JP3409639B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3409639B2
JP3409639B2 JP13565797A JP13565797A JP3409639B2 JP 3409639 B2 JP3409639 B2 JP 3409639B2 JP 13565797 A JP13565797 A JP 13565797A JP 13565797 A JP13565797 A JP 13565797A JP 3409639 B2 JP3409639 B2 JP 3409639B2
Authority
JP
Japan
Prior art keywords
region
insulating film
drain region
potential
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13565797A
Other languages
Japanese (ja)
Other versions
JPH10326895A (en
Inventor
善則 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP13565797A priority Critical patent/JP3409639B2/en
Publication of JPH10326895A publication Critical patent/JPH10326895A/en
Application granted granted Critical
Publication of JP3409639B2 publication Critical patent/JP3409639B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はU字型絶縁電極を利
用した縦型パワー素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical power device using a U-shaped insulating electrode.

【0002】[0002]

【従来の技術】本発明に関わる構造としては、本出願人
が以前に出願した特開平6−252408号公開特許公
報に記載の装置がある。前記の装置は、本発明の特徴部
分以外の基本的構造は本発明の実施の形態と類似してい
るので、本発明の実施の形態を示す図1〜図4を用いて
前記従来装置の構造を説明する。なお、図中番号および
部位の名称などは説明のため適宜変更して記載する。
2. Description of the Related Art As a structure related to the present invention, there is an apparatus described in Japanese Patent Application Laid-Open No. 6-252408 published by the present applicant. Since the basic structure of the above-mentioned device is similar to that of the embodiment of the present invention except for the characteristic part of the present invention, the structure of the conventional device will be described with reference to FIGS. 1 to 4 showing the embodiment of the present invention. Will be explained. It should be noted that the numbers and names of parts in the drawings are appropriately changed for description.

【0003】図1は当該半導体装置を示す鳥瞰図。図2
は断面図で、図5中の前面の断面に相当する。図3は当
該半導体装置の別の断面図で、図5の側面の断面と同じ
部位を示す。図4は当該半導体装置の表面図で、図5の
上面と同じ部位である。図4中の線分A−A’を通って
紙面に垂直な面で切った断面図が図1であり、同じく線
分B−B’に垂直な面で切った断面図が図3になる。
FIG. 1 is a bird's eye view showing the semiconductor device. Figure 2
Is a cross-sectional view and corresponds to the front cross-section in FIG. FIG. 3 is another cross-sectional view of the semiconductor device, showing the same part as the cross section of the side surface of FIG. 4 is a front view of the semiconductor device, which is the same portion as the upper surface of FIG. FIG. 1 is a cross-sectional view taken along a plane perpendicular to the plane of the drawing through the line segment AA ′ in FIG. 4, and FIG. 3 is a cross-sectional view taken along a plane perpendicular to the line segment BB ′. .

【0004】図中番号、1はn+型基板領域、2はn-型
ドレイン領域、3はn+型ソース領域である。半導体表
面には側壁をほぼ垂直に、かつ、互いに平行に掘られた
複数の溝が存在する。その内壁にはp+型のポリシリコ
ンからなるMOS型電極4が、絶縁膜5によって周囲の
n型領域と絶縁されて埋め込まれている。また、図2に
示すようにソース電極13はソース領域3とMOS型電
極4とにオーミックコンタクトしている。したがって、
MOS型電極4はソース領域3と常に同電位であるか
ら、このMOS型電極4と絶縁膜5をあわせて「固定電
位絶縁電極6」と呼ぶことにする。7はドレイン領域2
のうちで2つの固定電位絶縁電極6に挟まれた部分で、
この半導体装置のチャネル領域である。8はp型半導体
領域からなるゲート領域で、ソース領域3からは離れて
いるが、ドレイン領域2と絶縁膜5に接している。9は
層間絶縁膜である。11はドレイン領域1とオーミック
コンタクトするドレイン電極、18はゲート電極8にオ
ーミックコンタクトするゲート電極である。なお、説明
を明確にするため、図1と図4においては、図2および
図3に記載されている表面電極の記載を省いてある。
In the figure, reference numeral 1 is an n + type substrate region, 2 is an n − type drain region, and 3 is an n + type source region. On the semiconductor surface, there are a plurality of trenches whose sidewalls are almost vertical and parallel to each other. A MOS type electrode 4 made of p + type polysilicon is embedded in the inner wall thereof so as to be insulated from the surrounding n type region by an insulating film 5. Further, as shown in FIG. 2, the source electrode 13 is in ohmic contact with the source region 3 and the MOS type electrode 4. Therefore,
Since the MOS type electrode 4 is always at the same potential as the source region 3, the MOS type electrode 4 and the insulating film 5 are collectively referred to as "fixed potential insulating electrode 6". 7 is the drain region 2
In the part sandwiched between the two fixed potential insulated electrodes 6,
This is the channel region of this semiconductor device. Reference numeral 8 denotes a gate region formed of a p-type semiconductor region, which is separated from the source region 3 but is in contact with the drain region 2 and the insulating film 5. Reference numeral 9 is an interlayer insulating film. Reference numeral 11 is a drain electrode which makes ohmic contact with the drain region 1, and 18 is a gate electrode which makes ohmic contact with the gate electrode 8. Note that, in order to clarify the explanation, in FIGS. 1 and 4, the description of the surface electrode shown in FIGS. 2 and 3 is omitted.

【0005】この半導体装置の動作を説明する。図1〜
図4に示した半導体装置は、ソース電極を接地(0V
に)し、ドレイン電極は負荷を介して然るべき正電位に
接続して使用する。
The operation of this semiconductor device will be described. Figure 1
In the semiconductor device shown in FIG. 4, the source electrode is grounded (0 V
The drain electrode is connected to a proper positive potential via a load before use.

【0006】図2を使って説明する。まず遮断状態であ
るが、ゲート電極18が接地状態の時、デバイスは遮断
状態である。固定電位絶縁電極6の周囲にはビルトイン
電位に伴う空乏領域が形成されているが、チャネル領域
内で対向する2つの固定電位絶縁電極間の距離(以下、
これを「チャネル厚みH」と呼ぶことにする)が充分狭
ければ、チャネル領域7内にはこの空乏領域によって伝
導電子に対する充分なポテンシャル障壁が形成される。
たとえばチャネル領域7の不純物濃度を1×1014cm
~3程度、前記「チャネル厚みH」を2μm以下に設定す
れば、n+型ソース領域の伝導電子がチャネル領域7を
通ってドレイン領域2側へ移動する事を阻む充分なポテ
ンシャル障壁を得ることができる。
Description will be made with reference to FIG. First, the device is in the cutoff state, but when the gate electrode 18 is grounded, the device is in the cutoff state. A depletion region associated with the built-in potential is formed around the fixed potential insulated electrode 6, but the distance between two fixed potential insulated electrodes facing each other in the channel region (hereinafter,
If this is called "channel thickness H"), the depletion region forms a sufficient potential barrier for conduction electrons in the channel region 7.
For example, the impurity concentration of the channel region 7 is 1 × 10 14 cm
By setting the “channel thickness H” to about 2 μm or less to about 3 to obtain a sufficient potential barrier that prevents conduction electrons of the n + type source region from moving to the drain region 2 side through the channel region 7. You can

【0007】また、ドレイン領域2側からの電界の影響
によってこのポテンシャル障壁の高さが低下することの
ないよう、ソース領域3から固定電位絶縁電極6の底部
までの距離(以下、これを「チャネル長L」と呼ぶこと
にする)を、前記チャネル厚みHの2乃至3倍以上と設
定してある。この条件により、チャネル領域7の遮断状
態はアバランシェ降伏条件まで保たれる。
Further, the distance from the source region 3 to the bottom of the fixed potential insulating electrode 6 (hereinafter, referred to as "channel" is referred to as "channel" so that the height of the potential barrier is not lowered by the influence of the electric field from the drain region 2 side. The length L ”is set to be 2 to 3 times or more the channel thickness H. Under this condition, the cutoff state of the channel region 7 is maintained until the avalanche breakdown condition.

【0008】次にターンオンであるが、ゲート電極18
に正電位が印加されると、p型ゲート領域8の電位が上
昇し、これと接する絶縁膜界面に正孔が流れ込んで反転
層が形成される。反転層はp+型であるMOS型電極4
からチャネル領域7への電界を遮蔽するので、空乏領域
が縮小もしくは消滅してチャネルがひらく。ゲート領域
8の電位がさらに高くなると、p型のゲート領域8とn
型のドレイン領域2もしくはチャネル領域7との間のp
n接合が順バイアス状態となり、少数キャリアである正
孔がn型領域へ注入される。これらn型領域は高い耐圧
もしくはチャネルの遮断性を向上させるために、不純物
濃度が低く作られているので、少数キャリアが大量に注
入されると伝導度が向上し、ソース領域3から放出され
た電子は高い伝導度で基板領域1へと移動する。
Next, the gate electrode 18 is turned on.
When a positive potential is applied to the p-type gate region 8, the potential of the p-type gate region 8 rises and holes flow into the interface of the insulating film in contact with the p-type gate region 8 to form an inversion layer. Inversion layer is p + type MOS type electrode 4
Since the electric field from to the channel region 7 is shielded, the depletion region shrinks or disappears, and the channel opens. When the potential of the gate region 8 becomes higher, the p-type gate region 8 and n
Between the drain region 2 or the channel region 7 of the mold
The n-junction is in a forward bias state, and holes that are minority carriers are injected into the n-type region. These n-type regions are made to have a low impurity concentration in order to improve the high breakdown voltage or the blocking property of the channel. Therefore, when a large number of minority carriers are injected, the conductivity is improved and the n-type regions are emitted from the source region 3. The electrons move to the substrate region 1 with high conductivity.

【0009】ところで、ゲート電極18へ流れ込んだ電
流はp型ゲート領域8から正孔流となって最終的には殆
どがソース領域3へと流れ込む。その大半はドレイン領
域2の内部に広がってこの領域の伝導度の向上に寄与す
るが、中には絶縁膜5の界面を伝って最短距離でソース
領域3へと流れ込んでしまう部分もある。この部分はド
レイン領域2の伝導度変調には寄与しないので、この部
分が多いと所謂「電流増幅率」と呼ばれる(ドレイン電
流/ゲート電流)比が低くなって効率が悪くなる。
By the way, the current flowing into the gate electrode 18 becomes a hole flow from the p-type gate region 8 and finally almost all flows into the source region 3. Most of it spreads inside the drain region 2 and contributes to the improvement of the conductivity of this region, but there is also a part that flows along the interface of the insulating film 5 and flows into the source region 3 at the shortest distance. Since this portion does not contribute to the conductivity modulation of the drain region 2, if there are many portions, the so-called "current amplification factor" (drain current / gate current) ratio becomes low and the efficiency deteriorates.

【0010】[0010]

【発明が解決しようとする課題】前記のように、この半
導体装置では注入された正孔のうちドレイン領域の伝導
度変調に寄与しない部分があって電流増幅率が思うよう
に向上しない、という課題があった。本発明はこのよう
な課題を解決し、電流増幅率の高い当該構造の半導体装
置を実現することを目的としている。
As described above, in this semiconductor device, there is a portion of the injected holes that does not contribute to conductivity modulation of the drain region, and the current amplification factor is not improved as expected. was there. An object of the present invention is to solve such a problem and to realize a semiconductor device having such a structure with a high current amplification factor.

【0011】[0011]

【課題を解決するための手段】課題を解決するために、
本発明においては前記特許請求の範囲に記載するような
構成をとる。すなわち、請求項1においては、まず以下
のような構造の半導体装置を対象とするが、例えばn型
半導体であるドレイン領域の一主面に、互いに平行に配
置された溝を複数有し、この溝に挟まれた前記主面に同
一導電型(ここではn型)ソース領域を有し、前記溝の
内部には絶縁膜によって前記ドレイン領域とは絶縁さ
れ、かつ、前記ソース領域とは同電位に保たれた固定電
位絶縁電極を有する。なお、この電極は前記絶縁膜を介
して隣接する前記ドレイン領域に空乏領域を形成するよ
うな性質を有する導電性材料(たとえばp+型ポリシリ
コン)からなる。さらに前記ソース領域には接しない
で、かつ、前記ドレイン領域ならびに前記絶縁膜に接す
る反対導電型(ここではp型)のゲート領域を有し、さ
らに、前記ソース領域に隣接する前記ドレイン領域の一
部であって、前記固定電位絶縁電極に挟まれたチャネル
領域を有する。そして前記ゲート領域の電位が前記ソー
ス領域の電位と同電位に保たれている状態では、前記チ
ャネル領域内に前記空乏領域が形成するポテンシャル障
壁によって、前記ソース領域と前記ドレイン領域とは電
気的に遮断状態であり、前記ゲート領域の電位が前記ゲ
ート領域(ここではp型)と前記ソース領域(ここでは
n型)との間に形成されるpn接合を順バイアス状態に
するような電位の時は、前記ゲート領域が接する前記絶
縁膜の界面に反転層(ここでは正孔よりなる)が形成さ
れて、前記空乏領域を形成している前記固定電位絶縁電
極からの電界を遮蔽することで、前記空乏領域を縮小も
しくは消失させて前記チャネル領域が導通状態となり、
さらに前記ドレイン領域に少数キャリア(ここでは正
孔)が注入されることで前記ドレイン領域の伝導度が向
上するような構造の半導体装置である。
[Means for Solving the Problems] In order to solve the problems,
The present invention has a configuration as described in the claims. That is, in claim 1, first, the semiconductor device having the following structure is targeted. For example, one main surface of the drain region, which is an n-type semiconductor, has a plurality of grooves arranged in parallel to each other. A source region of the same conductivity type (here, n-type) is provided on the main surface sandwiched by the trench, and the drain region is insulated from the drain region by an insulating film inside the trench, and has the same potential as the source region. Having a fixed potential insulated electrode maintained at. It should be noted that this electrode is made of a conductive material (for example, p + type polysilicon) having a property of forming a depletion region in the drain region adjacent to the insulating film. Further, the drain region and the gate region of the opposite conductivity type (here, p-type) not in contact with the source region and in contact with the drain region and the insulating film are provided, and one of the drain regions adjacent to the source region is further provided. And a channel region sandwiched between the fixed potential insulated electrodes. When the potential of the gate region is kept at the same potential as the potential of the source region, the potential barrier formed by the depletion region in the channel region electrically connects the source region and the drain region. In the cutoff state, the potential of the gate region is such that the pn junction formed between the gate region (here, p type) and the source region (here, n type) is in a forward bias state. Is formed by forming an inversion layer (here, formed of holes) at the interface of the insulating film in contact with the gate region, and shielding the electric field from the fixed potential insulating electrode forming the depletion region, Shrinking or eliminating the depletion region to make the channel region conductive,
Further, the conductivity of the drain region is improved by injecting minority carriers (here, holes) into the drain region.

【0012】以上の構成については、すでに特開平6−
252408号で本出願人が出願している。本発明で
は、このような構造の半導体装置において、さらに、前
記チャネル領域に接する前記絶縁膜界面(すなわち前記
溝の側壁)が、前記少数キャリア(ここでは正孔)に対
する移動度のうち、少なくとも前記主面に平行な方向
(すなわち前記ソース領域と前記ゲート領域とを結ぶ方
向)の移動度が低い面方位で形成された構成とする。な
お、前記の「移動度が低い面方位」とは、半導体の種々
の結晶面方位のうち、他の面方位よりも前記少数キャリ
アの移動度が低い面方位を選択することを意味し、具体
的には例えば請求項2、3に記載するごとき面方位が該
当する。
With respect to the above construction, Japanese Patent Laid-Open No. 6-
No. 252408 filed by the applicant. In the present invention, in the semiconductor device having such a structure, the insulating film interface (that is, the sidewall of the groove) in contact with the channel region further has at least the mobility among the minority carriers (here, holes). It is configured to have a plane orientation with low mobility in a direction parallel to the main surface (that is, a direction connecting the source region and the gate region). Note that the "plane orientation with low mobility" means selecting a plane orientation in which the mobility of the minority carrier is lower than other plane orientations among various crystal plane orientations of a semiconductor. Specifically, the plane orientation as described in claims 2 and 3 is applicable.

【0013】請求項2は、請求項1のより具体的な構成
のひとつを限定したものであるが、前記チャネル領域が
n型シリコン単結晶領域である場合、少数キャリア(こ
こでは正孔)による反転層が形成される前記絶縁膜界面
(すなわち前記溝の側壁)が、前記少数キャリア(ここ
では正孔)に対する移動度の低い{100}面になるよ
うな構成とする。
A second aspect limits one of the more specific constitutions of the first aspect, but when the channel region is an n-type silicon single crystal region, minority carriers (here, holes) are used. The interface of the insulating film where the inversion layer is formed (that is, the sidewall of the groove) is a {100} plane having a low mobility for the minority carriers (holes in this case).

【0014】さらに請求項3は、同じく請求項1のより
具体的な構成のひとつを限定したものであるが、前記チ
ャネル領域がp型シリコン単結晶領域である場合、少数
キャリア(ここでは電子)による反転層が形成される前
記絶縁膜界面(すなわち前記溝の側壁)が、{110}
面であり、さらに、前記主面に平行な方向(すなわち反
転層中の電子がゲート領域からソース領域へ移動する方
向)が前記少数キャリア(ここでは電子)に対する移動
度の低い<110>方向であるような構成とする。
Further, claim 3 limits one of the more specific constitutions of claim 1 as well, but when the channel region is a p-type silicon single crystal region, minority carriers (electrons here). The insulating film interface (that is, the sidewall of the groove) on which the inversion layer is formed is {110}
And a direction parallel to the main surface (that is, a direction in which electrons in the inversion layer move from the gate region to the source region) is a <110> direction in which mobility with respect to the minority carriers (here, electrons) is low. It has a certain structure.

【0015】[0015]

【発明の効果】前記のような本発明のような構成とする
と、そうでない場合と比べて同じゲート電流を注入した
場合にも、前記ゲート領域から注入された少数キャリア
のうち、絶縁膜界面の反転層を伝って前記ソース領域へ
と流れ、ドレイン領域の伝導度変調に寄与しない分が減
少し、結果的に電流増幅率が向上する。
According to the structure of the present invention as described above, even when the same gate current is injected as compared with the case where it is not, of the minority carriers injected from the gate region, the The current that flows through the inversion layer to the source region and does not contribute to conductivity modulation of the drain region is reduced, and as a result, the current amplification factor is improved.

【0016】また、請求項2は請求項1をさらに具体的
に限定したもので、n型シリコン基板上にこのトランジ
スタをつくった場合に、前記のように面方位を選んで作
ると最も電流増幅率が向上する。
Further, claim 2 is a more specific limitation of claim 1. When this transistor is formed on an n-type silicon substrate, if the plane orientation is selected as described above, the current amplification will be the highest. The rate is improved.

【0017】また、請求項3は同じく請求項1をさらに
具体的に限定したものであるが、p型シリコン基板上に
このトランジスタをつくった場合に、前記のように面方
位を選んで作ると最も電流増幅率が向上する。
Also, claim 3 is a more specific limitation of claim 1, but when this transistor is formed on a p-type silicon substrate, if the plane orientation is selected as described above, The current amplification factor is most improved.

【0018】[0018]

【発明の実施の形態】以下、本発明を詳しく説明する。
図1〜図4は本発明の一実施の形態を示す図であり、図
1は当該半導体装置を示す鳥瞰図。図2は断面図で、図
5中の前面の断面に相当する。図3は当該半導体装置の
別の断面図で、図5の側面の断面と同じ部位を示す。図
4は当該半導体装置の表面図で、図5の上面と同じ部位
である。図4中の線分A−A’を通って紙面に垂直な面
で切った断面図が図1であり、同じく線分B−B’に垂
直な面で切った断面図が図3になる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
1 to 4 are views showing an embodiment of the present invention, and FIG. 1 is a bird's-eye view showing the semiconductor device. FIG. 2 is a cross-sectional view and corresponds to the cross section of the front surface in FIG. FIG. 3 is another cross-sectional view of the semiconductor device, showing the same part as the cross section of the side surface of FIG. 4 is a front view of the semiconductor device, which is the same portion as the upper surface of FIG. FIG. 1 is a cross-sectional view taken along a plane perpendicular to the plane of the drawing through the line segment AA ′ in FIG. 4, and FIG. 3 is a cross-sectional view taken along a plane perpendicular to the line segment BB ′. .

【0019】図中番号、1はn+型基板領域、2はn-型
ドレイン領域、3はn+型ソース領域である。半導体表
面には側壁をほぼ垂直に、かつ、互いに平行に掘られた
複数の溝が存在する。その内壁にはp+型のポリシリコ
ンからなるMOS型電極4が、絶縁膜5によって周囲の
n型領域と絶縁されて埋め込まれている。また、図2に
示すようにソース電極13はソース領域3とMOS型電
極4とにオーミックコンタクトしている。したがって、
MOS型電極4はソース領域3と常に同電位であるか
ら、このMOS型電極4と絶縁膜5をあわせて「固定電
位絶縁電極6」と呼ぶことにする。7はドレイン領域2
のうちで2つの固定電位絶縁電極6に挟まれた部分で、
この半導体装置のチャネル領域である。8はp型半導体
領域からなるゲート領域で、ソース領域3からは離れて
いるが、ドレイン領域2と絶縁膜5に接している。9は
層間絶縁膜である。11はドレイン領域1とオーミック
コンタクトするドレイン電極、18はゲート電極8にオ
ーミックコンタクトするゲート電極である。なお、説明
を明確にするため、図1と図4においては、図2および
図3に記載されている表面電極の記載を省いてある。
In the figure, reference numeral 1 is an n + type substrate region, 2 is an n − type drain region, and 3 is an n + type source region. On the semiconductor surface, there are a plurality of trenches whose sidewalls are almost vertical and parallel to each other. A MOS type electrode 4 made of p + type polysilicon is embedded in the inner wall thereof so as to be insulated from the surrounding n type region by an insulating film 5. Further, as shown in FIG. 2, the source electrode 13 is in ohmic contact with the source region 3 and the MOS type electrode 4. Therefore,
Since the MOS type electrode 4 is always at the same potential as the source region 3, the MOS type electrode 4 and the insulating film 5 are collectively referred to as "fixed potential insulating electrode 6". 7 is the drain region 2
In the part sandwiched between the two fixed potential insulated electrodes 6,
This is the channel region of this semiconductor device. Reference numeral 8 denotes a gate region formed of a p-type semiconductor region, which is separated from the source region 3 but is in contact with the drain region 2 and the insulating film 5. Reference numeral 9 is an interlayer insulating film. Reference numeral 11 is a drain electrode which makes ohmic contact with the drain region 1, and 18 is a gate electrode which makes ohmic contact with the gate electrode 8. Note that, in order to clarify the explanation, in FIGS. 1 and 4, the description of the surface electrode shown in FIGS. 2 and 3 is omitted.

【0020】前記のごとき本発明に関わるデバイス構造
は、前記従来技術の欄で説明したものと基本的部分は同
じであり、違う点はチャネル領域7の前記絶縁膜5に接
する界面の面方位のみである。また、前記装置の基本的
動作は、前記従来技術の欄で説明したのと同様なので、
省略し、以下、本発明の特徴とする部分について説明す
る。
The device structure according to the present invention as described above is basically the same as that described in the section of the prior art, and the only difference is the plane orientation of the interface in contact with the insulating film 5 in the channel region 7. Is. Also, since the basic operation of the device is the same as described in the section of the prior art,
The description will be omitted, and the features of the present invention will be described below.

【0021】図5は前記の半導体装置(チャネル領域7
がn型シリコンである場合)を、前記チャネル領域7の
前記絶縁膜界面の面方位を{110}面とし、かつ正孔
流の流れる方向を<110>軸方向としてデバイスをつ
くったものと、同界面の面方位を{100}としてつく
ったものの、電流増幅率を測定・比較したグラフであ
る。グラフの横軸はトランジスタチップのドレイン電流
密度、縦軸は所謂「電流増幅率」で(ドレイン電流値/
ゲート電流値)の比である。
FIG. 5 shows the above-mentioned semiconductor device (channel region 7).
Is a n-type silicon), and the device is formed with the plane orientation of the insulating film interface of the channel region 7 as the {110} plane and the direction of the flow of holes as the <110> axis direction. It is a graph which measured and compared the current amplification factor, although it was made by setting the plane orientation of the same interface as {100}. The horizontal axis of the graph is the drain current density of the transistor chip, and the vertical axis is the so-called "current amplification factor" (drain current value /
Gate current value).

【0022】図5に見るとおり、本発明に則った、前記
絶縁膜界面の面方位が{100}であるトランジスタの
方が電流増幅率が高い。なお、試作したトランジスタの
ドレイン領域2は基板領域1上にエピタキシャル成長さ
せたものだが、半導体装置が少なくとも600Vの耐圧
を持つよう、ドレイン領域の厚さは50μm程度に設定
した。また、測定時のドレイン・ソース間電圧は5Vで
ある。
As shown in FIG. 5, the transistor according to the present invention in which the plane orientation of the insulating film interface is {100} has a higher current amplification factor. Although the drain region 2 of the prototype transistor was epitaxially grown on the substrate region 1, the thickness of the drain region was set to about 50 μm so that the semiconductor device has a breakdown voltage of at least 600V. The drain-source voltage at the time of measurement is 5V.

【0023】また、図1〜図4では、基板領域1をn型
としたバージョンを示したが、これは前記請求項2に相
当する。本発明では前記請求項3に示すごとく、たとえ
ば基板領域1をp型(チャネル領域7がp型シリコンで
ある場合)とし、その他、全ての半導体領域の伝導型を
入れ替えた構造でも成立する。すなわち、その場合は絶
縁膜界面には今度は電子による反転層が形成されるの
で、電子の反転層移動度が最も低い面方位、すなわち
{110}面となるように選び、かつ電子流の方向であ
る表面に平行な方向が<110>方向になるように構造
をつくりあげればよい。
Further, FIGS. 1 to 4 show a version in which the substrate region 1 is an n-type, which corresponds to claim 2. According to the present invention, as described in claim 3, for example, the substrate region 1 is p-type (when the channel region 7 is p-type silicon), and the conductivity types of all the semiconductor regions are exchanged. That is, in this case, since an inversion layer due to electrons is formed at the interface of the insulating film, the plane orientation having the lowest electron inversion layer mobility, that is, the {110} plane is selected, and the direction of the electron flow is selected. The structure may be made so that the direction parallel to the surface of is the <110> direction.

【0024】なお、本発明はここに上げたシリコンに限
らず、ゲルマニウム、SiC、III−V族等化合物半導
体を使って作られた場合でも、同様に成立する。
The present invention is not limited to the above-mentioned silicon, and is similarly applicable to the case of using a compound semiconductor such as germanium, SiC, or a III-V group semiconductor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の関わる半導体装置の一実施の形態を示
す斜視図。
FIG. 1 is a perspective view showing an embodiment of a semiconductor device according to the present invention.

【図2】本発明の関わる半導体装置の一実施の形態を示
す断面図。
FIG. 2 is a sectional view showing an embodiment of a semiconductor device according to the present invention.

【図3】本発明の関わる半導体装置の一実施の形態を示
す別の断面図。
FIG. 3 is another sectional view showing an embodiment of a semiconductor device according to the present invention.

【図4】本発明の関わる半導体装置の一実施の形態を示
す表面図。
FIG. 4 is a surface view showing an embodiment of a semiconductor device according to the present invention.

【図5】本発明の効果を説明する電流増幅率のグラフ。FIG. 5 is a graph of current amplification factor for explaining the effect of the present invention.

【符号の説明】[Explanation of symbols]

1…基板領域 2…ドレイン領域 3…ソース領域 4…MOS型電極 5…絶縁膜 6…固定電位絶縁電極 7…チャネル領域 8…ゲート領域 9…層間絶縁膜 11…ドレイン電極 13…ソース電極 18…ゲート電極 H…チャネル厚み L…チャネル長 1 ... Substrate area 2 ... Drain region 3 ... Source area 4 ... MOS type electrode 5 ... Insulating film 6 ... Fixed potential insulated electrode 7 ... Channel area 8 ... Gate area 9 ... Interlayer insulating film 11 ... Drain electrode 13 ... Source electrode 18 ... Gate electrode H ... Channel thickness L ... Channel length

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ドレイン領域である一導電型の半導体基体
の一主面に、互いに平行に配置された溝を複数有し、 前記溝に挟まれた前記主面に、同一導電型のソース領域
を有し、 前記溝の内部には、絶縁膜によって前記ドレイン領域と
は絶縁され、かつ、前記ソース領域とは同電位に保たれ
た固定電位絶縁電極を有し、 前記固定電位絶縁電極は、前記絶縁膜を介して隣接する
前記ドレイン領域に空乏領域を形成するような性質を有
する導電性材料からなり、 前記ソース領域には接しないで、かつ、前記ドレイン領
域ならびに前記絶縁膜に接する反対導電型のゲート領域
を有し、 前記ソース領域に隣接する前記ドレイン領域の一部であ
って、前記固定電位絶縁電極に挟まれたチャネル領域を
有し、 前記ゲート領域の電位が、前記ソース領域の電位と同電
位に保たれている状態では、前記チャネル領域内に前記
空乏領域が形成するポテンシャル障壁によって、前記ソ
ース領域と前記ドレイン領域とは電気的に遮断状態であ
り、 前記ゲート領域の電位が、前記ゲート領域と前記ソース
領域との間に形成されるpn接合を順バイアス状態にす
るような電位になると、前記ゲート領域が接する前記絶
縁膜の界面に反転層が形成されて、前記空乏領域を形成
している前記固定電位絶縁電極からの電界が遮蔽され、
前記空乏領域を縮小もしくは消失して前記チャネル領域
が導通状態となり、さらに前記ドレイン領域に少数キャ
リアが注入されることで前記ドレイン領域の伝導度が向
上するような構成の半導体装置において、 前記チャネル領域の前記絶縁膜に接する界面が、少なく
とも前記主面に平行な方向への少数キャリアの移動度が
低い面方位になるよう構成されている、ことを特徴とす
る半導体装置。
1. A source region of the same conductivity type having a plurality of grooves arranged in parallel with each other on one main surface of a semiconductor substrate of one conductivity type which is a drain region, and the main surface sandwiched by the grooves. In the inside of the groove, the drain region is insulated from the drain region by an insulating film, and has a fixed potential insulating electrode kept at the same potential as the source region, the fixed potential insulating electrode, It is made of a conductive material having a property of forming a depletion region in the drain region which is adjacent to the drain region through the insulating film, and has an opposite conductivity which does not contact the source region and contacts the drain region and the insulating film. A gate region of a mold, a part of the drain region adjacent to the source region, and a channel region sandwiched between the fixed potential insulating electrodes, the potential of the gate region is Electric And a potential barrier formed by the depletion region in the channel region, the source region and the drain region are electrically cut off, and the potential of the gate region is When the potential is such that the pn junction formed between the gate region and the source region is in a forward bias state, an inversion layer is formed at the interface of the insulating film in contact with the gate region and the depletion region is formed. The electric field from the fixed potential insulated electrode that is being formed is shielded,
A semiconductor device having a structure in which the depletion region is reduced or disappears to bring the channel region into a conductive state, and the conductivity of the drain region is improved by injecting minority carriers into the drain region. The semiconductor device is configured such that the interface in contact with the insulating film has a plane orientation in which at least minority carrier mobility in a direction parallel to the main surface is low.
【請求項2】前記チャネル領域がn型シリコン単結晶領
域であり、前記絶縁膜界面の面方位が{100}面で構
成されたことを特徴とする、請求項1に記載の半導体装
置。
2. The semiconductor device according to claim 1, wherein the channel region is an n-type silicon single crystal region, and a plane orientation of the insulating film interface is a {100} plane.
【請求項3】前記チャネル領域がp型シリコン単結晶領
域であり、前記絶縁膜界面の面方位が{110}面であ
り、かつ、前記主面に平行な結晶軸方向が<110>方
向であることを特徴とする、請求項1に記載の半導体装
置。
3. The channel region is a p-type silicon single crystal region, a plane orientation of the insulating film interface is a {110} plane, and a crystal axis direction parallel to the main surface is a <110> direction. The semiconductor device according to claim 1, wherein the semiconductor device is provided.
JP13565797A 1997-05-27 1997-05-27 Semiconductor device Expired - Lifetime JP3409639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13565797A JP3409639B2 (en) 1997-05-27 1997-05-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13565797A JP3409639B2 (en) 1997-05-27 1997-05-27 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH10326895A JPH10326895A (en) 1998-12-08
JP3409639B2 true JP3409639B2 (en) 2003-05-26

Family

ID=15156910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13565797A Expired - Lifetime JP3409639B2 (en) 1997-05-27 1997-05-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3409639B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3531613B2 (en) 2001-02-06 2004-05-31 株式会社デンソー Trench gate type semiconductor device and manufacturing method thereof
JP3715971B2 (en) 2003-04-02 2005-11-16 ローム株式会社 Semiconductor device
JP2009076879A (en) 2007-08-24 2009-04-09 Semiconductor Energy Lab Co Ltd Semiconductor device
US8232598B2 (en) 2007-09-20 2012-07-31 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US8044464B2 (en) 2007-09-21 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JPH10326895A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
US10991801B2 (en) Semiconductor device with improved current flow distribution
US6452231B1 (en) Semiconductor device
USRE38953E1 (en) Insulated gate semiconductor device and method of manufacturing the same
JP6780777B2 (en) Semiconductor device
KR100965354B1 (en) Trench structure semiconductor device
JP4087248B2 (en) Trench gate field effect transistor and method of manufacturing the same
US6297534B1 (en) Power semiconductor device
US6201279B1 (en) Semiconductor component having a small forward voltage and high blocking ability
JP4843843B2 (en) Super junction semiconductor device
US7692241B2 (en) Semiconductor device
JP2007184486A (en) Semiconductor device
US8912632B2 (en) Semiconductor device
JP4669191B2 (en) Horizontal superjunction semiconductor device
JPH04146674A (en) Semiconductor device and manufacture thereof
JP6356803B2 (en) Insulated gate bipolar transistor
JP2019071314A (en) Semiconductor device
JPH09283754A (en) High withstand voltage semiconductor device
JP2006351985A (en) Semiconductor device
JP2004134597A (en) Semiconductor element
JP7351086B2 (en) Insulated gate semiconductor device and method for manufacturing the same
US20180261594A1 (en) Semiconductor device
JP2019503591A (en) Power semiconductor devices
JP2014509453A (en) Power semiconductor devices
US6207993B1 (en) Field effect semiconductor device
JP2013102213A (en) Semiconductor element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

EXPY Cancellation because of completion of term