JP3411495B2 - Cryogenic insulation and epoxy adhesive - Google Patents

Cryogenic insulation and epoxy adhesive

Info

Publication number
JP3411495B2
JP3411495B2 JP4031398A JP4031398A JP3411495B2 JP 3411495 B2 JP3411495 B2 JP 3411495B2 JP 4031398 A JP4031398 A JP 4031398A JP 4031398 A JP4031398 A JP 4031398A JP 3411495 B2 JP3411495 B2 JP 3411495B2
Authority
JP
Japan
Prior art keywords
resin
epoxy resin
insulating material
glass cloth
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4031398A
Other languages
Japanese (ja)
Other versions
JPH117832A (en
Inventor
徹 植木
賢一 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arisawa Manufacturing Co Ltd
Original Assignee
Arisawa Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arisawa Manufacturing Co Ltd filed Critical Arisawa Manufacturing Co Ltd
Priority to JP4031398A priority Critical patent/JP3411495B2/en
Publication of JPH117832A publication Critical patent/JPH117832A/en
Application granted granted Critical
Publication of JP3411495B2 publication Critical patent/JP3411495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Insulating Bodies (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、極低温下でも絶縁
性及び接着性に秀れた極低温用絶縁材及びエポキシ系接
着剤に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryogenic insulating material and an epoxy adhesive which are excellent in insulation and adhesiveness even at cryogenic temperatures.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】超電導
コイルの使用時など、極低温において超電導状態を確保
し維持するためには、絶縁材の絶縁破壊電圧などの絶縁
能力も重要であるが、絶縁材と導電体との接着状態が特
に重要となる。
2. Description of the Related Art In order to secure and maintain a superconducting state at an extremely low temperature such as when using a superconducting coil, the insulation capacity such as the dielectric breakdown voltage of the insulating material is important. The adhesion state between the insulating material and the conductor is particularly important.

【0003】絶縁材の材料としては、よくガラス繊維と
エポキシ樹脂とからなるガラス繊維強化複合材が使用さ
れるが、このガラス繊維強化複合材を極低温にまで冷却
すると、樹脂部にクラックが発生してガラス繊維強化複
合材が剥離したりする現象が生じてしまう。そして、ガ
ラス繊維強化複合材が剥離すると超電導材が容易に可動
でき、超電導材が振動して発熱し、この振動に伴う温度
上昇によって超電導状態が壊れてしまう現象(いわゆる
クエンチ現象。)が起きてしまうという問題がある。
A glass fiber reinforced composite material composed of glass fiber and epoxy resin is often used as a material for the insulating material. When the glass fiber reinforced composite material is cooled to an extremely low temperature, cracks occur in the resin portion. As a result, the phenomenon that the glass fiber reinforced composite material peels off occurs. Then, when the glass fiber reinforced composite material is peeled off, the superconducting material can be easily moved, the superconducting material vibrates and generates heat, and a phenomenon (so-called quench phenomenon) occurs in which the superconducting state is broken by the temperature rise accompanying this vibration. There is a problem that it ends up.

【0004】一方、高性能の絶縁材として、ガラス繊維
強化複合材などの一般的な絶縁材と比較して約10倍以
上の絶縁破壊電圧を示す、信頼性の高いポリイミド樹脂
フィルムが使用されている。しかし、このポリイミド樹
脂フィルムは接着性が悪いという欠点を有している。
On the other hand, as a high-performance insulating material, a highly reliable polyimide resin film showing a breakdown voltage about 10 times or more as compared with a general insulating material such as a glass fiber reinforced composite material is used. There is. However, this polyimide resin film has the drawback of poor adhesion.

【0005】従って、ポリイミド樹脂フィルムと例えば
導電材とを接合する場合、或いはポリイミド樹脂フィル
ムをガラスクロスを介して接合する場合においては、エ
ポキシ樹脂などの比較的接着力の高い樹脂を接着剤とし
て使用することで接着性の悪さを補っている。
Therefore, when joining a polyimide resin film and a conductive material, for example, or when joining a polyimide resin film through a glass cloth, a resin having a relatively high adhesive force such as an epoxy resin is used as an adhesive. By doing so, the poor adhesiveness is compensated.

【0006】しかし、上記構成によっても、極低温域に
おいては各構成材料間での各々の熱収縮率の違いから歪
みが生じ、接着力が不十分となる(尚、常温域において
は良好に接着される。)。
However, even with the above-mentioned structure, distortion occurs due to the difference in the heat shrinkage ratio between the respective constituent materials in the extremely low temperature region, and the adhesive force becomes insufficient (it should be noted that good adhesion occurs in the normal temperature region). Be done.).

【0007】本発明は、上記問題点を解決するもので、
極低温条件においてもポリイミド樹脂フィルムの高い絶
縁性を有効に発揮させることができる極低温用絶縁材及
びエポキシ系接着剤を提供するものである。
The present invention solves the above problems,
(EN) Provided are an cryogenic insulating material and an epoxy adhesive which can effectively exhibit the high insulating properties of a polyimide resin film even under cryogenic conditions.

【0008】[0008]

【課題を解決するための手段】無機基材とポリイミド樹
脂フィルムとを、エポキシ樹脂にポリビニルホルマール
樹脂,フェノキシ樹脂若しくはカルボキシル化NBRゴ
を5%(重量)以上混入したエポキシ樹脂組成物を介
して付設して成ることを特徴とする極低温用絶縁材に係
るものである。
[Means for Solving the Problems] Inorganic base material and polyimide resin film are combined with epoxy resin and polyvinyl formal.
Resin, phenoxy resin or carboxylated NBR
The present invention relates to a cryogenic insulating material, characterized in that it is provided through an epoxy resin composition containing 5% (by weight) or more of aluminum.

【0009】また、無機基材に、エポキシ樹脂にポリビ
ニルホルマール樹脂,フェノキシ樹脂若しくはカルボキ
シル化NBRゴムを5%(重量)以上混入したエポキシ
樹脂組成物を含浸させて成る無機基材プリプレグに、ポ
リイミド樹脂フィルムを貼り合わせて成ることを特徴と
する極低温用絶縁材に係るものである。
Further, the inorganic substrate, polyvinyl epoxy resin
Nylformal resin, phenoxy resin or carboxy
A cryogenic insulating material comprising a polyimide resin film bonded to an inorganic base material prepreg impregnated with an epoxy resin composition containing 5% (weight) or more of silylated NBR rubber. is there.

【0010】また、ガラス基材とポリイミド樹脂フィル
ムとを、エポキシ樹脂にポリビニルホルマール樹脂,フ
ェノキシ樹脂若しくはカルボキシル化NBRゴムを5%
(重量)以上混入したエポキシ樹脂組成物を介して付設
して成ることを特徴とする極低温用絶縁材に係るもので
ある。
Further, the glass base material and the polyimide resin film are replaced with epoxy resin, polyvinyl formal resin, and fluorine resin.
5% of enoxy resin or carboxylated NBR rubber
(Weight) The present invention relates to a cryogenic insulating material, characterized in that the insulating material is attached through an epoxy resin composition mixed therein.

【0011】また、ガラス基材に、エポキシ樹脂にポリ
ビニルホルマール樹脂,フェノキシ 樹脂若しくはカルボ
キシル化NBRゴムを5%(重量)以上混入したエポキ
シ樹脂組成物を含浸させて成るガラス基材プリプレグ
に、ポリイミド樹脂フィルムを貼り合わせて成ることを
特徴とする極低温用絶縁材に係るものである。
In addition, the glass substrate, epoxy resin and poly
Vinyl formal resin, phenoxy resin or carbo
A cryogenic insulating material comprising a glass base material prepreg impregnated with an epoxy resin composition containing 5% (by weight) or more of a xylated NBR rubber , and a polyimide resin film attached thereto. is there.

【0012】また、ガラスクロスとポリイミド樹脂フィ
ルムとを、エポキシ樹脂にポリビニルホルマール樹脂,
フェノキシ樹脂若しくはカルボキシル化NBRゴムを5
%(重量)以上混入したエポキシ樹脂組成物を介して付
設して成ることを特徴とする極低温用絶縁材に係るもの
である。
Further, the glass cloth and the polyimide resin film are combined with epoxy resin, polyvinyl formal resin,
Phenoxy resin or carboxylated NBR rubber 5
The present invention relates to a cryogenic insulating material, characterized in that the insulating material is attached through an epoxy resin composition mixed in an amount of (%) by weight or more.

【0013】また、ガラスクロスに、エポキシ樹脂に
リビニルホルマール樹脂,フェノキシ樹脂若しくはカル
ボキシル化NBRゴムを5%(重量)以上混入したエポ
キシ樹脂組成物を含浸させて成るガラスクロスプリプレ
グに、ポリイミド樹脂フィルムを貼り合わせて成ること
を特徴とする極低温用絶縁材に係るものである。
[0013] In addition, the glass cloth, Po in the epoxy resin
Livinylformal resin, phenoxy resin or cal
A cryogenic insulating material comprising a glass cloth prepreg impregnated with an epoxy resin composition containing 5% (weight) or more of a boxylated NBR rubber , and a polyimide resin film bonded to the glass cloth prepreg. .

【0014】また、ガラスクロスと常温における引張伸
度80〜160%のポリイミド樹脂フィルムとを、エポ
キシ樹脂にポリビニルホルマール樹脂,フェノキシ樹脂
若しくはカルボキシル化NBRゴムを5%(重量)以上
混入したエポキシ樹脂組成物を介して付設して成ること
を特徴とする極低温用絶縁材に係るものである。
Further, a glass cloth and a polyimide resin film having a tensile elongation of 80 to 160% at room temperature are used as an epoxy resin, a polyvinyl formal resin and a phenoxy resin.
Alternatively, the present invention relates to a cryogenic insulating material, characterized in that it is additionally provided through an epoxy resin composition containing 5% (weight) or more of carboxylated NBR rubber .

【0015】また、ガラスクロスに、エポキシ樹脂に
リビニルホルマール樹脂,フェノキシ樹脂若しくはカル
ボキシル化NBRゴムを5%(重量)以上混入したエポ
キシ樹脂組成物を含浸させて成るガラスクロスプリプレ
グに、常温における引張伸度80〜160%のポリイミ
ド樹脂フィルムを貼り合わせて成ることを特徴とする極
低温用絶縁材に係るものである。
[0015] In addition, the glass cloth, Po in the epoxy resin
Livinylformal resin, phenoxy resin or cal
A glass cloth prepreg impregnated with an epoxy resin composition containing 5% (by weight) or more of boxylated NBR rubber, and a polyimide resin film having a tensile elongation of 80 to 160% at room temperature, which is bonded to the glass cloth prepreg. It relates to a cryogenic insulating material.

【0016】また、ガラスクロスと下記の構造を有する
ポリイミド樹脂フィルムとを、エポキシ樹脂にポリビニ
ルホルマール樹脂,フェノキシ樹脂若しくはカルボキシ
ル化NBRゴムを5%(重量)以上混入したエポキシ樹
脂組成物を介して付設したことを特徴とする極低温用絶
縁材に係るものである。
Further, a glass cloth and a polyimide resin film having the following structure are used as an epoxy resin in a polyvinyl chloride resin.
Leformal resin, phenoxy resin or carboxy
The present invention relates to a cryogenic insulating material, characterized in that it is attached via an epoxy resin composition in which 5% (by weight) or more of rubberized NBR rubber is mixed.

【0017】[0017]

【化1】 [Chemical 1]

【0018】また、ガラスクロスに、エポキシ樹脂に数
平均分子量10000以上の高分子を5%(重量)以上
混入したエポキシ樹脂組成物を含浸させて成るガラスク
ロスプリプレグに、下記の構造を有するポリイミド樹脂
フィルムを貼り合わせて成ることを特徴とする極低温用
絶縁材に係るものである。
Further, a glass cloth prepreg obtained by impregnating a glass cloth with an epoxy resin composition obtained by mixing 5% (weight) or more of a polymer having a number average molecular weight of 10,000 or more in an epoxy resin, a polyimide resin having the following structure The present invention relates to a cryogenic insulating material characterized by being formed by laminating films together.

【0019】[0019]

【化1】 [Chemical 1]

【0020】また、請求項1〜10いずれか1項に記載
の極低温用絶縁材において、エポキシ樹脂組成物を絶縁
材に対して30〜60%(重量)となるように混合せし
めて成ることを特徴とする極低温用絶縁材に係るもので
ある。
The cryogenic insulating material according to any one of claims 1 to 10, wherein the epoxy resin composition is mixed with the insulating material in an amount of 30 to 60% (by weight). The present invention relates to a cryogenic insulating material.

【0021】[0021]

【0022】また、エポキシ系樹脂にポリビニルホルマ
ール樹脂若しくはフェノキシ樹脂若しくはカルボキシル
化NBRゴムを5%(重量)以上混入して成り、極低温
条件において前記高分子混入前に比し強固な接着力を有
することを特徴とするエポキシ系接着剤に係るものであ
る。
The epoxy resin is mixed with polyvinyl formal resin, phenoxy resin, or carboxylated NBR rubber in an amount of 5% (by weight) or more, and has a stronger adhesive force under cryogenic conditions than before the polymer is mixed. The present invention relates to an epoxy-based adhesive characterized by the above.

【0023】[0023]

【発明の作用及び効果】本発明は、繰り返した実験によ
り得た効果を、請求項としてまとめたものである。
The function and effect of the present invention are summarized as the claims, the effects obtained by repeated experiments.

【0024】ガラスクロスとポリイミド樹脂フィルムと
エポキシ樹脂にポリビニルホルマール樹脂,フェノキ
シ樹脂若しくはカルボキシル化NBRゴムを5%以上添
加したエポキシ樹脂組成物を介して付設した極低温用絶
縁材は、例えば、超電導コイルの絶縁材として使用され
る場合など、極低温条件下においても秀れた接着力及び
絶縁力を発揮し、極低温用絶縁材の剥離やクラックが発
生しない。
Glass cloth and polyimide resin film are used as epoxy resin, polyvinyl formal resin, and phenoxy resin.
A cryogenic insulating material provided through an epoxy resin composition containing 5% or more of a resin or carboxylated NBR rubber is excellent even under cryogenic conditions such as when used as an insulating material for a superconducting coil. It exhibits excellent adhesive strength and insulating power, and does not cause peeling or cracking of the cryogenic insulating material.

【0025】本発明は、上述のように構成したから、極
低温条件においても接着力が十分あり、ポリイミド樹脂
フィルムの高い絶縁性を有効に発揮させることができる
実用性に秀れた極低温用絶縁材及びエポキシ系接着剤と
なる。
Since the present invention is constituted as described above, it has sufficient adhesiveness even under extremely low temperature conditions and is capable of effectively exhibiting the high insulating property of the polyimide resin film. It becomes an insulating material and an epoxy adhesive.

【0026】[0026]

【発明の実施の形態】図面は本発明の具体的な実施の一
例を図示したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The drawings show an example of a specific embodiment of the present invention.

【0027】図1,2は、超電導材1を巻回してなる超
電導コイル2と該超電導コイル2を冷却する冷却部3の
内壁5とに極低温用絶縁材4a・4bを配設したもので
ある。
1 and 2 show a superconducting coil 2 formed by winding a superconducting material 1 and an inner wall 5 of a cooling unit 3 for cooling the superconducting coil 2 provided with cryogenic insulating materials 4a and 4b. is there.

【0028】また、冷却部3には、該冷却部3を冷却す
る液体ヘリウムなどの冷媒を通過せしめる冷却管6を設
けている。
Further, the cooling section 3 is provided with a cooling pipe 6 which allows a coolant such as liquid helium for cooling the cooling section 3 to pass therethrough.

【0029】極低温用絶縁材4a・4bの配設方法につ
いて詳述する。
The method of disposing the cryogenic insulating materials 4a and 4b will be described in detail.

【0030】超電導材1に配設する極低温用絶縁材4a
として、まず、PBHを添加したエポキシ樹脂(即ち、
エポキシ樹脂組成物。)をガラスクロスに含浸させてガ
ラスクロスプリプレグを形成し、このガラスクロスプリ
プレグにポリイミド樹脂フィルムを貼り合わせ、プリプ
レグ状の極低温用絶縁材を形成する。
Cryogenic insulating material 4a disposed on the superconducting material 1.
First, the epoxy resin containing PBH (that is,
Epoxy resin composition. ) Is impregnated into a glass cloth to form a glass cloth prepreg, and a polyimide resin film is attached to the glass cloth prepreg to form a prepreg-like cryogenic insulating material.

【0031】続いて、プリプレグ状の極低温用絶縁材を
超電導材1にらせん状に巻回し、超電導材1にプリプレ
グ状の絶縁層を形成する。
Subsequently, a prepreg-shaped cryogenic insulating material is spirally wound around the superconducting material 1 to form a prepreg-shaped insulating layer on the superconducting material 1.

【0032】一方、冷却部3の内壁5に配設する極低温
用絶縁材4bとして、まず、PBHを添加したエポキシ
樹脂(即ち、エポキシ樹脂組成物。)をガラスクロスに
含浸させてガラスクロスプリプレグを形成し、このガラ
スクロスプリプレグにポリイミド樹脂フィルムを貼り合
わせ、更にポリイミド樹脂フィルム上にガラスクロスプ
リプレグを貼り合わせてプリプレグ状の極低温用絶縁材
を形成する。
On the other hand, as the cryogenic insulating material 4b to be arranged on the inner wall 5 of the cooling section 3, first, a glass cloth is impregnated with an epoxy resin (that is, an epoxy resin composition) to which PBH is added (glass epoxy prepreg). Then, a polyimide resin film is attached to the glass cloth prepreg, and a glass cloth prepreg is further attached to the polyimide resin film to form a prepreg-shaped cryogenic insulating material.

【0033】続いて、プリプレグ状の極低温用絶縁材を
冷却部3の内壁5に壁紙のように配設し、冷却部3の内
壁5にプリプレグ状の絶縁層を形成する。
Subsequently, a prepreg-shaped cryogenic insulating material is arranged on the inner wall 5 of the cooling unit 3 like a wallpaper, and a prepreg-shaped insulating layer is formed on the inner wall 5 of the cooling unit 3.

【0034】このように配設したプリプレグ状の絶縁層
を加熱硬化して、超電導材1と冷却部3との間隙に極低
温用絶縁材4a・4bを一体状に配設する。
The prepreg-shaped insulating layer thus arranged is cured by heating, and the cryogenic insulating materials 4a and 4b are integrally arranged in the gap between the superconducting material 1 and the cooling part 3.

【0035】本実施例は上述のように構成したから、超
電導材1と冷却部3との間隙に配設された極低温用絶縁
材4a・4bに剥離やクラックが生じず、超電導コイル
にクエンチ現象が発生しない実用性に秀れた極低温用絶
縁材となる。
Since this embodiment is constructed as described above, no peeling or cracking occurs in the cryogenic insulating materials 4a and 4b arranged in the gap between the superconducting material 1 and the cooling part 3, and the superconducting coil is quenched. The insulating material for cryogenic use has excellent practicality and does not cause a phenomenon.

【0036】[0036]

【実施例】以下、本発明の作用効果を裏づける実験例を
説明する。
EXAMPLES Hereinafter, experimental examples that support the effects of the present invention will be described.

【0037】ポリイミド樹脂フィルムは、常温における
引張伸度80〜160%のポリイミド樹脂フィルムとし
て、宇部興産(株)製のUPILEX R(下記化1参
照。常温における平均引張伸度130%。以下、UPI
LEX Rという。)を使用し、比較用として常温にお
ける平均引張伸度30%の宇部興産(株)製のUPIL
EX S(下記化2参照。以下、UPILEX Sとい
う。)及び常温における平均引張伸度70%のデュポン
(株)製のKAPTON H(下記化3参照。以下、K
APTON Hという。)を使用する。
The polyimide resin film is a polyimide resin film having a tensile elongation of 80 to 160% at room temperature, which is manufactured by Ube Industries, Ltd. UPILEX R (see the following chemical formula 1. Average tensile elongation at room temperature of 130%. Hereinafter, UPI).
It is called LEX R. ) Is used for comparison and has an average tensile elongation of 30% at normal temperature manufactured by Ube Industries, Ltd.
EX S (see Chemical Formula 2 below; hereinafter referred to as UPILEX S) and KAPTON H manufactured by DuPont Co., Ltd. having an average tensile elongation of 70% at room temperature (see Chemical Formula 3 below; hereinafter, K
Called APTON H. ) Is used.

【0038】[0038]

【化1】 [Chemical 1]

【0039】[0039]

【化2】 [Chemical 2]

【0040】[0040]

【化3】 [Chemical 3]

【0041】また、数平均分子量10000以上の高分
子は、ポリビニルホルマール樹脂としてチッソ(株)製
のビニレックE(下記化4参照。ポリビニルホルマール
樹脂で数平均分子量約100万。以下、PBHとい
う。)、フェノキシ樹脂として東都化成(株)製のYP
−50(下記化5参照。数平均分子量58600。以
下、フェノキシ樹脂という。)、及びカルボキシル化N
BRゴムとして日本ゼオン(株)製のニッポール107
2(下記化6参照。カルボキシル変成アクリロニトリル
/ブタジエン共重合体で数平均分子量約30万。以下、
NBRゴムという。)を使用する。
Further, a polymer having a number average molecular weight of 10,000 or more is a polyvinyl formal resin, Vinylec E manufactured by Chisso Corporation (see the following chemical formula 4. The polyvinyl formal resin has a number average molecular weight of about 1,000,000. Hereinafter referred to as PBH). , YP manufactured by Tohto Kasei Co., Ltd. as a phenoxy resin
-50 (see Chemical Formula 5 below, number average molecular weight 58600, hereinafter referred to as phenoxy resin), and carboxylated N.
Nippon Rubber 107 manufactured by Nippon Zeon Co., Ltd. as BR rubber
2 (See Chemical Formula 6 below. Carboxyl-modified acrylonitrile / butadiene copolymer having a number average molecular weight of about 300,000.
It is called NBR rubber. ) Is used.

【0042】[0042]

【化4】 [Chemical 4]

【0043】[0043]

【化5】 [Chemical 5]

【0044】尚、nは繰り返しを示し、一般的にn=1
00以上、平均200程度。
Note that n indicates repetition, and generally n = 1.
00 or more, about 200 on average.

【0045】[0045]

【化6】 [Chemical 6]

【0046】上記の化学式において、記号n,X,Y,
Z,x,y,zは、各々自然数を表している。nを除く
記載した記号は、各四角の括弧でくくられた構造式の混
在比率を示している。
In the above chemical formula, the symbols n, X, Y,
Z, x, y, and z each represent a natural number. The symbols described except for n indicate the mixing ratio of structural formulas enclosed by square brackets.

【0047】化学式4の記号X,Y,Zの混在比率は、
一般に次の通りである。
The mixing ratio of the symbols X, Y and Z in the chemical formula 4 is
In general:

【0048】X=78%以上 Y=4.5〜8.5% Z=9〜13% 化学式6の記号x,y,zの混在比率は、一般に次の通
りである。
X = 78% or more Y = 4.5 to 8.5% Z = 9 to 13% The mixing ratio of the symbols x, y and z in the chemical formula 6 is generally as follows.

【0049】x=1〜40%以上 y=52〜98% z=1〜8%である。X = 1 to 40% or more y = 52-98% z = 1 to 8%.

【0050】また、接着力の測定条件はJIS K 6
850に準ずる。尚、被着体はSUS304とし、この
被着体と介する絶縁材料との剪断破壊力を接着力とす
る。但し、温度条件は液体窒素温度(約77K以下)で
ある。また、耐電圧の測定条件はJIS K 6911
に準ずる。
The measuring conditions of the adhesive force are JIS K 6
According to 850. The adherend is SUS304, and the shear fracture force between the adherend and the insulating material is the adhesive force. However, the temperature condition is the liquid nitrogen temperature (about 77 K or less). In addition, the withstand voltage measurement conditions are JIS K 6911.
According to.

【0051】<実験例1> エポキシ樹脂組成物の樹脂含有率と接着力との関係を調
べるため、高分子を添加したエポキシ樹脂(即ち、エポ
キシ樹脂組成物。)を、樹脂含有率を変えてガラスクロ
スに含浸させガラスクロスプリプレグを形成し、このガ
ラスクロスプリプレグの接着力及び耐電圧を測定した。
尚、ガラスクロスプリプレグの厚さは50μmで、使用
した高分子はPBHである。
<Experimental Example 1> In order to investigate the relationship between the resin content of the epoxy resin composition and the adhesive strength, an epoxy resin containing a polymer (that is, an epoxy resin composition) was used while changing the resin content. A glass cloth was impregnated to form a glass cloth prepreg, and the adhesive strength and withstand voltage of this glass cloth prepreg were measured.
The thickness of the glass cloth prepreg is 50 μm, and the polymer used is PBH.

【0052】[0052]

【表1】 [Table 1]

【0053】このように、樹脂含有率20〜60%(重
量)のガラスクロスプリプレグにおいて接着力30MP
a以上となり、良好な接着力が発揮された。尚、耐電圧
については、ポリイミド樹脂フィルムを入れた構成に比
して低い値となる。
Thus, the glass cloth prepreg having a resin content of 20 to 60% (by weight) has an adhesive force of 30MP.
The result was a or more, and good adhesion was exhibited. The withstand voltage is lower than that in the case where the polyimide resin film is used.

【0054】<実験例2> エポキシ樹脂組成物における高分子の添加割合と接着力
との関係を調べるため、高分子を添加したエポキシ樹脂
(即ち、エポキシ樹脂組成物。)を、高分子添加率を変
えてガラスクロスに含浸させガラスクロスプリプレグを
形成し、このガラスクロスプリプレグの接着力及び耐電
圧を測定した。尚、ガラスクロスプリプレグの厚さは5
0μmで、使用した高分子はPBHである。
<Experimental Example 2> In order to investigate the relationship between the addition ratio of the polymer in the epoxy resin composition and the adhesive force, the epoxy resin containing the polymer (that is, the epoxy resin composition) was added with the polymer addition rate. Was changed to impregnate a glass cloth to form a glass cloth prepreg, and the adhesive strength and withstand voltage of the glass cloth prepreg were measured. The thickness of the glass cloth prepreg is 5
At 0 μm, the polymer used is PBH.

【0055】[0055]

【表2】 [Table 2]

【0056】このように、高分子添加率が5〜35%
(重量)のエポキシ樹脂組成物において接着力30MP
a以上となり、良好な接着力が発揮された。尚、高分子
添加率が40%(重量)となると、高分子をガラスクロ
スに含浸させることができずガラスクロスプリプレグを
形成することができない。
Thus, the polymer addition rate is 5 to 35%.
Adhesive strength of epoxy resin composition (weight) 30MP
The result was a or more, and good adhesion was exhibited. When the polymer addition rate is 40% (weight), the glass cloth cannot be impregnated with the polymer, and the glass cloth prepreg cannot be formed.

【0057】<実験例3> ガラスクロスとポリイミド樹脂フィルムとをフィルムー
ガラスクロス貼り合わせ構造とした絶縁材の樹脂含有率
と接着力との関係を調べるため、高分子を添加したエポ
キシ樹脂(即ち、エポキシ樹脂組成物。)を、樹脂含有
率を変えてガラスクロスに含浸させてガラスクロスプリ
プレグを形成し、このガラスクロスプリプレグにUPI
LEX Rを貼り合わせて絶縁材を形成し、この絶縁材
の接着力及び耐電圧を測定した。尚、ガラスクロスの厚
さは30μm,ポリイミド樹脂フィルムの厚さは25μ
mで、使用した高分子はPBHである。
<Experimental Example 3> In order to examine the relationship between the resin content and the adhesive force of an insulating material having a film-glass cloth laminated structure of glass cloth and a polyimide resin film, an epoxy resin containing a polymer (ie, , Epoxy resin composition) is impregnated into a glass cloth by changing the resin content to form a glass cloth prepreg, and the glass cloth prepreg is subjected to UPI.
LEX R was stuck together to form an insulating material, and the adhesive strength and withstand voltage of this insulating material were measured. The glass cloth has a thickness of 30 μm and the polyimide resin film has a thickness of 25 μm.
In m, the polymer used is PBH.

【0058】[0058]

【表3】 [Table 3]

【0059】このように、樹脂含有率20〜60%(重
量)のガラスクロスプリプレグにおいて接着力30MP
a以上となり、良好な接着力が発揮された。また、耐電
圧においても実験例1と比較して約4倍の値となり良好
な耐電圧となった。
Thus, the glass cloth prepreg having a resin content of 20 to 60% (by weight) has an adhesive force of 30MP.
The result was a or more, and good adhesion was exhibited. Further, the withstand voltage was about four times that of Experimental Example 1, and the withstand voltage was good.

【0060】<実験例4> ガラスクロスとポリイミド樹脂フィルムとをフィルムー
ガラスクロス貼り合わせ構造とした絶縁材の高分子添加
率と接着力との関係を調べるため、高分子を添加したエ
ポキシ樹脂(即ち、エポキシ樹脂組成物。)を、高分子
添加率を変えてガラスクロスに含浸させてガラスクロス
プリプレグを形成し、このガラスクロスプリプレグにU
PILEX Rを貼り合わせて絶縁材を形成し、この絶
縁材の接着力及び耐電圧を測定した。尚、ガラスクロス
の厚さは30μm,ポリイミド樹脂フィルムの厚さは2
5μmで、使用した高分子はPBHである。
<Experimental Example 4> In order to investigate the relationship between the polymer addition rate and the adhesive force of an insulating material having a glass-cloth and polyimide resin film laminated film-glass cloth structure, a polymer-added epoxy resin ( That is, the epoxy resin composition.) Is impregnated into a glass cloth by changing the polymer addition rate to form a glass cloth prepreg, and the glass cloth prepreg is U-coated.
PILEX R was bonded to form an insulating material, and the adhesive force and withstand voltage of this insulating material were measured. The glass cloth has a thickness of 30 μm and the polyimide resin film has a thickness of 2 μm.
At 5 μm, the polymer used is PBH.

【0061】[0061]

【表4】 [Table 4]

【0062】このように、高分子添加率が10〜35%
(重量)のエポキシ樹脂組成物において接着力30MP
a以上となり、良好な接着力が発揮された。また、耐電
圧においても実施例1と比較して約4倍の値となり良好
な耐電圧となった。尚、高分子添加率が40%(重量)
となると、実験例2と同様にプリプレグを形成すること
ができない。
Thus, the polymer addition rate is 10 to 35%.
Adhesive strength of epoxy resin composition (weight) 30MP
The result was a or more, and good adhesion was exhibited. Moreover, the withstand voltage was about four times that of Example 1, and the withstand voltage was good. The polymer addition rate is 40% (weight)
In that case, the prepreg cannot be formed as in Experimental Example 2.

【0063】<実験例5> 実験例4において使用する高分子による接着力及び耐電
圧の変化を調べるため、高分子としてPBHの変わりに
フェノキシ樹脂及びNBRゴムを添加した絶縁材の接着
力及び耐電圧を測定した。尚、使用した高分子以外の条
件は実験例4と同様である。
<Experimental Example 5> In order to examine the changes in the adhesive force and the withstand voltage depending on the polymer used in Experimental Example 4, the adhesive force and the resistance of the insulating material in which phenoxy resin and NBR rubber were added instead of PBH as the polymer. The voltage was measured. The conditions other than the polymer used were the same as in Experimental Example 4.

【0064】[0064]

【表5】 [Table 5]

【0065】このように、フェノキシ樹脂を添加した絶
縁材はPBHと同様の接着力及び耐電圧を示したが、N
BRゴムを添加した絶縁材の接着力は高分子添加率30
%(重量)において30MPa以下となり不十分であっ
た。従って、NBRゴムではPBHやフェノキシ樹脂程
の接着力は得られないことが判明した。
As described above, the insulating material to which the phenoxy resin was added showed the same adhesive strength and withstand voltage as PBH.
The adhesive strength of the insulating material containing BR rubber is 30% of polymer addition.
% (Weight) was 30 MPa or less, which was insufficient. Therefore, it was proved that the NBR rubber cannot obtain the adhesive strength as much as PBH and phenoxy resin.

【0066】これは、極低温下においては接着剤の伸縮
性が著しく低下し、接着体と接着剤との収縮差などの応
力を緩和することができず、接着剤或いは接着界面にク
ラック,剥離等が生じる原因となること、及び、PBH
やフェノキシ樹脂の分子構造はNBRゴムの分子構造と
比較して伸縮し易い構造であることから、極低温下にお
いてPBHやフェノキシ樹脂はNBRゴムよりも伸縮性
が高く、エポキシ樹脂の伸縮性の低下をより一層補い易
いのではないかとの推測される。
This is because the elasticity of the adhesive is remarkably reduced at extremely low temperatures, stress such as shrinkage difference between the adhesive and the adhesive cannot be relieved, and cracks or peeling occur at the adhesive or the adhesive interface. And the like, and PBH
Since the molecular structure of phenoxy resin and phenoxy resin is a structure that easily expands and contracts compared to the molecular structure of NBR rubber, PBH and phenoxy resin have higher elasticity than NBR rubber at extremely low temperatures, and the elasticity of epoxy resin decreases. It is speculated that it may be easier to supplement

【0067】<実験例6> ポリイミド樹脂フィルム及びガラスクロスの厚さによる
絶縁材の接着力及び耐電圧の変化を調べるため、樹脂含
有率及び高分子添加率を一定に設定し、ポリイミド樹脂
フィルムの厚さ及びガラスクロスプリプレグの厚さを変
えたフィルムーガラスクロス貼り合わせ構造の絶縁材の
接着力及び耐電圧を測定した。尚、使用した高分子はP
BHで高分子添加率は30%(重量)であり、また、エ
ポキシ樹脂の樹脂含有率は40%(重量)である。
<Experimental Example 6> In order to examine the changes in the adhesive strength and withstand voltage of the insulating material depending on the thickness of the polyimide resin film and the glass cloth, the resin content and the polymer addition rate were set constant, and the polyimide resin film The adhesive strength and the withstand voltage of the insulating material having the film-glass cloth laminated structure in which the thickness and the thickness of the glass cloth prepreg were changed were measured. The polymer used was P
The polymer addition rate of BH is 30% (weight), and the resin content of the epoxy resin is 40% (weight).

【0068】[0068]

【表6】 [Table 6]

【0069】このように、ポリイミド樹脂フィルム及び
ガラスクロスの厚さが変化しても、絶縁材の接着力に殆
ど影響が無いことが確認された。
Thus, it was confirmed that even if the thickness of the polyimide resin film and the glass cloth changes, the adhesive force of the insulating material is hardly affected.

【0070】尚、ガラスクロスの厚さが厚くなると耐電
圧が低下するのは、ガラスクロス積層板がポリイミド樹
脂フィルムより耐電圧が低いため、同一厚とすると絶縁
材全体としての耐電圧が低下してしまうためである。従
って、薄いガラスクロスにポリイミド樹脂フィルムを貼
着すると、薄くとも耐電圧が高い絶縁材となる。
It should be noted that as the thickness of the glass cloth increases, the withstand voltage decreases because the glass cloth laminate has a lower withstand voltage than the polyimide resin film. This is because it will end up. Therefore, when a polyimide resin film is attached to a thin glass cloth, the insulating material has a high withstand voltage even if it is thin.

【0071】<実験例7> ポリイミド樹脂の伸度による絶縁材の接着力及び耐電圧
の変化を調べるため、ポリイミド樹脂フィルムとしてU
PILEX S及びKAPTON Hを使用したフィル
ムーガラスクロス貼り合わせ構造の絶縁材の接着力及び
耐電圧を測定した。尚、ガラスクロスの厚さは30μm
である。
<Experimental Example 7> In order to examine changes in the adhesive strength and withstand voltage of the insulating material due to the elongation of the polyimide resin, a polyimide resin film U
The adhesive strength and the withstand voltage of the insulating material of the film-glass cloth bonding structure using PILEX S and KAPTON H were measured. The thickness of the glass cloth is 30 μm
Is.

【0072】[0072]

【表7】 [Table 7]

【0073】このように、伸度の低いポリイミド樹脂フ
ィルムを使用した絶縁材は伸度の高いポリイミド樹脂フ
ィルムを使用した絶縁材と比較して接着力が低下した。
尚、伸度のより低いUPIREX Sにおいては、どの
ような樹脂含有率や高分子添加率に設定しても接着力が
30MPa以下となり不十分であった。
As described above, the insulating material using the polyimide resin film having a low elongation has a lower adhesive strength than the insulating material using the polyimide resin film having a high elongation.
In addition, in UPIREX S having a lower elongation, the adhesive strength was 30 MPa or less, which was insufficient regardless of the resin content and the polymer addition rate.

【0074】これは、実験例5と同様に、UPILEX
RがUPILEX SやKAPTON Hよりも伸度
が高く、極低温条件下でエポキシ樹脂はその伸縮性が低
下してもUPILEX R自体で応力の一部を緩和する
ことができるためではないかと推測される。
This is similar to Experimental Example 5 in that UPILEX
R is higher in elongation than UPILEX S and KAPTON H, and it is speculated that UPILEX R itself can relieve a part of the stress even if the elasticity of the epoxy resin is lowered under cryogenic conditions. It

【0075】<実験例8> 2枚のガラスクロスプリプレグとポリイミド樹脂フィル
ムとをガラスクロスーフィルムーガラスクロス貼り合わ
せ構造とした絶縁材の樹脂含有率と接着力との関係を調
べるため、高分子を添加したエポキシ樹脂(即ち、エポ
キシ樹脂組成物。)を、樹脂含有率を変えてガラスクロ
スに含浸させてガラスクロスプリプレグを形成し、この
ガラスクロスプリプレグにポリイミド樹脂フィルムを貼
り合わせ、更にポリイミド樹脂フィルム上にガラスクロ
スプリプレグを貼り合わせた絶縁材の接着力及び耐電圧
を測定した。尚、ガラスクロスの厚さは50μm×2=
100μm,ポリイミド樹脂フィルムの厚さは25μm
で、使用した高分子はPBHである。
<Experimental Example 8> In order to investigate the relationship between the resin content and the adhesive force of an insulating material having a glass cloth-film-glass cloth bonding structure in which two glass cloth prepregs and a polyimide resin film are bonded, a polymer was used. A glass cloth prepreg is formed by impregnating a glass cloth with an epoxy resin added with (i.e., an epoxy resin composition) and changing the resin content, and a polyimide resin film is attached to the glass cloth prepreg. The adhesive strength and the withstand voltage of the insulating material in which the glass cloth prepreg was laminated on the film were measured. The thickness of the glass cloth is 50 μm × 2 =
100 μm, polyimide resin film thickness is 25 μm
The polymer used was PBH.

【0076】[0076]

【表8】 [Table 8]

【0077】このように、樹脂含有率30〜60%(重
量)の絶縁材において接着力30MPa以上となり、良
好な接着力が発揮された。また、耐電圧においても実験
例1と比較して約3倍の値となり良好な耐電圧となっ
た。
As described above, the adhesive strength of the insulating material having a resin content of 30 to 60% (by weight) was 30 MPa or more, and good adhesive strength was exhibited. Further, the withstand voltage was about three times that of Experimental Example 1, and the withstand voltage was good.

【0078】<実験例9> 2枚のガラスクロスプリプレグとポリイミド樹脂フィル
ムとをガラスクロスーフィルムーガラスクロス貼り合わ
せ構造とした絶縁材の高分子添加率と接着力との関係を
調べるため、高分子を添加したエポキシ樹脂(即ち、エ
ポキシ樹脂組成物。)を、高分子添加率を変えてガラス
クロスに含浸させてガラスクロスプリプレグを形成し、
このガラスクロスプリプレグにポリイミド樹脂フィルム
を貼り合わせ、更にポリイミド樹脂フィルム上にガラス
クロスプリプレグを貼り合わせた絶縁材の接着力及び耐
電圧を測定した。尚、ガラスクロスプリプレグの厚さは
50μm×2=100μm,ポリイミド樹脂フィルムの
厚さは25μmで、使用した高分子はPBHである。
<Experimental Example 9> In order to investigate the relationship between the polymer addition rate and the adhesive force of the insulating material having a glass cloth-film-glass cloth bonding structure in which two glass cloth prepregs and a polyimide resin film are bonded, A glass cloth prepreg is formed by impregnating a glass cloth with a molecule-added epoxy resin (that is, an epoxy resin composition) while changing the polymer addition rate.
A polyimide resin film was attached to the glass cloth prepreg, and the adhesive strength and withstand voltage of the insulating material obtained by attaching the glass cloth prepreg onto the polyimide resin film were measured. The glass cloth prepreg has a thickness of 50 μm × 2 = 100 μm, the polyimide resin film has a thickness of 25 μm, and the polymer used is PBH.

【0079】[0079]

【表9】 [Table 9]

【0080】このように、高分子添加率が10〜30%
(重量)のエポキシ樹脂組成物を使用した絶縁材におい
て接着力30MPa以上となり、良好な接着力が発揮さ
れた。また、耐電圧においても実験例1と比較して約3
倍の値となり良好な耐電圧となった。尚、高分子添加率
が40%(重量)となると、実験例2,4と同様にプリ
プレグを形成することができない。
Thus, the polymer addition rate is 10 to 30%.
In the insulating material using the (weight) epoxy resin composition, the adhesive force was 30 MPa or more, and good adhesive force was exhibited. Also, in terms of withstand voltage, it is about 3 compared with Experimental Example 1.
The value was doubled and the withstand voltage was good. When the polymer addition rate is 40% (weight), the prepreg cannot be formed as in Experimental Examples 2 and 4.

【0081】<実験例10> 実験例9において使用する高分子による接着力及び耐電
圧の変化を調べるため、高分子としてPBHの変わりに
フェノキシ樹脂及びNBRゴムを添加した絶縁材の接着
力及び耐電圧を測定した。尚、使用した高分子以外の条
件は実験例9と同様である。
<Experimental Example 10> In order to examine the changes in the adhesive strength and the withstand voltage depending on the polymer used in Experimental Example 9, the adhesive strength and the resistance of an insulating material to which a phenoxy resin and an NBR rubber were added instead of PBH as the polymer. The voltage was measured. The conditions other than the polymer used were the same as in Experimental Example 9.

【0082】[0082]

【表10】 [Table 10]

【0083】このように、フェノキシ樹脂を添加した絶
縁材はPBHと同様の接着力及び耐電圧を示したが、N
BRゴムを添加した絶縁材の接着力はPBH及びフェノ
キシ樹脂と比較して実用性において問題ないが若干低下
した。
As described above, the insulating material to which the phenoxy resin was added showed the same adhesive strength and withstand voltage as PBH, but N
The adhesive strength of the insulating material containing BR rubber was slightly lower than that of PBH and phenoxy resin, although there was no problem in practical use.

【0084】これは、実験例5と同様に、極低温下にお
いては接着剤の伸縮性が著しく低下し、接着体と接着剤
との収縮差によるズレなどの応力を緩和することができ
ず、接着剤或いは接着界面にクラック,剥離等が生じる
原因となること、及び、PBHやフェノキシ樹脂の分子
構造はNBRゴムの分子構造と比較して伸縮し易い構造
であることから、極低温下においてPBHやフェノキシ
樹脂はNBRゴムよりも伸縮性が高く、エポキシ樹脂の
伸縮性の低下をより一層補い易いのではないかとの推測
される。
Similar to Experimental Example 5, the elasticity of the adhesive was remarkably reduced at extremely low temperatures, and stress such as displacement due to the difference in shrinkage between the adhesive and the adhesive could not be alleviated. Since it causes cracks or peeling at the adhesive or the adhesive interface, and the molecular structure of PBH or phenoxy resin is a structure that easily expands and contracts as compared with the molecular structure of NBR rubber, PBH at extremely low temperatures. It is speculated that the phenoxy resin and the phenoxy resin have higher elasticity than the NBR rubber and may more easily compensate for the decrease in elasticity of the epoxy resin.

【0085】<実験例11> 2枚のガラスクロスプリプレグとポリイミド樹脂フィル
ムとをガラスクロスーフィルムーガラスクロス貼り合わ
せ構造とした絶縁材のポリイミド樹脂フィルム及びガラ
スクロスの厚さによる絶縁材の接着力及び耐電圧の変化
を調べるため、樹脂含有率及び高分子添加率を一定に設
定し、ポリイミド樹脂フィルム及びガラスクロスの厚さ
を変えた絶縁材の接着力及び耐電圧を測定した。尚、ガ
ラスクロスの厚さは2枚分の厚さであり、また、使用し
た高分子はPBHで高分子添加率は30%(重量)であ
り、また、エポキシ樹脂の樹脂含有率は40%(重量)
である。
<Experimental Example 11> The adhesive force of the insulating material depending on the thickness of the polyimide resin film and the glass cloth of the insulating material having the glass cloth-film-glass cloth bonding structure of two glass cloth prepregs and the polyimide resin film. In order to investigate the change in withstand voltage, the resin content rate and the polymer addition rate were set to be constant, and the adhesive force and withstand voltage of the insulating material in which the thickness of the polyimide resin film and the glass cloth were changed were measured. The glass cloth had a thickness of two sheets, the polymer used was PBH, the polymer addition rate was 30% (by weight), and the resin content of the epoxy resin was 40%. (weight)
Is.

【0086】[0086]

【表11】 [Table 11]

【0087】このように、ポリイミド樹脂フィルム及び
ガラスクロスの厚さが変化しても、絶縁材の接着力に殆
ど影響が無いことが確認された。尚、実験例6と同様に
ガラスクロスの厚さが厚くなると耐電圧が低下する。
As described above, it was confirmed that even if the thickness of the polyimide resin film and the glass cloth was changed, the adhesive force of the insulating material was hardly affected. As with Experimental Example 6, as the glass cloth becomes thicker, the withstand voltage decreases.

【0088】<実験例12> 2枚のガラスクロスプリプレグとポリイミド樹脂フィル
ムとをガラスクロスーフィルムーガラスクロス貼り合わ
せ構造とした絶縁材のポリイミド樹脂フィルムの伸度に
よる絶縁材の接着力及び耐電圧の変化を調べるため、ポ
リイミド樹脂フィルムとしてUPILEX S及びKA
PTON Hを使用した絶縁材の接着力及び耐電圧を測
定した。尚、ガラスクロスの厚さは50μm×2=10
0μmである。
<Experimental Example 12> Two glass cloth prepregs and a polyimide resin film are laminated together to form a glass cloth-film-glass cloth structure. UPILEX S and KA as a polyimide resin film to investigate the change of
The adhesive strength and withstand voltage of the insulating material using PTON H were measured. The thickness of the glass cloth is 50 μm × 2 = 10
It is 0 μm.

【0089】[0089]

【表12】 [Table 12]

【0090】このように、伸度の低いUPILEX S
やKAPTON Hを使用した絶縁材は、伸度の高いU
PILEX Rを使用した絶縁材と比較して接着力が低
下した。尚、伸度のより低いUPILEX Sにおいて
は、どのような樹脂含有率や高分子添加率に設定しても
接着力が30MPa以下となり不十分であった。
Thus, UPILEX S with low elongation
Insulation materials using KAPTON H and U have high elongation
The adhesive strength was lower than that of the insulating material using PILEX R. In UPILEX S having a lower elongation, the adhesive force was 30 MPa or less, which was insufficient regardless of the resin content and the polymer addition rate.

【0091】<実験例13> 導電材との接着性が悪いポリイミド樹脂フィルムに高分
子を添加したエポキシ樹脂組成物を含浸させてプリプレ
グとし接着力及び耐電圧を測定した。尚、ポリイミド樹
脂フィルムとしてUPILEX Rを使用し、ポリイミ
ド樹脂フィルムの厚さを50μmに設定した。
<Experimental Example 13> A polyimide resin film having poor adhesion to a conductive material was impregnated with an epoxy resin composition containing a polymer to obtain a prepreg, and the adhesive strength and withstand voltage were measured. UPILEX R was used as the polyimide resin film, and the thickness of the polyimide resin film was set to 50 μm.

【0092】[0092]

【表13】 [Table 13]

【0093】このように、高分子添加率30%(重量)
で、且つ樹脂含有率5〜30%(重量)においてポリイ
ミド樹脂フィルムプリプレグの接着力30MPa以上と
なり、良好な接着力が発揮された。尚、耐電圧はガラス
クロスの約10倍となった。以上の実験例の結果は、ポ
リイミド樹脂フィルムとして伸度の高いUPILEX
Rを使用し、接着剤として元々接着力の強いエポキシ樹
脂を使用し、更にエポキシ樹脂に分子量が大きくて伸縮
性の高い高分子を含有せしめると極低温条件においても
良好な接着力を有する極低温用絶縁材となることを示唆
している。
Thus, the polymer addition rate is 30% (weight)
In addition, when the resin content was 5 to 30% (by weight), the adhesive strength of the polyimide resin film prepreg was 30 MPa or more, and good adhesive strength was exhibited. The withstand voltage was about 10 times that of glass cloth. The result of the above experimental example is UPILEX, which has high elongation as a polyimide resin film.
When R is used and an epoxy resin having originally strong adhesiveness is used as an adhesive, and when the epoxy resin contains a polymer having a large molecular weight and high elasticity, it has excellent adhesiveness even under extremely low temperature conditions. It suggests that it will be an insulating material.

【0094】以上の実験例の結果をまとめると、 数
平均分子量10000以上の高分子を5%(重量)以上
混入したエポキシ樹脂組成物を介してガラスクロスとポ
リイミド樹脂フィルム付設して成る極低温用絶縁材は、
極低温条件においても良好な接着力及び絶縁力を有す
る。
Summarizing the results of the above experimental examples, for cryogenic use, a glass cloth and a polyimide resin film are attached through an epoxy resin composition containing 5% (weight) or more of a polymer having a number average molecular weight of 10,000 or more. The insulation is
It has good adhesion and insulation even under extremely low temperature conditions.

【0095】 ポリイミド樹脂フィルムとして常温に
おける引張伸度80〜160%のポリイミド樹脂フィル
ムを使用するとより一層接着力が高まる。
When a polyimide resin film having a tensile elongation of 80 to 160% at room temperature is used as the polyimide resin film, the adhesive strength is further enhanced.

【0096】 高分子として極低温において伸縮性の
高い高分子(ポリビニルホルマール樹脂やフェノキシ樹
脂)を使用するとより一層接着力が高まる。但し、若干
伸縮性の劣るカルボキシル化NBRゴムを使用しても実
用性において問題はない。
When a polymer having high elasticity at extremely low temperature (polyvinyl formal resin or phenoxy resin) is used as the polymer, the adhesive force is further enhanced. However, even if a carboxylated NBR rubber having a slightly poor stretchability is used, there is no problem in practicality.

【0097】 エポキシ樹脂組成物を絶縁材に対して
30〜60%(重量)となるように混合するとより一層
接着力が高まる。
When the epoxy resin composition is mixed in an amount of 30 to 60% (weight) with respect to the insulating material, the adhesive strength is further increased.

【0098】 上記のような条件を満たすエポキシ樹
脂組成物は、接着力の低いポリイミド樹脂フィルムにも
高い接着力を付与することができる。
The epoxy resin composition satisfying the above conditions can impart high adhesive force even to a polyimide resin film having low adhesive force.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の説明斜視図である。FIG. 1 is an explanatory perspective view of the present embodiment.

【図2】本実施例の説明断面図である。FIG. 2 is an explanatory sectional view of the present embodiment.

【符号の説明】[Explanation of symbols]

なし None

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01B 13/00 561 H01B 13/00 561Z 17/60 17/60 L (58)調査した分野(Int.Cl.7,DB名) H01B 3/30 H01B 3/40 H01B 13/00 561 H01B 17/60 B32B 27/00 B32B 27/38 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI H01B 13/00 561 H01B 13/00 561Z 17/60 17/60 L (58) Fields investigated (Int.Cl. 7 , DB name) ) H01B 3/30 H01B 3/40 H01B 13/00 561 H01B 17/60 B32B 27/00 B32B 27/38

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 無機基材とポリイミド樹脂フィルムと
を、エポキシ樹脂にポリビニルホルマール樹脂,フェノ
キシ樹脂若しくはカルボキシル化NBRゴムを5%(重
量)以上混入したエポキシ樹脂組成物を介して付設して
成ることを特徴とする極低温用絶縁材。
1. An inorganic base material and a polyimide resin film are attached via an epoxy resin composition in which a polyvinyl formal resin, a phenoxy resin or a carboxylated NBR rubber is mixed in an epoxy resin in an amount of 5% (by weight) or more. Insulating material for cryogenic use.
【請求項2】 無機基材に、エポキシ樹脂にポリビニル
ホルマール樹脂,フェノキシ樹脂若しくはカルボキシル
化NBRゴムを5%(重量)以上混入したエポキシ樹脂
組成物を含浸させて成る無機基材プリプレグに、ポリイ
ミド樹脂フィルムを貼り合わせて成ることを特徴とする
極低温用絶縁材。
2. An inorganic base material prepreg obtained by impregnating an inorganic base material with an epoxy resin composition in which an epoxy resin is mixed with polyvinyl formal resin, phenoxy resin or carboxylated NBR rubber in an amount of 5% (by weight) or more, a polyimide resin. A cryogenic insulating material, which is formed by laminating films.
【請求項3】 ガラス基材とポリイミド樹脂フィルムと
を、エポキシ樹脂にポリビニルホルマール樹脂,フェノ
キシ樹脂若しくはカルボキシル化NBRゴムを5%(重
量)以上混入したエポキシ樹脂組成物を介して付設して
成ることを特徴とする極低温用絶縁材。
3. A glass base material and a polyimide resin film are attached via an epoxy resin composition in which a polyvinyl formal resin, a phenoxy resin or a carboxylated NBR rubber is mixed in an epoxy resin in an amount of 5% (by weight) or more. Insulating material for cryogenic use.
【請求項4】 ガラス基材に、エポキシ樹脂にポリビニ
ルホルマール樹脂,フェノキシ樹脂若しくはカルボキシ
ル化NBRゴムを5%(重量)以上混入したエポキシ樹
脂組成物を含浸させて成るガラス基材プリプレグに、ポ
リイミド樹脂フィルムを貼り合わせて成ることを特徴と
する極低温用絶縁材。
4. A glass base material prepreg obtained by impregnating a glass base material with an epoxy resin composition in which an epoxy resin is mixed with polyvinyl formal resin, phenoxy resin or carboxylated NBR rubber in an amount of 5% (by weight) or more, a polyimide resin. A cryogenic insulating material, which is formed by laminating films.
【請求項5】 ガラスクロスとポリイミド樹脂フィルム
とを、エポキシ樹脂にポリビニルホルマール樹脂,フェ
ノキシ樹脂若しくはカルボキシル化NBRゴムを5%
(重量)以上混入したエポキシ樹脂組成物を介して付設
して成ることを特徴とする極低温用絶縁材。
5. A glass cloth and a polyimide resin film, an epoxy resin containing polyvinyl formal resin, a phenoxy resin, or a carboxylated NBR rubber in an amount of 5%.
(Weight) An insulating material for cryogenic temperatures, characterized by being provided through an epoxy resin composition mixed as above.
【請求項6】 ガラスクロスに、エポキシ樹脂にポリビ
ニルホルマール樹脂,フェノキシ樹脂若しくはカルボキ
シル化NBRゴムを5%(重量)以上混入したエポキシ
樹脂組成物を含浸させて成るガラスクロスプリプレグ
に、ポリイミド樹脂フィルムを貼り合わせて成ることを
特徴とする極低温用絶縁材。
6. A polyimide resin film is applied to a glass cloth prepreg obtained by impregnating a glass cloth with an epoxy resin composition in which an epoxy resin is mixed with polyvinyl formal resin, phenoxy resin or carboxylated NBR rubber in an amount of 5% (by weight) or more. A cryogenic insulating material characterized by being bonded together.
【請求項7】 ガラスクロスと常温における引張伸度8
0〜160%のポリイミド樹脂フィルムとを、エポキシ
樹脂にポリビニルホルマール樹脂,フェノキシ樹脂若し
くはカルボキシル化NBRゴムを5%(重量)以上混入
したエポキシ樹脂組成物を介して付設して成ることを特
徴とする極低温用絶縁材。
7. A glass cloth and a tensile elongation at room temperature of 8
A polyimide resin film of 0 to 160% is attached via an epoxy resin composition in which a polyvinyl formal resin, a phenoxy resin or a carboxylated NBR rubber is mixed in an epoxy resin in an amount of 5% (by weight) or more. Cryogenic insulation.
【請求項8】 ガラスクロスに、エポキシ樹脂にポリビ
ニルホルマール樹脂,フェノキシ樹脂若しくはカルボキ
シル化NBRゴムを5%(重量)以上混入したエポキシ
樹脂組成物を含浸させて成るガラスクロスプリプレグ
に、常温における引張伸度80〜160%のポリイミド
樹脂フィルムを貼り合わせて成ることを特徴とする極低
温用絶縁材。
8. A glass cloth prepreg obtained by impregnating a glass cloth with an epoxy resin composition in which 5% (weight) or more of a polyvinyl formal resin, a phenoxy resin, or a carboxylated NBR rubber is mixed with an epoxy resin is stretched at room temperature. An insulating material for cryogenic temperatures, which is formed by laminating a polyimide resin film having a degree of 80 to 160%.
【請求項9】 ガラスクロスと下記の構造を有するポリ
イミド樹脂フィルムとを、エポキシ樹脂にポリビニルホ
ルマール樹脂,フェノキシ樹脂若しくはカルボキシル化
NBRゴムを5%(重量)以上混入したエポキシ樹脂組
成物を介して付設したことを特徴とする極低温用絶縁
材。 【化1】
9. A glass cloth and a polyimide resin film having the following structure are attached via an epoxy resin composition in which 5% (weight) or more of polyvinyl formal resin, phenoxy resin or carboxylated NBR rubber is mixed in epoxy resin. Cryogenic insulation material characterized by [Chemical 1]
【請求項10】 ガラスクロスに、エポキシ樹脂に数平
均分子量10000以上の高分子を5%(重量)以上混
入したエポキシ樹脂組成物を含浸させて成るガラスクロ
スプリプレグに、下記の構造を有するポリイミド樹脂フ
ィルムを貼り合わせて成ることを特徴とする極低温用絶
縁材。 【化1】
10. A polyimide resin having the following structure in a glass cloth prepreg obtained by impregnating a glass cloth with an epoxy resin composition prepared by mixing 5% (weight) or more of a polymer having a number average molecular weight of 10,000 or more in an epoxy resin. A cryogenic insulating material, which is formed by laminating films. [Chemical 1]
【請求項11】 請求項1〜10いずれか1項に記載の
極低温用絶縁材において、エポキシ樹脂組成物を絶縁材
に対して30〜60%(重量)となるように混合せしめ
て成ることを特徴とする極低温用絶縁材。
11. The cryogenic insulating material according to claim 1, wherein the epoxy resin composition is mixed in an amount of 30 to 60% (weight) with respect to the insulating material. Insulating material for cryogenic use.
【請求項12】 エポキシ系樹脂にポリビニルホルマー
ル樹脂若しくはフェノキシ樹脂若しくはカルボキシル化
NBRゴムを5%(重量)以上混入して成り、極低温条
件において前記高分子混入前に比し強固な接着力を有す
ることを特徴とするエポキシ系接着剤。
12. Epoxy resin mixed with polyvinyl formal resin, phenoxy resin, or carboxylated NBR rubber in an amount of 5% (by weight) or more, and having a stronger adhesive force under cryogenic conditions than before the polymer is mixed. An epoxy adhesive characterized in that.
JP4031398A 1997-04-23 1998-02-23 Cryogenic insulation and epoxy adhesive Expired - Lifetime JP3411495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4031398A JP3411495B2 (en) 1997-04-23 1998-02-23 Cryogenic insulation and epoxy adhesive

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-106426 1997-04-23
JP10642697 1997-04-23
JP4031398A JP3411495B2 (en) 1997-04-23 1998-02-23 Cryogenic insulation and epoxy adhesive

Publications (2)

Publication Number Publication Date
JPH117832A JPH117832A (en) 1999-01-12
JP3411495B2 true JP3411495B2 (en) 2003-06-03

Family

ID=26379761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4031398A Expired - Lifetime JP3411495B2 (en) 1997-04-23 1998-02-23 Cryogenic insulation and epoxy adhesive

Country Status (1)

Country Link
JP (1) JP3411495B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238707A (en) * 2006-03-07 2007-09-20 Fujikura Ltd Epoxy-based adhesive, coverlay, prepreg, metal-clad laminated plate and printed circuit substrate plate
KR101649359B1 (en) * 2010-02-19 2016-08-18 에스케이케미칼주식회사 Epoxy resin composition for film adhesive

Also Published As

Publication number Publication date
JPH117832A (en) 1999-01-12

Similar Documents

Publication Publication Date Title
JP2972240B2 (en) Laminated composite material and method for producing the same
JP6590113B2 (en) Metal-clad laminate, circuit board, and multilayer circuit board
JP5924836B2 (en) High temperature superconducting coated wire and high temperature superconducting coil having the same
US10113087B2 (en) Adhesive sheet
JPH0588261B2 (en)
TWI439439B (en) Polymer-ceramic composites with excellent tcc
EP1383844A1 (en) A thermosetting adhesive film, and an adhesive structure based on the use thereof
JPH06501657A (en) Sealing the substrate with a heat-recoverable article
JP2013006999A (en) Thermosetting adhesive, thermosetting adhesive sheet, and interphase insulating sheet
JPWO2017104771A1 (en) Composite sheet, electronic equipment
JP3411495B2 (en) Cryogenic insulation and epoxy adhesive
US20040068061A1 (en) Thermosetting adhesive film, and an adhesive structure based on the use thereof
JP2016084470A (en) Adhesive sheet
JP2003147323A (en) Adhesive composition, adhesive film, semiconductor carrier member, and semiconductor device and its production method
KR102261554B1 (en) Composite sheet with emi shielding and heat radiation and display apparatus comprising the same
EP0874372A1 (en) Insulating material and epoxy adhesive for super low temperature
JP4605950B2 (en) POLYIMIDE LAMINATED FILM, METAL LAMINATE USING SAME, AND METHOD FOR PRODUCING METAL LAMINATE
JPH0636619A (en) Flat cable
JP2002121525A (en) Adhesive composition, adhesive film, interconnection substrate for mounting semiconductor and semiconductor device
JP6548399B2 (en) Adhesive sheet
KR102261555B1 (en) Composite sheet with emi shielding and heat radiation and display apparatus comprising the same
JPH0827453A (en) Flame-retardant adhesive
KR20220162062A (en) Wiring board and method for manufacturing wiring board
KR20220162063A (en) Wiring board and method for manufacturing wiring board
JPS6161688B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140320

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term