound in multiple layers on the outer periphery of a mesh-shaped metal cylindrical base material. (Eg, M. A. Barriset al., SAE Rep.
ort, 920139, 1992).

【0008】しかし、紡糸されたセラミックスの連続繊
維を巻き付けた場合、巻く時にかけられた張力により繊
維に大きな引張応力が残るため、このフィルターを高温
で使用すると熱衝撃によって繊維に破断や割れが生じる
という大きな欠点があった。又、内側の金属円筒基材は
セラミックス繊維よりも熱膨張が大きいため、外側に巻
き付けた繊維には一層大きな引張応力が発生し、繊維の
破断や割れが更に顕著になる。かかる破断や割れは耐熱
衝撃性に劣る酸化物系セラミックス繊維において顕著で
あるが、他のセラミックス繊維の場合も同様の理由によ
り破断や割れが発生する。
However, when a continuous fiber of spun ceramics is wound, a large tensile stress remains in the fiber due to the tension applied during winding. Therefore, when this filter is used at high temperature, the fiber is broken or cracked by thermal shock. There was a big drawback. Further, since the metal cylindrical base material on the inner side has a larger thermal expansion than the ceramic fiber, a larger tensile stress is generated on the fiber wound on the outer side, and the breakage or cracking of the fiber becomes more remarkable. Such fractures and cracks are remarkable in oxide ceramic fibers having poor thermal shock resistance, but fractures and cracks also occur in other ceramic fibers for the same reason.

【0009】更に、円筒基材の外周に張力を与えて巻き
付けるためには紡糸されたセラミックスの連続繊維の直
径を10μm以上とする必要があるため、この繊維を巻
き付けた繊維層部分の気孔率を50体積%以上にする
と、その部分の細孔径は少なくとも10μm以上になっ
てしまう。逆に、細孔径が10μm以下の細孔を形成し
ようとすると、繊維層部分の気孔率の低下が構造上避け
られず、通常のセラミックスフィルターと変わらない小
さな気孔率しか得られない。
Furthermore, in order to apply tension to the outer periphery of the cylindrical substrate and wind it, the diameter of the spun ceramic continuous fiber must be 10 μm or more. Therefore, the porosity of the fiber layer portion around which the fiber is wound is reduced. When it is 50% by volume or more, the pore diameter of that portion becomes at least 10 μm or more. On the other hand, if it is attempted to form pores having a pore diameter of 10 μm or less, a decrease in the porosity of the fiber layer portion cannot be avoided due to its structure, and only a small porosity that is the same as that of a normal ceramics filter can be obtained.

【0010】[0010]

【発明が解決しようとする課題】本発明は、かかる従来
の事情に鑑み、フィルターとして優れた透過性能と捕集
率とを備えるべく細孔径が小さく且つ大きな気孔率を有
し、しかも耐熱衝撃性に優れたセラミックスフィルター
を提供することを目的とする。
In view of the above conventional circumstances, the present invention has a small pore size and a large porosity so as to have an excellent permeation performance and a collection rate as a filter, and further has a thermal shock resistance. The object is to provide a ceramic filter excellent in

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供するセラミックスフィルターは、連通
気孔の多孔質セラミックスからなる基材と、この基材上
気相合成により形成され且つ固着された長さ100μ
m以上の窒化ケイ素ファイバーが厚さ10μm以上に絡
み合った無配向網状集合体とからなることを特徴とする
ものである。
In order to achieve the above object, a ceramics filter provided by the present invention comprises a base material made of porous ceramics having continuous air holes, and formed and fixed on the base material by vapor phase synthesis. length 100μ, which is
m silicon nitride fiber with a thickness of 10 μm or more
It is characterized in that it comprises a non-oriented reticulated aggregate that is intertwined with each other .

【0012】又、本発明の他のセラミックスフィルター
は、直径1〜10mmの多数の貫通孔を形成したセラミ
ックスからなる基材と、この基材の貫通孔内に気相合成
により形成され且つ充填固着された長さ100μm以上
の窒化ケイ素ファイバーが厚さ10μm以上に絡み合っ
無配向網状集合体とからなることを特徴とする。
Another ceramic filter of the present invention is a substrate made of ceramics having a large number of through holes having a diameter of 1 to 10 mm, and vapor phase synthesis in the through holes of the substrate.
The silicon nitride fibers with a length of 100 μm or more formed and filled and fixed by entanglement with a thickness of 10 μm or more
And a non-oriented reticulated aggregate.

【0013】尚、上記基材は連通気孔の多孔質セラミッ
クスで且つ連通気孔とは別に直径1〜10mmの多数の
貫通孔を形成したものでも良く、その場合には基材上及
び基材の貫通孔内にそれぞれ厚さ10μm以上の窒化ケ
イ素ファイバーの無配向網状集合体を固着することによ
り、フィルターを構成することが可能である。
The above-mentioned base material may be a porous ceramic having continuous ventilation holes, and a large number of through holes having a diameter of 1 to 10 mm may be formed separately from the continuous ventilation holes. A filter can be formed by fixing non-oriented reticulated aggregates of silicon nitride fibers each having a thickness of 10 μm or more in the pores.

【0014】かかる本発明のセラミックスフィルター
は、連通気孔の多孔質セラミックスからなる基材又は直
径1〜10mmの多数の貫通孔を形成したセラミックス
からなる基材を反応炉内に配置し、酸化チタン粉末と混
合した非晶質窒化ケイ素粉末を窒素ガス雰囲気中にて1
400〜1600℃の温度及び300〜1200Tor
rの炉内圧力で加熱して気相反応させ、前記基材上及び
/又は前記基材の貫通孔内に、長さ100μm以上の窒
化ケイ素ファイバーが絡み合った無配向網状集合体を厚
さ10μm以上に析出固着させる方法により製造され
る。
In such a ceramics filter of the present invention, a base material made of porous ceramics having continuous ventilation holes or a base material made of ceramics having a large number of through holes having a diameter of 1 to 10 mm is placed in a reaction furnace to obtain titanium oxide powder. Amorphous silicon nitride powder mixed with 1 in a nitrogen gas atmosphere
400-1600 ° C temperature and 300-1200 Tor
A non-oriented reticulated aggregate in which silicon nitride fibers having a length of 100 μm or more are entangled with each other and having a thickness of 10 μm on the base material and / or in the through holes of the base material by heating at a furnace pressure of r to cause a gas phase reaction. It is manufactured by the method of depositing and fixing as described above.

【0015】[0015]

【作用】本発明のセラミックスフィルターは、セラミッ
クスの基材と窒化ケイ素ファイバーの無配向網状集合体
とで構成されているため、金属よりも熱膨張係数が小さ
く、化学的安定性に優れ、耐熱性及び耐熱衝撃性に優れ
たフィルターを得ることができる。特に無配向網状集合
体を構成する窒化ケイ素(Si34)は熱膨張係数が約
3.2×10-6-1とセラミックスの中では最も小さ
く、耐熱衝撃性及び耐酸化性にも優れている。
The ceramic filter of the present invention is composed of a ceramic base material and a non-oriented reticulated aggregate of silicon nitride fibers, so that it has a smaller coefficient of thermal expansion than metal, excellent chemical stability, and heat resistance. It is also possible to obtain a filter having excellent thermal shock resistance. In particular, silicon nitride (Si 3 N 4 ) that constitutes a non-oriented reticulated aggregate has a thermal expansion coefficient of about 3.2 × 10 −6 K −1 , which is the smallest of all ceramics, and has excellent thermal shock resistance and oxidation resistance. Are better.

【0016】このセラミックスフィルターの透過性能な
どフィルターとしての性能はSi34ファイバーの無配
向網状集合体によって決定され、基体はこのファイバー
の無配向網状集合体を支持するに過ぎない。しかし、基
材として窒化ケイ素又は炭化ケイ素(SiC)を使用す
れば、酸化物系セラミックス基材では使用できない高温
下でも使用可能なフィルターを構成することができる。
The performance of the ceramics filter as a filter, such as the transmission performance, is determined by the non-oriented reticulated aggregate of Si 3 N 4 fibers, and the substrate only supports the non-oriented reticulated aggregate of the fibers. However, if silicon nitride or silicon carbide (SiC) is used as the base material, it is possible to construct a filter that can be used even at high temperatures, which cannot be used with the oxide-based ceramic base material.

【0017】かかる本発明のセラミックスフィルターの
構造は2つに大別される。その1つは、図1に示すよう
に連通気孔の多孔質セラミックスからなる基材1aと、
この基材1a上に膜状に固着した厚さ10μm以上のS
34ファイバーの無配向網状集合体2aとからなる。
膜状のSi34ファイバーの無配向網状集合体2aは通
常1層であるが、図2に示すごとく細孔径や気孔率の異
なる2層以上からなっていてもよい。
The structure of the ceramics filter of the present invention is roughly classified into two. One of them is a base material 1a made of porous ceramics having continuous ventilation holes as shown in FIG.
S having a thickness of 10 μm or more, which is fixed in a film shape on the base material 1a.
and an unoriented reticulated aggregate 2a of i 3 N 4 fibers.
The non-oriented network assembly 2a of film-like Si 3 N 4 fibers is usually one layer, but as shown in FIG. 2, it may be composed of two or more layers having different pore diameters and porosities.

【0018】尚、連通気孔を有する多孔質セラミックス
は既に公知であり、濾過材、担体、センサー等として利
用されている。本来、セラミックス焼結体は粉末を焼結
したものであるから数μm程度の孔径の気孔が多数存在
するが、この孔径を圧粉体の充填率や焼結条件等により
制御して気孔を積極的に形成させたものが多孔質セラミ
ックスである。ただし、本発明ではフィルターとしての
必要から、気孔が連通気孔であるものとする。
Porous ceramics having continuous ventilation holes are already known and are used as a filtering material, a carrier, a sensor and the like. Originally, since the ceramics sintered body is obtained by sintering powder, there are a large number of pores having a diameter of about several μm. However, the pore diameter is controlled by the filling rate of the green compact, the sintering conditions, etc. The porous ceramics are those that have been formed. However, in the present invention, since it is necessary as a filter, it is assumed that the pores are continuous ventilation holes.

【0019】他の構造は、図3に示すように直径1〜1
0mmの多数の貫通孔を形成したセラミックスからなる
基材1bと、この基材1bの貫通孔3内に充填固着した
厚さ10μm以上のSi34ファイバーの無配向網状集
合体2bとからなる。貫通孔3の直径を1〜10mmと
する理由は、1mm未満では前記ファイバーの充填が難
しく、10mmを越えると逆に貫通孔全体に隙間なく充
填することが困難になると共に、充填したファイバーが
濾過時の圧力により剥がれやすくなるからである。
Another structure has a diameter of 1 to 1 as shown in FIG.
A base material 1b made of ceramics having a large number of 0 mm through holes, and a non-oriented reticulated aggregate 2b of Si 3 N 4 fibers having a thickness of 10 μm or more filled and fixed in the through holes 3 of the base material 1b. . The reason why the diameter of the through-hole 3 is 1 to 10 mm is that if the diameter is less than 1 mm, it is difficult to fill the fiber, and if the diameter exceeds 10 mm, it becomes difficult to fill the entire through-hole without any gap, and the filled fiber is filtered. It is because the pressure at the time makes it easy to peel off.

【0020】図3の構造のフィルターでは、濾過は貫通
孔の部分を通して行われ基材部分での圧力損失が殆ど無
いため、図1及び図2のフィルターに比べ一層優れた透
過性能を示す。又、貫通孔3を形成したセラミックスの
基材1bは気孔の殆どない又は閉鎖気孔のセラミックス
が好ましい。多孔質セラミックスを基材として用いた場
合には、貫通孔内だけでなく、図1や図2と同様に基材
表面にもSi34ファイバーの無配向網状集合体を形成
する必要がある。
In the filter having the structure shown in FIG. 3, since filtration is performed through the through hole and there is almost no pressure loss in the base material portion, the filter having a better permeation performance than the filters shown in FIGS. Further, the ceramic base material 1b having the through holes 3 formed therein is preferably ceramics having almost no pores or closed pores. When porous ceramics is used as the substrate, it is necessary to form a non-oriented network assembly of Si 3 N 4 fibers not only in the through holes but also on the substrate surface as in FIGS. 1 and 2. .

【0021】かかる基材上又は基材の貫通孔内に形成す
るSiファイバーの無配向網状集合体は、下記す
る方法により気相合成した比較的細くて長い窒化ケイ素
ファイバーからなり、図7に示すごとく各ファイバーが
一定方向に配向していない無配向の状態で互いに絡み合
って網状に集合した構造を有し、しかも基材表面又は基
材の貫通孔に固着している。このため、Siファ
イバーの無配向網状集合体は、細孔径が小さく且つ高気
孔率であって、フィルターとして優れた透過性能を有す
るほか、ファイバーに引張応力が生じていないため破断
等の危険がない。
The non-oriented reticulated aggregate of Si 3 N 4 fibers formed on the substrate or in the through holes of the substrate is composed of relatively thin and long silicon nitride fibers vapor-phase synthesized by the following method . As shown in FIG. 7 , the fibers have a structure in which they are entwined with each other in a non-oriented state in which they are not oriented in a fixed direction and are gathered in a net shape, and further, they are fixed to the surface of the base material or the through holes of the base material. Therefore, the non-oriented reticulated aggregate of Si 3 N 4 fibers has a small pore size and a high porosity, has excellent permeability as a filter, and has no tensile stress in the fiber, so that it may be broken. There is no danger.

【0022】具体的には、得られるSi34ファイバー
同士の十分な絡み合いが生じ且つ基材との十分な固着を
得るため、ファイバーの長さが100μm以上であるこ
と、及びその無配向網状集合体の厚さが基材表面に膜状
に形成する場合も又基材の貫通孔内に充填して形成する
場合も、共に10μm以上あることが必要である。又、
Si34ファイバーの直径は主に0.01〜5μmの範
囲にあることが好ましく、その結果Si34ファイバー
の無配向網状集合体の細孔径は10μm以下であって、
且つ80体積%以上の気孔率が得られる。
Specifically, the length of the fiber is 100 μm or more, and its non-oriented reticulated state in order to obtain sufficient entanglement between the obtained Si 3 N 4 fibers and to obtain sufficient fixation to the substrate. It is necessary that the thickness of the aggregate is 10 μm or more in both cases of forming a film on the surface of the base material and filling the through holes of the base material. or,
It is preferable that the diameter of the Si 3 N 4 fiber is mainly in the range of 0.01 to 5 μm, and as a result, the pore size of the non-oriented reticulated aggregate of the Si 3 N 4 fiber is 10 μm or less,
Moreover, a porosity of 80% by volume or more is obtained.

【0023】次に、Si34ファイバーの無配向網状集
合体の形成方法について説明する。セラミックスファイ
バーの合成方法としては、ケイ素を主成分とする酸化物
セラミックス粉末と炭素との混合粉末を窒素ガス中で還
元することによりSi34やSiCからなるファイバー
を合成する熱炭素還元法が良く知られているが、この方
法により合成されるセラミックスファイバーは短繊維状
又はウイスカー状であってファイバーの長さが短いた
め、互いの絡み合いが少なく、ファイバーが脱落した
り、基材との十分な固着が得られない。
Next, a method for forming a non-oriented network assembly of Si 3 N 4 fibers will be described. As a method for synthesizing the ceramic fiber, there is a thermal carbon reduction method for synthesizing a fiber made of Si 3 N 4 or SiC by reducing a mixed powder of oxide ceramic powder containing silicon as a main component and carbon in a nitrogen gas. It is well known that the ceramic fibers synthesized by this method are short fibers or whiskers and the length of the fibers is short, so there is little entanglement with each other, the fibers fall off, and the fibers with the base material Can not be obtained.

【0024】そこで本発明者らは、非晶質(アモルファ
ス)Si34の高温での分解しやすさに注目し、その分
解を促進させることによって、細く長いSi34ファイ
バーが多量に合成され、しかも互いに無配向に絡み合っ
た網状集合体となることを見いだした。即ち、非晶質S
34は結晶質に比べて高温で蒸発しやすいが、単体で
はまだ蒸発量が不十分であり、細く長いファイバーを十
分に生成させることはできない。
Therefore, the present inventors pay attention to the ease of decomposing amorphous Si 3 N 4 at high temperature, and promote the decomposition to produce a large amount of thin and long Si 3 N 4 fibers. It was found that they were synthesized and formed into a net-like aggregate that was intertwined with each other in a non-oriented manner. That is, amorphous S
Although i 3 N 4 is more likely to evaporate at a higher temperature than a crystalline material, the amount of evaporation of i 3 N 4 is still insufficient, and a thin and long fiber cannot be sufficiently produced.

【0025】ところが、非晶質Si34に酸化チタン
(TiO2)を添加することにより蒸発量が急激に増加
し、蒸発したSi34が気相反応により基材上に長いS
34ファイバーとして多量に生成して、互いに絡み合
った無配向網状集合体が得られることが判明した。非晶
質Si34の蒸発を活性化し、気相反応によりSi34
ファイバーが絡み合った無配向網状集合体を得るために
は、TiO2の添加量を非晶質Si34に対して5重量
%以上とすることが必要であることも判った。
However, when titanium oxide (TiO 2 ) is added to amorphous Si 3 N 4 , the amount of evaporation rapidly increases, and the evaporated Si 3 N 4 becomes long S on the substrate due to the gas phase reaction.
It was found that a large amount of i 3 N 4 fibers were produced to obtain a non-oriented reticulated aggregate entangled with each other. The vaporization of amorphous Si 3 N 4 is activated, and the vapor phase reaction causes Si 3 N 4
It was also found that in order to obtain a non-oriented reticulated aggregate in which fibers are entangled with each other, it is necessary to add TiO 2 in an amount of 5% by weight or more with respect to amorphous Si 3 N 4 .

【0026】Si34ファイバーの生成原理は以下のよ
うに考えられる。基材上でSi34ファイバーが生成す
るためには、まず第1に非晶質Si34の蒸発量が大き
いことが必要であり、第2に生成したSi34蒸気が基
材上で気相反応によりファイバー状に成長することが必
要である。
The generation principle of Si 3 N 4 fiber is considered as follows. In order for the Si 3 N 4 fiber to be formed on the substrate, firstly it is necessary that the amount of evaporation of the amorphous Si 3 N 4 is large, and secondly, the generated Si 3 N 4 vapor is the basis. It is necessary to grow into fibers by vapor phase reaction on the material.

【0027】第1の要件に関しては、TiO2を添加し
た場合、TiO2と非晶質Si34中の窒素が反応して
TiNを生成すると共に、非晶質Si34中のN原子の
数の減少により非晶質Si34の構造が熱的に不安定な
ものとなる。このため非晶質Si34の蒸発が活性化さ
れ、同時にTiO2の一部はTiOガスとなって放出さ
れると考えられる。
Regarding the first requirement, when TiO 2 is added, TiO 2 reacts with nitrogen in amorphous Si 3 N 4 to form TiN, and N in amorphous Si 3 N 4 is generated. The decrease in the number of atoms makes the structure of amorphous Si 3 N 4 thermally unstable. Therefore, it is considered that the evaporation of the amorphous Si 3 N 4 is activated, and at the same time, part of TiO 2 is released as TiO gas.

【0028】第2の要件に関しては、発生したTiOガ
スが基材上で窒素と反応して微小なTiN核を生成し、
非晶質Si34蒸気がTiN核上で窒素と反応してSi
34が析出する。析出形態が粉末状でなくファイバー状
となるのは、Si34の成長がTiN核との相互作用に
よってある特定方向の結晶面のみが成長するためと考え
られる。
With respect to the second requirement, the generated TiO gas reacts with nitrogen on the substrate to form fine TiN nuclei,
Amorphous Si 3 N 4 vapor reacts with nitrogen on TiN nuclei to produce Si
3 N 4 is deposited. It is considered that the reason why the precipitation form is not powdery but fiber-like is that the growth of Si 3 N 4 grows only in the crystal plane in a certain direction due to the interaction with the TiN nucleus.

【0029】TiO2以外で非晶質Si34の構造を不
安定にする添加剤として、実験の結果、Fe、Cr、M
nの各酸化物等が確認できた。これらの添加剤は、Ti
2の場合とは逆に、非晶質Si34中のSi原子と反
応することによって、非晶質Si34の構造を不安定に
するものと考えられる。しかしながら、これらの添加剤
ではSi34ファイバーは生成しなかった。この場合S
34ファイバーが生成しないのは、TiN核の発生が
ないためと考えられる。
As an additive that makes the structure of amorphous Si 3 N 4 unstable other than TiO 2 , as a result of experiments, Fe, Cr, M
Each oxide of n, etc. could be confirmed. These additives are Ti
The case of O 2 in the opposite, by reacting with Si atoms in the amorphous Si 3 N 4, is believed to destabilize the structure of amorphous Si 3 N 4. However, these additives did not produce Si 3 N 4 fibers. In this case S
It is considered that the i 3 N 4 fiber is not generated because TiN nuclei are not generated.

【0030】TiO2の代わりに金属Ti、TiN又は
TiCを用いてもSi34ファイバーが生成するが、生
成量はごくわずかで、Si34ファイバーが絡み合った
無配向網状集合体を得ることはできなかった。Ti又は
その非酸化物を添加剤とした場合にSi34ファイバー
が生成するのは、図4から図6の模式図に示すように、
非晶質Si34の表面酸化膜SiO2の酸素とTi、T
iN又はTiCとが反応してTi35が生成し、このT
35が上記TiO2と同様の作用をし、非晶質Si3
4が不安定化して蒸発が活性化され同時にTiOガスが
放出されるためと考えられる。この場合ファイバーの生
成量が少ないのは、生成するTi35の量が少ないため
と考えられる。
Even if metallic Ti, TiN or TiC is used in place of TiO 2 , Si 3 N 4 fibers are produced, but the production amount is very small and a non-oriented reticulated aggregate in which Si 3 N 4 fibers are entangled with each other is obtained. I couldn't do that. When Ti or its non-oxide is used as an additive, Si 3 N 4 fibers are produced as shown in the schematic diagrams of FIGS. 4 to 6.
Oxygen of surface oxide film SiO 2 of amorphous Si 3 N 4 and Ti, T
The reaction with iN or TiC produces Ti 3 O 5 , and this T
i 3 O 5 acts in the same manner as TiO 2 described above, and amorphous Si 3 N
It is considered that 4 is destabilized, the evaporation is activated, and TiO gas is released at the same time. In this case, it is considered that the amount of produced fiber is small because the amount of produced Ti 3 O 5 is small.

【0031】上記の気相反応によりSi34ファイバー
が絡み合った無配向網状集合体を得るためには、非晶質
Si34とTiO2の混合粉末を窒素ガス雰囲気中にて
1400〜1600℃の温度及び300〜1200To
rrの炉内圧力で加熱する。その理由は、反応温度が1
400℃未満では非晶質Si34の蒸発が不十分であ
り、1600℃を越えると得られるSi34ファイバー
が短いウイスカー状となるためである。又、反応炉内の
圧力が300Torr未満では蒸発したSiとNの気相
反応が起こらず、1200Torrを越えると非晶質S
34の蒸発は起こり難くなる。
In order to obtain a non-oriented reticulated aggregate in which Si 3 N 4 fibers are entangled with each other by the above-mentioned gas phase reaction, a mixed powder of amorphous Si 3 N 4 and TiO 2 is contained in a nitrogen gas atmosphere at 1400 to 400. 1600 ° C temperature and 300-1200To
It heats with the furnace pressure of rr. The reason is that the reaction temperature is 1
This is because if the temperature is lower than 400 ° C., the evaporation of the amorphous Si 3 N 4 is insufficient, and if the temperature exceeds 1600 ° C., the obtained Si 3 N 4 fiber becomes short whiskers. Further, when the pressure in the reaction furnace is less than 300 Torr, vapor phase reaction between evaporated Si and N does not occur, and when it exceeds 1200 Torr, amorphous S
Evaporation of i 3 N 4 is less likely to occur.

【0032】上記気相反応により得られるSi34ファ
イバーの無配向網状集合体は、各ファイバーが単に絡み
合っただけで互いに接合していないが、前記基材上及び
/又は前記基材の貫通孔内に析出させたファイバーの無
配向網状集合体を、更に大気中にて800〜1500℃
の温度で熱処理し、次いで窒素ガス雰囲気中にて170
0〜1900℃の温度で焼成することにより、各Si3
4ファイバーが互いに接合した骨格構造を形成させる
ことができる。
The non-oriented reticulated aggregate of Si 3 N 4 fibers obtained by the above-mentioned gas phase reaction is such that the fibers are simply entangled with each other and are not joined to each other, but on the base material and / or the penetration of the base material. The non-oriented reticulated aggregate of fibers deposited in the pores is further heated in the atmosphere at 800 to 1500 ° C.
Heat treatment at a temperature of 170 ° C., then 170
By firing at a temperature of 0 to 1900 ° C, each Si 3
It is possible to form a skeletal structure in which N 4 fibers are joined together.

【0033】大気中にて800〜1500℃の温度で熱
処理することにより、Si34ファイバーの表面に適度
な厚さのSiO2層が形成され、これを再び窒素ガス雰
囲気中1700〜1900℃の温度で焼成することによ
り、表面のSiO2層が液相を形成して焼結が進行し、
その結果各Si34ファイバーが互いに接合した骨格構
造が得られるのである。尚、焼成時にはSi34が蒸発
しないように、1気圧以上の窒素圧が必要である。
By heat-treating in the air at a temperature of 800 to 1500 ° C., a SiO 2 layer having an appropriate thickness is formed on the surface of the Si 3 N 4 fiber, which is again in a nitrogen gas atmosphere at 1700 to 1900 ° C. By firing at the temperature of, the surface SiO 2 layer forms a liquid phase and sintering proceeds,
As a result, a skeleton structure in which the Si 3 N 4 fibers are joined to each other is obtained. It should be noted that a nitrogen pressure of 1 atm or more is required so that Si 3 N 4 does not evaporate during firing.

【0034】尚、大気中での熱処理温度が800℃未満
ではファイバー表面にSiO2層が十分形成されず、1
500℃を越えると急激に酸化が進行して内部までSi
2化するので好ましくない。又、窒素ガス雰囲気中で
の焼成温度が1700℃未満ではSiO2の液相化が進
まないためファイバー相互の焼結による骨格構造が形成
されず、1900℃を越えるとSi34の蒸発を抑える
ために窒素圧力を過剰にかける必要が生じるので好まし
くない。
If the heat treatment temperature in the atmosphere is less than 800 ° C., the SiO 2 layer is not sufficiently formed on the fiber surface, and
When the temperature exceeds 500 ° C, oxidation rapidly progresses, and Si reaches the inside.
It is not preferable because it becomes O 2 . Moreover, the firing temperature in a nitrogen gas atmosphere SiO 2 in the liquid phase of the skeletal structure is not formed by sintering of fiber cross for not proceed below 1700 ° C., the evaporation the Si 3 N 4 exceeds 1900 ° C. This is not preferable because it is necessary to apply an excessive nitrogen pressure to suppress it.

【0035】このようにして骨格構造を形成すれば、S
34ファイバーの無配向網状集合体自体の強度と基体
への密着強度が一層向上するので、より大きな差圧下で
フィルターを使用することが可能となる。又、熱処理温
度の変化により生成するSiO2量を調整でき、焼成温
度により焼結の進行程度を制御できるので、これらの調
整によってSi34ファイバーの無配向網状集合体の細
孔径を大きくする方向で制御できる。
When the skeleton structure is formed in this way, S
Since the strength of the non-oriented reticulated aggregate of i 3 N 4 fibers itself and the adhesion strength to the substrate are further improved, the filter can be used under a larger differential pressure. Further, the amount of SiO 2 produced can be adjusted by changing the heat treatment temperature, and the degree of progress of sintering can be controlled by the firing temperature. Therefore, the pore diameter of the non-oriented reticulated aggregate of Si 3 N 4 fibers can be increased by these adjustments. It can be controlled by direction.

【0036】尚、本発明のセラミックスフィルターの形
状は特に制限されず、例えば平板状であっても、或は円
筒状であっても良く、フィルターの用途によって適宜選
択できることは言うまでもない。
The shape of the ceramic filter of the present invention is not particularly limited, and may be, for example, a flat plate shape or a cylindrical shape, and it goes without saying that it can be appropriately selected depending on the application of the filter.

【0037】[0037]

【実施例】実施例1 図8に示すように、平均細孔径10μmで気孔率40体
積%の多孔質Si34からなり、直径25mmで厚さ
0.5mmの基材1aを、CVD装置の反応炉4内に設
置した。基材1aの下方の反応炉4内には、非晶質Si
34粉末に対してTiO2粉末を10重量%添加した混
合粉末を、25×25×10mmに成形した原料粉末成
形体5を配置した。
Example 1 As shown in FIG. 8, a substrate 1a made of porous Si 3 N 4 having an average pore diameter of 10 μm and a porosity of 40% by volume and having a diameter of 25 mm and a thickness of 0.5 mm was formed by a CVD apparatus. It was installed in the reaction furnace 4. In the reaction furnace 4 below the substrate 1a, amorphous Si
A raw powder compact 5 was formed by molding a mixed powder obtained by adding 10% by weight of TiO 2 powder to 3 N 4 powder into 25 × 25 × 10 mm.

【0038】反応炉4内にキャリアガスとしてN2ガス
を0.5リットル/分の流速で流し、ヒーター6により
炉内の反応温度を1350〜1650℃の範囲で変化さ
せ、及び炉内圧力を300〜700Torrの範囲で変
化させて、それぞれ2時間の気相合成を行った。本発明
の試料については基材1の表面上にSi34ファイバー
の無配向網状集合体が厚さ10μm以上に形成され、そ
の光学顕微鏡写真(×500)を図7に示した。このS
34ファイバーの直径は約0.5〜1.0μmであり、
その長さは約1mm以上であった。
N 2 gas as a carrier gas was flowed in the reaction furnace 4 at a flow rate of 0.5 liter / min, the reaction temperature in the furnace was changed in the range of 1350 to 1650 ° C. by the heater 6, and the pressure in the furnace was changed. The vapor phase synthesis was carried out for 2 hours while changing the range of 300 to 700 Torr. With respect to the sample of the present invention, a non-oriented reticulated aggregate of Si 3 N 4 fibers having a thickness of 10 μm or more was formed on the surface of the substrate 1, and an optical micrograph (× 500) thereof is shown in FIG. 7. This S
The diameter of the i 3 N 4 fiber is about 0.5 to 1.0 μm,
The length was about 1 mm or more.

【0039】次に、得られた各試料について、気相合成
前後の重量変化と断面の光学顕微鏡観察により、Si3
4ファイバーの無配向網状集合体の気孔率を求めた。
又、基材及びフィルターの細孔径分布を測定し、両者の
差からSi34ファイバーの無配向網状集合体の細孔径
分布を決定した。ただし、Si34ファイバーの生成し
なかった試料はもちろん、Si34ウイスカーの生成し
た試料でも測定中にウイスカーの集合体が剥がれ落ちた
試料については測定ができなかった。これらの結果を表
1に示した。
Next, for each of the obtained samples, Si 3
The porosity of the non-oriented reticulated aggregate of N 4 fibers was determined.
Further, the pore size distribution of the substrate and the filter was measured, and the pore size distribution of the non-oriented reticulated aggregate of Si 3 N 4 fibers was determined from the difference between them. However, not only the sample in which the Si 3 N 4 fiber was not formed, but also the sample in which the Si 3 N 4 whiskers were formed, in which the aggregate of the whiskers fell off during the measurement, could not be measured. The results are shown in Table 1.

【0040】尚、細孔径分布の測定は、ASTM F−
316に準拠し、エアーフロー法による孔径分布測定器
を用いて、乾燥した基材とフィルターについて空気圧力
(P)を変えて空気流量(Fdry)を測定し、次にイソ
プロピルアルコールで濡らした基材とフィルターについ
て同様に空気圧力(P)を変えて空気流量(Fwet)を
測定し、それぞれの細孔径分布Q=Fwet/Fdryの差か
ら無配向網状集合体の細孔径分布を求めた。
The pore size distribution is measured by ASTM F-
316, the air flow rate (Fdry) was measured by changing the air pressure (P) for the dried substrate and the filter using a pore size distribution measuring instrument by the air flow method, and then the substrate wetted with isopropyl alcohol Similarly, the air pressure (P) was changed for the filter and the air flow rate (Fwet) was measured, and the pore size distribution of the non-oriented reticulated aggregate was determined from the difference between the respective pore size distributions Q = Fwet / Fdry.

【0041】[0041]

【表1】 反応温度 炉内圧力 平均細孔径 気孔率試料 (℃) (Torr) 生成物 (μm) (体積%) 1* 1350 300 生成せず 測定不可 測定不可 2* 1350 700 生成せず 測定不可 測定不可 3 1400 300 ファイバー 0.12 88 4 1500 500 ファイバー 0.25 83 5 1550 500 ファイバー 0.88 82 6 1600 700 ファイバー 2.25 81 7* 1650 300 ウイスカー 測定不可 測定不可 8* 1650 700 ウイスカー 測定不可 測定不可 (注)表中の*を付した試料は比較例である(以下同
じ)。
[Table 1] Reaction temperature Furnace pressure Average pore size Porosity Sample (° C) (Torr) Product (μm) (Volume%) 1 * 1350 300 Not generated Not measurable Not measurable 2 * 1350 700 Not generated Not measurable Not measurable 3 1400 300 Fiber 0.12 88 4 1500 500 Fiber 0.25 83 5 1550 500 Fiber 0.88 82 6 1600 700 Fiber 2.25 81 7 * 1650 300 Whisker not measurable Not measurable 8 * 1650 700 Whisker measurable Not measurable (Note) Samples marked with * are comparative examples (the same applies hereinafter).

【0042】表1の結果から、反応温度及び炉内圧力が
本発明の範囲内にある試料では、細長いSi34ファイ
バーが絡み合った無配向網状集合体が形成され、この無
配向網状集合体は細孔径が10μm以下で且つ気孔率が
80体積%以上と大きく、フィルターとして最適なもの
であることが判る。
From the results shown in Table 1, in the sample in which the reaction temperature and the pressure in the furnace are within the range of the present invention, a non-oriented reticulated aggregate in which elongated Si 3 N 4 fibers are entangled with each other is formed. It has a large pore diameter of 10 μm or less and a large porosity of 80% by volume or more, and it can be seen that it is optimum as a filter.

【0043】実施例2 実施例1で作製した平均細孔径0.25μmの試料4
(反応温度1500℃、炉内圧力500Torr)のフ
ィルターを、更に大気中において800〜1500℃で
2時間熱処理し、続いて10気圧のN2ガス雰囲気中に
おいて1600〜1950℃で焼成した。得られた各試
料について、実施例1と同様にSi34ファイバーの無
配向網状集合体の平均細孔径を求め、その結果を表2に
示した。
Example 2 Sample 4 prepared in Example 1 and having an average pore size of 0.25 μm
The filter (reaction temperature 1500 ° C., furnace pressure 500 Torr) was further heat-treated in the air at 800 to 1500 ° C. for 2 hours, and subsequently fired at 1600 to 1950 ° C. in a N 2 gas atmosphere of 10 atm. For each of the obtained samples, the average pore diameter of the non-oriented reticulated aggregate of Si 3 N 4 fibers was determined in the same manner as in Example 1, and the results are shown in Table 2.

【0044】[0044]

【表2】 [Table 2]

【0045】表2の結果から判るように、Si34ファ
イバーの無配向網状集合体の大気中での熱処理温度及び
2ガス雰囲気中での焼成温度を制御することにより、
その細孔径を変化させることが可能である。
As can be seen from the results in Table 2, by controlling the heat treatment temperature in the air and the firing temperature in the N 2 gas atmosphere of the unoriented reticulated aggregate of Si 3 N 4 fibers,
It is possible to change the pore size.

【0046】実施例3 平均細孔径10μmで気孔率40体積%の多孔質Si3
4基材上に平均細孔径0.55μmで気孔率約83体積
%のSi34ファイバーの無配向網状集合体を設けた実
施例2の試料10のフィルターと、同じ多孔質Si34
基材上に平均細孔径1.00μmで気孔率約83体積%
のSi34ファイバーの無配向網状集合体を設けた実施
例2の試料16のフィルターを用意した。これらのSi
34ファイバーの無配向網状集合体の厚さは共に20μ
mとした。
Example 3 Porous Si 3 having an average pore diameter of 10 μm and a porosity of 40% by volume
And it filters the sample 10 of Example 2 in which a non-oriented mesh aggregates the Si 3 N 4 fibers to about 83 volume% porosity with an average pore diameter 0.55μm on the N 4 base material, the same porous Si 3 N Four
Average pore size of 1.00 μm on the substrate with porosity of about 83% by volume
The filter of the sample 16 of Example 2 provided with the non-oriented reticulated aggregate of Si 3 N 4 fibers was prepared. These Si
The thickness of the non-oriented reticulated aggregate of 3 N 4 fibers is 20 μm.
m.

【0047】一方、比較例として平均細孔径10μmで
気孔率40体積%の多孔質Al23基材上に、平均細孔
径3.0μmで厚さ50μmのAl23層と平均細孔径
0.5μmで厚さ30μmの多孔質Al23層を順次形
成した市販のフィルター(試料a)、及び同じ多孔質A
23基材上に、平均細孔径5.0μmで厚さ50μm
のAl23層と平均細孔径1.0μmで厚さ30μmの
多孔質Al23層を順次形成した市販のフィルター(試
料b)を準備した。
On the other hand, as a comparative example, an Al 2 O 3 layer having an average pore diameter of 3.0 μm and a thickness of 50 μm and an average pore diameter were formed on a porous Al 2 O 3 substrate having an average pore diameter of 10 μm and a porosity of 40% by volume. A commercially available filter (Sample a) in which a porous Al 2 O 3 layer having a thickness of 0.5 μm and a thickness of 30 μm was sequentially formed, and the same porous A
50 μm thickness with average pore size of 5.0 μm on l 2 O 3 substrate
Commercially available filters the Al 2 O 3 layer and an average porous the Al 2 O 3 layer with a thickness of 30μm in pore diameter 1.0μm are successively formed (Sample b) was prepared.

【0048】これらのフィルター試料を用いて、AST
M F−316に準拠し、透過流量測定器により、差圧
0.95kg/cm2でイソプロピルアルコール(IP
A)及び空気を減圧濾過した。得られた各フィルターの
透過流量を表3に示した。
Using these filter samples, AST
In accordance with MF-316, a permeation flow rate measuring device was used to measure the pressure difference of 0.95 kg / cm 2 with isopropyl alcohol (IP
A) and air were vacuum filtered. Table 3 shows the permeation flow rates of the obtained filters.

【0049】[0049]

【表3】 [Table 3]

【0050】表3から、試料10及び16の本発明のフ
ィルターは、比較例である試料a及びbの市販のフィル
ターと比較して、厚さが1/4及び気孔率が約2倍にな
っているため3〜4倍の優れた透過性能を有することが
判る。
From Table 3, the filters of the present invention of Samples 10 and 16 have a thickness of 1/4 and a porosity approximately double that of the commercially available filters of Samples a and b which are comparative examples. Therefore, it can be seen that it has an excellent transmission performance of 3 to 4 times.

【0051】実施例4 実施例3の各フィルターを、温度1400℃に加熱した
炉内(大気雰囲気)に10分間保持した後、室温まで急
冷した。冷却後の各フィルターを用いて、IPA中に分
散させたポリエチレンラテックスからなる直径0.7μ
mと直径1.3μmの各均一粒子を濾過し、それぞれ捕
集率を測定した。結果を表4に示した。
Example 4 Each filter of Example 3 was held in a furnace (atmosphere atmosphere) heated to a temperature of 1400 ° C. for 10 minutes and then rapidly cooled to room temperature. The diameter of the polyethylene latex dispersed in IPA was 0.7μ using each filter after cooling.
m and each uniform particle having a diameter of 1.3 μm were filtered and the collection rate was measured. The results are shown in Table 4.

【0052】[0052]

【表4】 [Table 4]

【0053】試料a及びbの市販のAl23からなるフ
ィルターは、加熱後に基材及び膜部に熱衝撃による亀裂
が存在しており、このため捕集率が低下したが、本発明
の試料10及び16のフィルターはSi34で構成され
ているため優れた耐熱衝撃性を示し、加熱によっても亀
裂は生ぜず高い捕集率を維持していた。
The samples a and b of the commercially available filters made of Al 2 O 3 had cracks due to thermal shock in the base material and the film portion after heating, and thus the collection rate was lowered. Since the filters of Samples 10 and 16 were made of Si 3 N 4 , they exhibited excellent thermal shock resistance, and did not crack even when heated, and maintained a high collection rate.

【0054】実施例5 相対密度99%の緻密なSiCからなる内径25mm、
厚さ0.5mm、長さ20mmの円筒形の基材を用意
し、その円筒の側壁には一定の直径の貫通孔3を等間隔
に多数形成し、試料毎に貫通孔の直径を0.5〜15m
mの範囲で変えると共に側壁の気孔率が全て50体積%
となるように調整した。
Example 5 An inner diameter of 25 mm made of dense SiC having a relative density of 99%,
A cylindrical base material having a thickness of 0.5 mm and a length of 20 mm is prepared, and a large number of through holes 3 having a constant diameter are formed at equal intervals on the side wall of the cylinder. 5-15m
The porosity of the side wall is all 50% by volume while changing within the range of m.
Was adjusted so that

【0055】次に、図9に示すように、円筒形の基材1
bの側壁の貫通孔3以外をマスキングし、CVD装置の
反応炉4内に設置した。一方、基材1bの下方の反応炉
4内には、非晶質Si34粉末に対してTiO2粉末を
10重量%添加した混合粉末を、25×25×10mm
に成形した原料粉末成形体5を配置した。
Next, as shown in FIG. 9, a cylindrical substrate 1
The portions other than the through holes 3 on the side wall of b were masked and placed in the reaction furnace 4 of the CVD apparatus. On the other hand, in the reaction furnace 4 below the base material 1b, a mixed powder obtained by adding 10% by weight of TiO 2 powder to amorphous Si 3 N 4 powder was prepared as 25 × 25 × 10 mm.
The raw material powder compact 5 molded into the above was placed.

【0056】反応炉4内にキャリアガスとしてN2ガス
を0.5リットル/分の流速で流し、反応温度1500
℃及び炉内圧力700Torrにて気相合成を行い、基
材1bの側壁に設けた貫通孔3内を満たすようにSi3
4ファイバーの無配向網状集合体を形成した。その
後、大気中にて800℃で2時間熱処理し、更に10気
圧のN2ガス雰囲気中にて1700℃で2時間焼成し
た。得られたSi34ファイバーの無配向網状集合体
は、試料19〜23のいずれにおいても平均細孔径が
0.5μmで、気孔率は約83体積%であった。
N 2 gas as a carrier gas was flowed in the reaction furnace 4 at a flow rate of 0.5 liter / min to obtain a reaction temperature of 1500.
The vapor phase synthesis is carried out at a temperature of 700 ° C. and a furnace pressure of 700 Torr, and Si 3 is filled so as to fill the through holes 3 formed in the side wall of the base material 1b.
An unoriented reticulated aggregate of N 4 fibers was formed. After that, heat treatment was performed at 800 ° C. for 2 hours in the air, and further, firing was performed at 1700 ° C. for 2 hours in a N 2 gas atmosphere of 10 atm. The obtained non-oriented reticulated aggregate of Si 3 N 4 fibers had an average pore diameter of 0.5 μm and a porosity of about 83% by volume in each of Samples 19 to 23.

【0057】参考のために、平均細孔径が10μmで気
孔率50体積%の多孔質SiCからなる上記と同一寸法
の円筒形の基材(貫通孔無し)を用い、上記と同様にし
て基材の円筒内周面全体に平均細孔径及び気孔率が上記
各試料と同じSi34ファイバーの無配向網状集合体を
20μmの厚さに形成した(試料24)。
For reference, a cylindrical base material (without through-holes) having the same size as described above and made of porous SiC having an average pore diameter of 10 μm and a porosity of 50% by volume was used. A non-oriented reticulated aggregate of Si 3 N 4 fibers having the same average pore diameter and porosity as each of the above samples was formed on the entire inner peripheral surface of the cylinder to a thickness of 20 μm (Sample 24).

【0058】これらの各フィルター試料を用い、AST
M F−316に準拠して、試料透過流量測定器により
差圧1.0kg/cm2でイソプロピルアルコール(IP
A)及び空気を減圧濾過し、透過流量を測定した。又、
各フィルター試料について、IPA中に分散させたポリ
エチレンラテックスからなる直径0.7μmの均一粒子
を濾過し、それぞれ捕集率を測定した。結果を表5に示
した。
Using each of these filter samples, AST
In compliance with M F-316, isopropyl alcohol (IP differential pressure 1.0 kg / cm 2 by the sample permeate flow meter
A) and air were vacuum filtered and the permeation flow rate was measured. or,
For each filter sample, uniform particles of 0.7 μm in diameter made of polyethylene latex dispersed in IPA were filtered, and the collection rate was measured. The results are shown in Table 5.

【0059】[0059]

【表5】 基材側壁貫通孔 同気孔率 透過流量(ml/min・cm2) 捕集率試料 孔径(mm) (体積%) IPA 空気 (%) 19* 0.5 50 211 302 69 20 1.0 50 233 311 98 21 5.0 50 266 344 98 22 9.0 50 341 398 98 23* 15 50 399 425 60 24 貫通孔無し 50 194 288 98[Table 5] Substrate side wall through hole Same porosity Permeation flow rate (ml / min · cm 2 ) Collection rate Sample hole diameter (mm) (volume%) IPA Air (%) 19 * 0.5 50 211 302 69 20 1.0 50 233 311 98 21 5.0 50 266 344 98 22 9.0 50 341 398 98 23 * 15 50 399 425 60 24 No through hole 50 194 288 98

【0060】孔径が1〜9mmの貫通孔内にSi34
ァイバーの無配向網状集合体を充填固着した試料20〜
22の各フィルターは、貫通孔の無い多孔質SiC基材
の表面に同じ無配向網状集合体を形成した試料24のフ
ィルターよりも優れた透過性能を示すことが判る。又、
貫通孔の孔径が0.5mm及び15mmの試料19及び
23の各フィルターは、透過性能は優れているものの、
前者では貫通孔内にSi34ファイバーが充填され難
く、後者では貫通孔の中央部におけるファイバーの無配
向網状集合体の厚さが薄くなるため、共に微粒子の捕集
率が著しく低下した。
Sample 20 in which a non-oriented network assembly of Si 3 N 4 fibers was filled and fixed in a through hole having a hole diameter of 1 to 9 mm
It can be seen that each of the filters of No. 22 exhibits superior permeation performance to the filter of Sample 24 in which the same non-oriented reticulated aggregate is formed on the surface of the porous SiC substrate having no through holes. or,
Each of the filters of Samples 19 and 23 having a through hole diameter of 0.5 mm and 15 mm has excellent transmission performance,
In the former case, it was difficult to fill the Si 3 N 4 fibers in the through holes, and in the latter case, the thickness of the non-oriented reticulated aggregate of fibers in the central portion of the through hole was thin, so that the collection rate of fine particles was significantly reduced.

【0061】[0061]

【発明の効果】本発明によれば、セラミックスの基材
に、平均細孔径が小さく且つ気孔率が大きいSi34
ァイバーの無配向網状集合体を設けた、耐熱性、耐熱衝
撃性、耐酸化性に優れたセラミックスフィルターを提供
することができる。このセラミックスフィルターは極め
て優れた透過性能及び捕集率を有するので、液体中又は
気体中の細菌や微粒子等の捕集フィルターとして有効で
あるほか、触媒担体としても利用できる。
According to the present invention, a ceramic base material is provided with a non-oriented reticulated aggregate of Si 3 N 4 fibers having a small average pore diameter and a large porosity. It is possible to provide a ceramics filter having excellent chemical property. Since this ceramics filter has extremely excellent permeation performance and collection rate, it is effective as a collection filter for bacteria and fine particles in liquid or gas, and can also be used as a catalyst carrier.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のセラミックスフィルターの一具体例を
示す概略断面図である。
FIG. 1 is a schematic sectional view showing a specific example of a ceramics filter of the present invention.

【図2】本発明のセラミックスフィルターの他の具体例
を示す概略断面図である。
FIG. 2 is a schematic cross-sectional view showing another specific example of the ceramics filter of the present invention.

【図3】本発明のセラミックスフィルターの別の具体例
を示す概略断面図である。
FIG. 3 is a schematic cross-sectional view showing another specific example of the ceramics filter of the present invention.

【図4】非晶質Si34にTiNを添加した場合におけ
る両者の初期の反応過程を説明するための模式図であ
る。
FIG. 4 is a schematic diagram for explaining an initial reaction process between amorphous Si 3 N 4 and TiN when TiN is added.

【図5】非晶質Si34にTiNを添加した場合におけ
るTi35の生成とTiOガスの発生が起こる次の反応
過程を説明するための模式図である。
FIG. 5 is a schematic diagram for explaining the next reaction process in which generation of Ti 3 O 5 and generation of TiO gas occur when TiN is added to amorphous Si 3 N 4 .

【図6】非晶質Si34にTiNを添加した場合におけ
る非晶質Si34の蒸発が起こる最後の反応過程を説明
するための模式図である。
6 is a schematic diagram for explaining the end of the reaction process in which the evaporation of the amorphous Si 3 amorphous Si in case of adding TiN to N 4 3 N 4 occurs.

【図7】本発明におけるSi34ファイバーの無配向網
状集合体の形状を示す顕微鏡写真(×500)である。
FIG. 7 is a micrograph (× 500) showing the shape of a non-oriented network assembly of Si 3 N 4 fibers in the present invention.

【図8】本発明において平板状の基材上にSi34ファ
イバーの無配向網状集合体を形成する装置の概略断面図
である。
FIG. 8 is a schematic cross-sectional view of an apparatus for forming an unoriented reticulated aggregate of Si 3 N 4 fibers on a flat substrate in the present invention.

【図9】本発明において円筒形の基材上にSi34ファ
イバーの無配向網状集合体を形成する装置の概略断面図
である。
FIG. 9 is a schematic sectional view of an apparatus for forming a non-oriented reticulated aggregate of Si 3 N 4 fibers on a cylindrical substrate in the present invention.

【符号の説明】[Explanation of symbols]

1a、1b 基材 2a、2b Si34ファイバーの無配向網状集合体 3 貫通孔 4 反応炉 5 原料粉末成形体 6 ヒーター1a, 1b Substrate 2a, 2b Non-oriented reticulated aggregate of Si 3 N 4 fiber 3 Through hole 4 Reactor 5 Raw material powder compact 6 Heater

フロントページの続き (56)参考文献 特開 平1−176285(JP,A) 特開 昭59−142820(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 39/00 - 39/20 Continuation of the front page (56) References JP-A-1-176285 (JP, A) JP-A-59-142820 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01D 39 / 00-39/20

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 連通気孔の多孔質セラミックスからなる
基材と、この基材上に気相合成により形成され且つ固着
された長さ100μm以上の窒化ケイ素ファイバーが厚
さ10μm以上に絡み合った無配向網状集合体とからな
るセラミックスフィルター。
1. A base material made of porous ceramics having continuous ventilation holes, and formed and fixed on the base material by vapor phase synthesis.
A ceramics filter comprising a non-oriented reticulated aggregate in which silicon nitride fibers having a length of 100 μm or more are entangled with a thickness of 10 μm or more.
【請求項2】 直径1〜10mmの多数の貫通孔を形成
したセラミックスからなる基材と、この基材の貫通孔内
気相合成により形成され且つ充填固着された長さ10
0μm以上の窒化ケイ素ファイバーが厚さ10μm以上
に絡み合った無配向網状集合体とからなるセラミックス
フィルター。
2. A base material made of ceramics having a large number of through holes having a diameter of 1 to 10 mm, and a length 10 formed by gas phase synthesis and filled and fixed in the through holes of the base material.
A ceramics filter comprising a non-oriented reticulated aggregate in which silicon nitride fibers having a thickness of 0 μm or more are entangled with a thickness of 10 μm or more.
【請求項3】 前記窒化ケイ素ファイバーは、直径が
0.01〜5μmであることを特徴とする、請求項1又
は2に記載のセラミックスフィルター。
3. The ceramic filter according to claim 1, wherein the silicon nitride fiber has a diameter of 0.01 to 5 μm.
【請求項4】 前記窒化ケイ素ファイバーの無配向網状
集合体は、絡み合った各窒化ケイ素ファイバーが互いに
接合した骨格構造を有することを特徴とする、請求項1
〜3のいずれかに記載のセラミックスフィルター。
4. The non-oriented reticulated aggregate of silicon nitride fibers has a skeleton structure in which entangled silicon nitride fibers are joined to each other.
The ceramic filter according to any one of 1 to 3.
【請求項5】 前記窒化ケイ素ファイバーの無配向網状
集合体の細孔径が10μm以下で、気孔率が80体積%
以上であることを特徴とする、請求項1〜4のいずれか
に記載のセラミックスフィルター。
5. The non-oriented reticulated aggregate of silicon nitride fibers has a pore size of 10 μm or less and a porosity of 80% by volume.
It is above, The ceramics filter in any one of Claims 1-4 characterized by the above-mentioned.
【請求項6】 前記基材が窒化ケイ素又は炭化ケイ素か
らなることを特徴とする、請求項1又は2に記載のセラ
ミックスフィルター。
6. The ceramic filter according to claim 1, wherein the base material is made of silicon nitride or silicon carbide.
【請求項7】 連通気孔の多孔質セラミックスからなる
基材又は直径1〜10mmの多数の貫通孔を形成したセ
ラミックスからなる基材を反応炉内に配置し、酸化チタ
ン粉末と混合した非晶質窒化ケイ素粉末を窒素ガス雰囲
気中にて1400〜1600℃の温度及び300〜12
00Torrの炉内圧力で加熱して気相反応させ、前記
基材上及び/又は前記基材の貫通孔内に、長さ100μ
m以上の窒化ケイ素ファイバーが絡み合った無配向網状
集合体を厚さ10μm以上に析出固着させることを特徴
とするセラミックスフィルターの製造方法。
7. An amorphous material in which a base material made of porous ceramics having continuous ventilation holes or a base material made of ceramics having a large number of through holes having a diameter of 1 to 10 mm is placed in a reaction furnace and mixed with titanium oxide powder. The silicon nitride powder is placed in a nitrogen gas atmosphere at a temperature of 1400 to 1600 ° C. and 300 to 12
100 μm in length on the base material and / or in the through-holes of the base material by heating at a furnace pressure of 00 Torr to cause a gas phase reaction.
A method for producing a ceramics filter, comprising depositing and fixing a non-oriented reticulated aggregate in which silicon nitride fibers of m or more are entangled with each other to a thickness of 10 μm or more.
【請求項8】 酸化チタンの添加量が非晶質窒化ケイ素
に対して5重量%以上であることを特徴とする、請求項
7に記載のセラミックスフィルターの製造方法。
8. The method for producing a ceramics filter according to claim 7, wherein the amount of titanium oxide added is 5% by weight or more with respect to the amorphous silicon nitride.
【請求項9】 前記基材上及び/又は前記基材の貫通孔
内に窒化ケイ素ファイバーの無配向網状集合体を析出固
着させた後、更に大気中にて800〜1500℃の温度
で熱処理し、次いで窒素ガス雰囲気中にて1700〜1
900℃の温度で焼成することにより、各窒化ケイ素フ
ァイバーが互いに接合した骨格構造を形成させることを
特徴とする、請求項7に記載のセラミックスフィルター
の製造方法。
9. A non-oriented reticulated aggregate of silicon nitride fibers is deposited and fixed on the base material and / or in the through holes of the base material, and then heat-treated at a temperature of 800 to 1500 ° C. in the atmosphere. , Then 1700 to 1 in a nitrogen gas atmosphere
The method for producing a ceramics filter according to claim 7, wherein a skeleton structure in which the silicon nitride fibers are bonded to each other is formed by firing at a temperature of 900 ° C.
JP35104693A 1993-12-28 1993-12-28 Ceramic filter and method of manufacturing the same Expired - Fee Related JP3412223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35104693A JP3412223B2 (en) 1993-12-28 1993-12-28 Ceramic filter and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35104693A JP3412223B2 (en) 1993-12-28 1993-12-28 Ceramic filter and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07185240A JPH07185240A (en) 1995-07-25
JP3412223B2 true JP3412223B2 (en) 2003-06-03

Family

ID=18414678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35104693A Expired - Fee Related JP3412223B2 (en) 1993-12-28 1993-12-28 Ceramic filter and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3412223B2 (en)

Also Published As

Publication number Publication date
JPH07185240A (en) 1995-07-25

Similar Documents

Publication Publication Date Title
Ha et al. Properties of the TiO2 membranes prepared by CVD of titanium tetraisopropoxide
EP0571508B1 (en) Catalyst or membrane precursor systems, catalyst or membrane systems, and method of preparing such systems
US20080095690A1 (en) Nano-sized needle crystal mullite film and method of making
CA1321470C (en) Ceramic material permitting the passage of fluids and based on silicon powder reaction-bonded in the presence of carbon
US5952421A (en) Synthesis of preceramic polymer-stabilized metal colloids and their conversion to microporous ceramics
JPH03180513A (en) Fine pipe-like ceramic substance and its manufacture
JP3135110B2 (en) Porous ceramic film and method for producing the same
EP1177028A1 (en) High performance filters comprising inorganic fibers having inorganic fiber whiskers grown thereon
JP3966738B2 (en) Method for producing porous ceramic material
KR100952341B1 (en) Method for manufacturing porous SiC and porous SiC manufactured thereby
KR0157663B1 (en) Exhaust gas purification filter medium and its production
WO2009001970A1 (en) Separation membrane complex, and method for production of separation membrane complex
JP3769739B2 (en) Porous ceramic film and manufacturing method thereof
EP1129766B1 (en) Porous ceramic laminate and production thereof
JPH01145378A (en) Silicon carbide honeycomb structure and production thereof
JP3412223B2 (en) Ceramic filter and method of manufacturing the same
JP2002066280A (en) Gas separation filter and method for manufacturing the same
JP3850668B2 (en) Porous inorganic material having porous ceramic membrane and method for producing the same
WO2008026789A1 (en) Whiskered porous body and method for manufacturing the same
JP4471556B2 (en) Porous ceramic material and method for producing the same
JP2000189772A (en) Separation filter of hydrogen gas and its production
JPH01133988A (en) Production of reticular silica whisker-porous ceramic composite
KR20040082529A (en) Method for Manufacturing Porous Material with Large Specific Surface Area
JP3943460B2 (en) Heat resistant hydrogen separation inorganic membrane and method for producing the same
JP4448915B2 (en) Laminated porous body, method for producing the same, and filter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees