JP3409284B2 - Method of forming partition - Google Patents

Method of forming partition

Info

Publication number
JP3409284B2
JP3409284B2 JP18734499A JP18734499A JP3409284B2 JP 3409284 B2 JP3409284 B2 JP 3409284B2 JP 18734499 A JP18734499 A JP 18734499A JP 18734499 A JP18734499 A JP 18734499A JP 3409284 B2 JP3409284 B2 JP 3409284B2
Authority
JP
Japan
Prior art keywords
abrasive
weight
particle powder
particle size
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18734499A
Other languages
Japanese (ja)
Other versions
JP2001009727A (en
Inventor
隆伸 酒井
勝彦 松尾
正 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruo Calcium Co Ltd
Fuji Manufacturing Co Ltd
Original Assignee
Maruo Calcium Co Ltd
Fuji Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruo Calcium Co Ltd, Fuji Manufacturing Co Ltd filed Critical Maruo Calcium Co Ltd
Priority to JP18734499A priority Critical patent/JP3409284B2/en
Priority to KR10-2000-0037172A priority patent/KR100427624B1/en
Publication of JP2001009727A publication Critical patent/JP2001009727A/en
Application granted granted Critical
Publication of JP3409284B2 publication Critical patent/JP3409284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/04Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C11/00Selection of abrasive materials or additives for abrasive blasts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/36Spacers, barriers, ribs, partitions or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス等の基板上
に低融点ガラス層からなる隔壁を形成する方法に関し、
特に、プラズマディスプレイ(以下、PDPと記す)に
おいて、電極が設けられたガラス等の基板上にブラスト
性を有する低融点ガラス層を形成し、該低融点ガラス層
のブラスト加工により隔壁を形成するに際し、被加工物
底部の電極またはガラス等からなる基板の表面性状を損
なうことなく効率良く研磨して隔壁を形成する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming partition walls made of a low melting point glass layer on a substrate such as glass,
Particularly, in a plasma display (hereinafter referred to as PDP), when a low melting point glass layer having a blast property is formed on a substrate such as a glass provided with electrodes, and a partition wall is formed by blasting the low melting point glass layer. The present invention relates to a method for efficiently forming a partition wall by polishing an electrode at the bottom of a workpiece or a substrate made of glass or the like without damaging the surface texture.

【0002】[0002]

【従来の技術】従来、PDPを製造する方法の一つとし
て、サンドブラスト法が広く採用されている。この方法
は、通常、電極が設けられたガラス等の基板上にブラス
ト性を有する厚さ1mm以下の低融点ガラス層を形成
し、該低融点ガラス層に、幅50〜600μmといった
微細な溝を一定の深さまで研削する。この場合、溝幅は
マスキングテープ等を該低融点ガラス層に塗布又は印刷
することにより一定とし、その表面側から研磨材を噴射
してブラスト加工することにより、低融点ガラス層をガ
ラス等の基板に到達する深さまで研削し、隔壁を形成す
る。
2. Description of the Related Art Conventionally, a sandblast method has been widely adopted as one of methods for manufacturing a PDP. In this method, a low melting point glass layer having a blasting property and having a thickness of 1 mm or less is usually formed on a substrate such as glass provided with electrodes, and fine grooves having a width of 50 to 600 μm are formed in the low melting point glass layer. Grind to a certain depth. In this case, the groove width is made constant by applying or printing a masking tape or the like on the low melting point glass layer, and the low melting point glass layer is blasted by spraying an abrasive from the surface side of the low melting point glass layer onto a substrate such as glass. And a partition is formed by grinding to a depth reaching

【0003】研磨材粒子としては、通常、ガラスビー
ズ、アランダム、コランダム等が使用されており研磨速
度を高めるため、これらの硬度は、被加工物より同等か
それ以上である。また、粒子形状としては、球形もしく
は球形に近い物が使用されている。
As the abrasive particles, glass beads, alundum, corundum, etc. are usually used, and the hardness thereof is equal to or higher than that of the work piece in order to increase the polishing rate. Further, as the particle shape, a spherical shape or an almost spherical shape is used.

【0004】研磨材の粒子形状として球形もしくは球形
に近い物が使用される利点としては、研磨材の製造過程
において粗大粒子の除去が簡単であり、またブラスト加
工における被加工物への付着性がなく、流動性が良く、
研磨材の摩損が少ないことである。
The advantage of using spherical or near spherical particles as the particle shape of the abrasive is that it is easy to remove coarse particles during the manufacturing process of the abrasive, and the adhesiveness to the work piece during blasting is high. And has good fluidity,
That is, there is little wear of the abrasive.

【0005】一方、研磨材の粒子形状が球形あるいは球
形に近い形状であることによる欠点としては、粒子1個
あたりに存在する凸部が少ないため加工速度が遅く球の
曲率相当分までしか研磨できないため、溝や溝の隅部の
加工が精度良く効率的にできないことである。この欠点
を改善するため、粒径の小さな球形あるいは球形に近い
形状の研磨材を使用すると、研磨材粒子の曲率は小さく
なるなるので微細な部分まで加工が可能となるものの、
個々の研磨材粒子の質量が小さいため研磨面に衝突した
ときに発生する衝撃力が小さくなるので研磨力そのもの
が減少し効率が悪化する。また、粒子形状が球形もしく
はそれに近い物であることから、ある程度研磨が進み溝
が掘成された状態の際に研磨材粒子が被研磨物の溝底部
ではねかえって溝壁面に衝突したりするため隔壁形状が
一定になりにくいという問題もある。さらに研磨材粒子
が破砕されると不規則な形状の突起部が発生し、この突
起部が該被研磨面に大きな傷をつけるといった弊害があ
る。これは研磨材のモース硬度が被研磨面である底部の
基板部より大きいためである。
On the other hand, a drawback of the abrasive particles having a spherical shape or a shape close to a spherical shape is that the processing speed is slow because only a small amount of protrusions are present per particle, and only a portion corresponding to the curvature of the sphere can be polished. Therefore, it is impossible to process the groove and the corner of the groove accurately and efficiently. In order to improve this drawback, when using an abrasive having a small spherical shape or a shape close to a spherical shape, the curvature of the abrasive particles becomes small, so that even fine parts can be processed,
Since the mass of each abrasive particle is small, the impact force generated when the abrasive particles collide with the polishing surface is reduced, so that the polishing force itself is reduced and the efficiency is deteriorated. In addition, since the particle shape is a spherical shape or something close to it, when the polishing progresses to a certain extent and the groove is excavated, the abrasive particles collide with the groove wall surface at the groove bottom of the object to be polished. There is also a problem that the shape of the partition wall is difficult to be uniform. Further, when the abrasive particles are crushed, irregularly shaped protrusions are generated, and there is such a bad effect that the protrusions seriously scratch the surface to be polished. This is because the Mohs hardness of the abrasive is larger than that of the bottom substrate, which is the surface to be polished.

【0006】これを解決する試みとして、微細な粒径の
研磨材を含むように粒度調整した、いわゆる複合の粒度
を持つ研磨材が使用されているが、研磨中には微細な粒
子径の研磨材の混合比率が一定とならないために、溝や
その隅部で十分に研磨されていない部分が残ったり、ま
た、逆に過度に研磨されたりし、いわゆる研磨むらが生
じやすいという問題がある。
[0006] As an attempt to solve this, an abrasive having a so-called composite particle size, in which the particle size is adjusted to include an abrasive having a fine particle size, is used. Since the mixing ratio of the materials is not constant, there is a problem that so-called polishing unevenness is likely to occur due to remaining unpolished portions at the grooves and their corners, or conversely excessive polishing.

【0007】また、研磨材を繰り返し使用すると偏析を
おこし、微細な粒子径の研磨材の混合比率の変動が大き
くなり、これも、研磨加工精度のバラツキの原因とな
る。さらには、微細な粒径の研磨材は、前記した如く、
個々の粒子の質量が小さいため研削力が小さく効率が悪
くなる。
Further, when the abrasives are repeatedly used, segregation occurs and the variation of the mixing ratio of the abrasives having a fine particle diameter becomes large, which also causes the variation of the polishing accuracy. Furthermore, as described above, the abrasive having a fine particle diameter is
Since the mass of each particle is small, the grinding force is small and the efficiency is poor.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記実情に鑑
みてなされたもので、その課題は上記問題点を解消し、
特にPDPの隔壁形成加工において、被研磨物底部表面
の性状を損なうことなく、効率良く、精度良く研磨して
隔壁を形成する方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and the problem is to solve the above problems.
In particular, in the partition wall forming process of PDP, it is an object of the present invention to provide a method for efficiently and accurately polishing partition walls without impairing the properties of the bottom surface of the object to be polished.

【0009】[0009]

【課題を解決するための手段】本発明者らは、鋭意検討
した結果、加工しようとするピッチ、被加工物の材質に
応じて、研磨材の形状、モース硬度、最大粒子径、平均
粒子径等を制御することにより、上記目的を達成し得る
ことを見出し、本発明に到達した。
As a result of intensive studies, the inventors of the present invention have found that the shape of the abrasive, the Mohs hardness, the maximum particle size, and the average particle size are determined according to the pitch to be processed and the material of the workpiece. The inventors have found that the above object can be achieved by controlling the above, and have reached the present invention.

【0010】すなわち、本発明は、電極が設けられた基
板及びその基板上に設けられたブラスト性低融点ガラス
層をブラスト加工して所定の間隔を置いて隔壁を形成す
るに際し、下記式(1)、(2)、(3)、(4)及び
(5)を共に満足する無機粒子粉体からなる研磨材を用
いることを特徴とする隔壁の形成方法を内容とする(請
求項1)。 10≦A≦0.8C (1) 0.03C≦B≦0.5C (2) 50≦C≦800 (3) 30≦D≦95 (4) E2 −3.5≦E1 ≦E2 −0.5 (5) 但し、 A:研磨材の最大粒子径(μm) B:研磨材の平均粒子径(μm) C:加工ピッチで隔壁幅d1 +研削溝幅d2 (μm) D:粒子の不定形を示す指数(%)で、粒子投影面積の
外接円に対する面積率を示す。 E1 :研磨材のモース硬度 E2 :基板又は電極のいずれか低い方のモース硬度
That is, according to the present invention, when a partition wall is formed by blasting a substrate provided with an electrode and a blasting low melting point glass layer provided on the substrate at predetermined intervals, the following formula (1) ), (2), (3), (4) and (5) are all used, the content of the method for forming partition walls is characterized by using an abrasive made of inorganic particle powder. 10 ≦ A ≦ 0.8C (1) 0.03C ≦ B ≦ 0.5C (2) 50 ≦ C ≦ 800 (3) 30 ≦ D ≦ 95 (4) E 2 −3.5 ≦ E 1 ≦ E 2 -0.5 (5) where A: maximum particle size of abrasive (μm) B: average particle size of abrasive (μm) C: partition width d 1 + grinding groove width d 2 (μm) D at processing pitch : An index (%) indicating an irregular shape of a particle, showing an area ratio of a projected area of a particle to a circumscribed circle. E 1 : Mohs hardness of abrasive material E 2 : Mohs hardness of substrate or electrode, whichever is lower

【0011】好ましい態様として、無機粒子粉体の比重
Fが下記式(15)を満足する隔壁の形成方法である
(請求項2)。 1≦F≦6 (15)
A preferred embodiment is a method of forming partition walls in which the specific gravity F of the inorganic particle powder satisfies the following formula (15) (claim 2). 1 ≦ F ≦ 6 (15)

【0012】好ましい態様として、無機粒子粉体を0.
01〜5重量%の疎水性を付与する物質で表面処理した
隔壁の形成方法である(請求項3)。
[0012] In a preferred embodiment, the inorganic particle powder is 0.
A method for forming partition walls, the surface of which is treated with a substance imparting a hydrophobicity of 01 to 5% by weight (claim 3).

【0013】好ましい態様として、流動性助剤を無機粒
子粉体に対し0.01〜5重量%添加した隔壁の形成方
法である(請求項4)。
A preferred embodiment is a method for forming partition walls in which a fluidity aid is added in an amount of 0.01 to 5% by weight with respect to the inorganic particle powder (claim 4).

【0014】[0014]

【発明実施の形態】以下、本発明について詳細に説明す
る。PDPのサンドブラスト法を用いた隔壁形成におい
ては、加工ピッチC(隔壁幅d1 +研削溝幅d2 )に応
じて、好ましい最大粒子径が存在し、本発明の研磨材
は、研磨材の最大粒子径A(μm)が加工ピッチC(μ
m)との関係において下記式(1)、好ましくは下記式
(6)、更に好ましくは下記式(7)を満足するように
無機粒子粉体を選定することが必要である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. In the partition wall formation using the PDP sandblast method, there is a preferable maximum particle diameter according to the processing pitch C (partition wall width d 1 + grinding groove width d 2 ). The particle size A (μm) is the processing pitch C (μ
It is necessary to select the inorganic particle powder so as to satisfy the following formula (1), preferably the following formula (6), and more preferably the following formula (7) in relation to m).

【0015】 10≦A≦0.8C (1) 11≦A≦0.7C (6) 12≦A≦0.6C (7)[0015] 10 ≦ A ≦ 0.8C (1) 11 ≦ A ≦ 0.7C (6) 12 ≦ A ≦ 0.6C (7)

【0016】すなわち、研磨材である無機粒子粉体中の
最大粒子径が0.8Cを超えると研削する溝幅より大き
な粒子が存在する確率が高くなり、ある程度研削された
溝に、大きな研磨材粒子が挟まり、その結果、粒子が挟
まった下部の研削を妨げ、場合によっては隔壁の破損を
生じさせ、加工精度および生産効率の低下を引き起こ
す。また、研磨材である無機粒子粉体の最大粒子径が1
0μmより小さくなると、無機粒子粉体の平均粒子径も
極端に小さくなり、研磨材である無機粒子一個の研削能
力が低下し、研削効率のよい研磨材が得られない。すな
わち、上記構成とすることにより、隔壁の破損が防止さ
れ、隔壁の精度が著しく向上する。
That is, if the maximum particle size in the inorganic particle powder as an abrasive exceeds 0.8 C, the probability that particles larger than the groove width to be ground exists will be high, and a large abrasive will be present in the groove ground to some extent. The particles are trapped, and as a result, the grinding of the lower portion where the particles are trapped is hindered, and in some cases, the partition walls are damaged, resulting in a decrease in processing accuracy and production efficiency. In addition, the maximum particle size of the inorganic particle powder that is an abrasive is 1
If it is smaller than 0 μm, the average particle size of the inorganic particle powder also becomes extremely small, the grinding ability of one inorganic particle as an abrasive is reduced, and an abrasive having good grinding efficiency cannot be obtained. That is, with the above structure, damage to the partition walls is prevented, and the accuracy of the partition walls is significantly improved.

【0017】また、研磨材である無機粒子粉体の平均粒
子径は、ブラスト加工時における、加工速度および研磨
材の分散性に影響を及ぼす。これらの特性を考慮して、
本発明では、研磨材の平均粒子径B(μm)は、加工ピ
ッチ(C)(μm)との関係において下記式(2)、好
ましくは下記式(8)、更に好ましくは下記式(9)を
満足するように選定する必要がある。
Further, the average particle size of the inorganic particle powder as the abrasive affects the processing speed and the dispersibility of the abrasive during the blasting. Considering these characteristics,
In the present invention, the average particle diameter B (μm) of the abrasive is expressed by the following formula (2), preferably the following formula (8), and more preferably the following formula (9) in relation to the processing pitch (C) (μm). Must be selected so that

【0018】 0.03C≦B≦0.5C (2) 0.04C≦B≦0.4C (8) 0.05C≦B≦0.3C (9)[0018] 0.03C ≦ B ≦ 0.5C (2) 0.04C ≦ B ≦ 0.4C (8) 0.05C ≦ B ≦ 0.3C (9)

【0019】すなわち、PDPのサンドブラスト法を用
いた隔壁形成においては、加工ピッチに応じて、好まし
い平均粒子径が存在するのである。平均粒子径が、0.
5Cを超えた場合は、研磨材である無機粒子粉体の1個
当たりの質量が増大し、粒子の1回の衝突における研削
力も増大するが、その結果、被加工物底部であるガラス
等からなる基板上に設けられた電極及び基板表面に損傷
を与える危険率も大きくなる。また、平均粒子径が、
0.03Cより小さいと研磨材である無機粒子粉体の1
個当たりの質量小さくなり、粒子の1回の衝突における
研削力も減少する。その結果、被加工物底部であるガラ
ス等からなる基板上に設けられた電極及び基板表面に損
傷を与える危険性は回避出来るが、研磨効率は著しく低
下する。すなわち、上記の構成とすることにより、加工
ピッチが小さくなっても、良好な研磨効率を保持するこ
とが出来る。
That is, in the partition wall formation using the PDP sandblasting method, there is a preferable average particle size depending on the processing pitch. The average particle size is 0.
If it exceeds 5C, the mass of each inorganic particle powder, which is an abrasive, increases, and the grinding force in one collision of particles also increases. As a result, from the glass or the like that is the bottom of the workpiece, The risk of damaging the electrodes provided on the substrate and the substrate surface also increases. Also, the average particle size is
If it is less than 0.03C, it is 1 of the inorganic particle powder which is an abrasive
The mass per piece is reduced, and the grinding force in one collision of particles is also reduced. As a result, the risk of damaging the electrodes and the substrate surface provided on the substrate made of glass or the like, which is the bottom of the workpiece, can be avoided, but the polishing efficiency is significantly reduced. That is, with the above configuration, good polishing efficiency can be maintained even if the processing pitch becomes small.

【0020】PDPのブラスト法を用いた隔壁形成にお
ける加工ピッチCは、通常、主に50〜800μmの範
囲でブラスト加工されており、本発明でもこの範囲が好
適である。
The processing pitch C in the partition wall formation using the blast method of PDP is usually blasting mainly in the range of 50 to 800 μm, and this range is also suitable in the present invention.

【0021】研磨材である無機粒子粉体の不定形を示す
指数Dは、特にブラスト加工時における加工速度及び加
工精度に影響を及ぼす。本発明で言う不定形を示す指数
とは、下記式(10)で定義されるように、粒子投影面
積の外接円に対する面積率をいい、下記式(4)、好ま
しくは下記式(11)、更に好ましくは下記式(12)
を満足するように選定する必要がある。
The index D, which indicates the irregular shape of the inorganic particle powder as the abrasive, affects the processing speed and processing accuracy particularly during blasting. The exponent indicating an indeterminate shape in the present invention means an area ratio of a projected area of a particle to a circumscribed circle as defined by the following formula (10), and the following formula (4), preferably the following formula (11), More preferably, the following formula (12)
Must be selected so that

【0022】 粒子の投影面積 外接円に対する面積率=────────────────×100(10) (%) 粒子の投影面積の外接円の面積 30≦D≦95 (4) 35≦D≦90 (11) 40≦D≦85 (12)[0022]                               Projected area of particles Area ratio to circumscribed circle = ──────────────── × 100 (10)             (%) Area of circumscribed circle of projected area of particles           30 ≦ D ≦ 95 (4)           35 ≦ D ≦ 90 (11)           40 ≦ D ≦ 85 (12)

【0023】上記構成とすることにより、被研磨物の溝
や、その隅部の加工が十分に且つ精度良くできる。すな
わち、不定形である研磨材粒子が被研磨面に衝突する際
にある程度の破砕が進行するため、研磨材粒子の被研磨
面からのはねかえりが球状の研磨材粒子に比べて抑えら
れ、溝の形状が精度よく安定する。
With the above structure, the grooves and the corners of the object to be polished can be sufficiently and accurately processed. That is, since the crushing proceeds to some extent when the abrasive particles having an irregular shape collide with the surface to be polished, the rebound from the surface to be polished of the abrasive particles is suppressed as compared with the spherical abrasive particles, and the groove The shape is stable and accurate.

【0024】また、上記構成とすることにより、研磨効
率が高められる。この機構については必ずしも明らかで
はないが、本発明者は、不定形状の研磨材粒子の突起部
が被研磨面に衝突する時には、球状の研磨材粒子の球面
が被研磨面に衝突するときよりもはるかに大きな衝撃力
が発生し、研磨が進行するのではないかと推測してい
る。すなわち、不定形状の研磨材粒子の突起部は、その
粒子径に比べて、1桁以上曲率は小さいが、球状の研磨
材粒子のような球面の曲率は、粒子径と同じオーダーで
あるので、衝突部分の面積では2桁以上の差が生じる。
質量がほぼ同じとすれば、被研磨面に及ぼす圧力も不定
形状である研磨材粒子の突起部の方が2桁以上大きくな
る。そして、研磨力も圧力に応じて大きくなることが実
験により確認されている。よって、不定形を示す指数が
95%を超えると球状粒子に近く研磨効率が低下し、逆
に30%未満となると、その粒子形状が針状又は鱗片状
をとり、粒子1個当たりの突起部分が減ることになり研
磨効率が低下する。
Further, with the above structure, the polishing efficiency can be improved. Although this mechanism is not necessarily clear, the present inventors have found that when the projections of the irregularly shaped abrasive particles collide with the surface to be polished, the spherical surfaces of the spherical abrasive particles collide with the surface to be polished. It is speculated that a much larger impact force is generated and polishing may proceed. That is, the projection of the irregularly shaped abrasive particles has a curvature smaller than that of the particle diameter by one digit or more, but the curvature of the spherical surface such as spherical abrasive particles is the same order as the particle diameter, There is a difference of two digits or more in the area of the collision part.
If the masses are substantially the same, the pressure exerted on the surface to be polished also becomes larger by two digits or more in the protrusions of the abrasive particles having an indefinite shape. It has been confirmed by experiments that the polishing power also increases with pressure. Therefore, if the index indicating an irregular shape exceeds 95%, the polishing efficiency is reduced to be close to that of spherical particles, and conversely, if it is less than 30%, the particle shape takes a needle shape or a scale shape, and the protrusion portion per particle is Will decrease and the polishing efficiency will decrease.

【0025】また、本発明に用いる研磨材の特徴として
は、被加工物底部であるガラス等の基板のモース硬度よ
りも低く、且つ、適当な比重を有することである。これ
により、該基板上に設けられた被加工物である低融点ガ
ラス層を効率良く、且つ精度良く研削でき、研削加工が
底部に達しても、基板上に設けられた電極および基板自
体の表面性状を損なうことがないのである。本発明では
研磨材である無機粒子のモース硬度(E1 )は、下記式
(5)、好ましくは下記式(13)、より好ましくは下
記式(14)を満足するように選定する必要がある。但
し、E2 は基板又は電極のいずれか低い方のモース硬度
である。
The abrasive used in the present invention is characterized in that it has a lower specific gravity than the Mohs hardness of the substrate such as glass, which is the bottom of the workpiece. As a result, the low-melting-point glass layer, which is the work piece provided on the substrate, can be efficiently and accurately ground, and even if the grinding process reaches the bottom, the electrodes provided on the substrate and the surface of the substrate itself. It does not spoil the property. In the present invention, it is necessary to select the Mohs hardness (E 1 ) of the inorganic particles that are abrasives so as to satisfy the following formula (5), preferably the following formula (13), and more preferably the following formula (14). . However, E 2 is the lower Mohs hardness of the substrate or the electrode.

【0026】 E2 −3.5≦E1 ≦E2 −0.5 (5) E2 −3≦E1 ≦E2 −1 (13) E2 −2.5≦E1 ≦E2 −1.5 (14)E 2 −3.5 ≦ E 1 ≦ E 2 −0.5 (5) E 2 −3 ≦ E 1 ≦ E 2 −1 (13) E 2 −2.5 ≦ E 1 ≦ E 2 − 1.5 (14)

【0027】すなわち、研磨材である無機粒子粉体のモ
ース硬度がE2 −0.5を超えると、該被加工物底部の
ガラス等からなる基板に、粒子の大きさに関わらず、損
傷を与える。また、研磨材である無機粒子粉体のモース
硬度がE2 −3.5より小さいと、該被加工物底部のガ
ラス等からなる基板を損なう危険性は少ないが、研磨材
である無機粒子粉体の研削力が著しく低下する。すなわ
ち、上記構成とすることにより、研磨材の破砕が進行し
ても、該被加工物底部の基板上に設けられた電極および
基板の表面性状を損なわずに加工速度が高められる。通
常、該被加工物底部のガラス等からなる基板のモース硬
度は5以上で、電極として一般的に用いられる酸化マグ
ネシウムのモース硬度は6〜7である。従って、この場
合は、E2 は5であるから、無機粒子のモース硬度(E
1 )は1.5≦E1 ≦4.5、好ましくは2≦E1
4、より好ましくは2.5≦E1 ≦3.5である。
That is, when the Mohs hardness of the inorganic particle powder as the abrasive exceeds E 2 -0.5, the substrate made of glass or the like at the bottom of the workpiece is damaged regardless of the particle size. give. Further, when the Mohs hardness of the inorganic particle powder as the abrasive is smaller than E 2 -3.5, there is little risk of damaging the substrate made of glass or the like at the bottom of the workpiece, but the inorganic particle powder as the abrasive is small. The grinding power of the body is significantly reduced. That is, with the above-mentioned structure, even if the crushing of the abrasive progresses, the processing speed can be increased without deteriorating the surface properties of the electrode and the substrate provided on the substrate at the bottom of the workpiece. Usually, the substrate made of glass or the like at the bottom of the workpiece has a Mohs hardness of 5 or more, and magnesium oxide generally used as an electrode has a Mohs hardness of 6 to 7. Therefore, in this case, since E 2 is 5, the Mohs hardness (E
1 ) is 1.5 ≦ E 1 ≦ 4.5, preferably 2 ≦ E 1
4, more preferably 2.5 ≦ E 1 ≦ 3.5.

【0028】本発明に用いる研磨材である無機粒子の比
重(F)は、好ましくは下記式(15)、より好ましく
は下記式(16)を満足するように選定する。
The specific gravity (F) of the inorganic particles as the abrasive used in the present invention is preferably selected so as to satisfy the following formula (15), more preferably the following formula (16).

【0029】 1≦F≦6 (15) 2≦F≦5 (16)[0029] 1 ≦ F ≦ 6 (15) 2 ≦ F ≦ 5 (16)

【0030】すなわち、研磨材である無機粒子粉体の比
重が6を超えると粒子一個のもつ運動エネルギーが増大
し、該被加工物底部のガラス等からなる基板や電極に損
傷を与える傾向がある。また、研磨材である無機粒子粉
体の比重が1より小さいと粒子一個の運動エネルギー減
少し、該被加工物底部のガラス等からなる基板や電極を
損なう危険性は少なくなるが、研磨材である無機粒子粉
体の研削力が著しく低下する。すなわち、上記構成とす
ることにより、該被加工物底部のガラス等からなる基板
や電極の表面性状を損なうことなく、加工速度が高めら
れる。
That is, when the specific gravity of the inorganic particle powder as the abrasive exceeds 6, the kinetic energy of each particle increases, and the substrate such as glass or the electrode at the bottom of the workpiece tends to be damaged. . Further, if the specific gravity of the inorganic particle powder that is an abrasive is less than 1, the kinetic energy of each particle decreases, and the risk of damaging the substrate or electrode made of glass or the like at the bottom of the workpiece is reduced, The grinding force of certain inorganic particle powder is significantly reduced. That is, with the above configuration, the processing speed can be increased without deteriorating the surface properties of the substrate or electrode made of glass or the like at the bottom of the workpiece.

【0031】本発明において用いる研磨材は、天然、合
成のいずれの無機粒子粉体でもよく、また混合されたも
のでも何ら差し支えない。天然の無機粒子粉体として
は、石灰石、重晶石、石膏、硬石膏、カリ明礬、明礬
石、ストロンチアナイト、チタン鉄鉱物、硫酸礬土、天
青石、石墨、氷晶石、蛍石、ギブサイト、苦灰石、菱苦
土鉱、ブルーサイト等が挙げられ、これらは単独で又は
2種以上組み合わせて用いられるが、中でも石灰石、重
晶石、石膏が好ましい。また、合成の無機粒子粉体とし
ては、カルシウムの炭酸塩、硫酸塩、フッ化物;バリウ
ムの硫酸塩、塩化物;アルミニウムの硫酸塩、水酸化
物;ストロンチウムの炭酸塩、硫酸塩、硝酸塩、塩化
物;チタンの酸化物;塩基性炭酸マグネシウム、水酸化
マグネシウム等が挙げられ、これらは単独で又は2種以
上組み合わせて用いられるが、中でも炭酸カルシウム、
硫酸バリウム、硫酸カルシウム等が好ましい。
The abrasive used in the present invention may be either natural or synthetic inorganic particle powder, or may be a mixture thereof. As the natural inorganic particle powder, limestone, barite, gypsum, anhydrite, potassium alum, alumite, strontianite, titanium iron mineral, sulphate earth, celestite, graphite, cryolite, fluorite, Examples thereof include gibbsite, dolomite, rhodochrystalite, brucite and the like, and these may be used alone or in combination of two or more, and among them, limestone, barite and gypsum are preferable. Further, as the synthetic inorganic particle powder, calcium carbonate, sulfate, fluoride; barium sulfate, chloride; aluminum sulfate, hydroxide; strontium carbonate, sulfate, nitrate, chloride Examples thereof include titanium oxides, basic magnesium carbonate, magnesium hydroxide, and the like. These may be used alone or in combination of two or more, and among them, calcium carbonate,
Barium sulfate, calcium sulfate and the like are preferable.

【0032】また、上記無機粒子粉体を研磨材として使
用した場合、研削材粒子の該被加工物への付着が発生す
る場合がある。これらの現象が発生する原因としては、
水分による付着、静電気による付着、分子間引力による
付着などが考えられる。これらによる付着現象は、無機
粒子粉体に疎水性を付与する物質により、0.01〜5
重量%、好ましくは0.1〜4重量%表面処理すること
により改善することができるばかりでなく、さらには、
研磨材自身の流動性についても改善することができる。
Further, when the above-mentioned inorganic particle powder is used as an abrasive, adhesion of abrasive particles to the workpiece may occur. The causes of these phenomena are:
Adhesion due to water, static electricity, or intermolecular attraction is considered. The adhesion phenomenon caused by these is 0.01 to 5 depending on the substance that imparts hydrophobicity to the inorganic particle powder.
Not only can it be improved by surface treatment by weight%, preferably 0.1 to 4% by weight, but further,
The fluidity of the abrasive itself can also be improved.

【0033】表面処理に使用する物質としては、疎水性
を付与するものであれば特に限定されることなく用いる
ことができるが、具体的に例示すると、オレイン酸、ラ
ウリン酸、ミリスチン酸、ミリスチン酸イソトリデシ
ル、パルミチン酸、ベヘニン酸、ステアリン酸、イソス
テアリン酸等の脂肪酸;前記脂肪酸のアマイドおよびビ
スアマイド;ステアリルアルコール等の高級アルコール
または分岐高級アルコール;一価アルコールの高級脂肪
酸エステル、多価アルコールの高級脂肪酸エステル、モ
ンタワックスタイプの非常に長鎖のエステルまたはその
部分加水分解物等の脂肪酸エステル系滑剤;ステアリン
酸バリウム、ステアリン酸カルシウム、ステアリン酸ア
ルミニウム、ステアリン酸亜鉛、ステアリン酸マグネシ
ウムまたはその複合体等の金属石鹸系滑剤;C16以上の
流動パラフィン、マイクロクリスタンワックス、天然パ
ラフィン、合成パラフィン、ポリオレフィンワックスお
よびこれらの部分酸化物、フッ化物、塩化物などの脂肪
族炭化水素系滑剤;シリコンオイル、大豆油、ヤシ油、
パーム核油、アマニ油、ナタネ油、綿実油、キリ油、ヒ
マシ油、牛脂、スクワラン、ラノリン、硬化油等の油
剤;N−アシルアミノ酸塩、アルキルエーテルカルボン
酸塩、アシル化ペプチド等のカルボン酸塩;アルキルス
ルホン酸塩、アルキルベンゼンおよびアルキルナフタレ
ンスルホン酸塩、スルホンコハク酸塩、α−オレフィン
スルホン酸塩、N−アシルスルホン酸塩等のスルホン酸
塩;硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸
塩、アルキルアリルエーテル硫酸塩、アルキルアミド硫
酸塩等の硫酸エステル塩;アルキルリン酸塩、アルキル
エーテルリン酸塩、アルキルアリルエーテルリン酸塩等
のリン酸エステル塩;脂肪族アミン塩、脂肪族4級アン
モニウム塩、ベンザルコニウム塩、塩化ベンゼトニウ
ム、ピリジニウム塩、イミダゾリニウム塩等の陽イオン
界面活性剤;カルボキシベタイン型、アミノカルボン酸
塩、イミダゾリニウムベタイン、レシチン等の両性界面
活性剤;ポリオキシエチレンアルキルエーテル、ポリオ
キシエチレン2級アルコールエーテル、ポリオキシエチ
レンアルキルフェニルエーテル、ポリオキシエチレンス
テロールエーテル、ポリオキシエチレンラノリン誘導
体、アルキルフェノールホルマリン縮合物の酸化エチレ
ン誘導体、ポリオキシエチレンポリオキシプロピレンブ
ロックポリマー、ポリオキシエチレンポリオキシプロピ
レンアルキルエーテル、ポリオキシエチレングリセリン
脂肪酸エステル、ポリオキシエチレンヒマシ油および硬
化ひまし油、ポリオキシエチレンソルビタン脂肪酸エス
テル、ポリオキシエチレンソルビトール脂肪酸エステ
ル、ポリエチレングリコール脂肪酸エステル、脂肪酸モ
ノグリセリド、ポリグリセリン脂肪酸エステル、ポリグ
リセリン脂肪酸エステル、ソルビタン脂肪酸エステル、
脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸
エステルアミド、ポリオキシエチレンアルキルアミン、
アルキルアミンオキサイド等の非イオン界面活性剤;フ
ッ素系界面活性剤;ポリオキシエチレンアリルグリシジ
ルノニルフェニルエーテル等の反応系界面活性剤等が挙
げられ、これらは単独で又は2種以上組み合わせて用い
られる。中でも安価なステアリン酸が好ましい。
The substance used for the surface treatment can be used without particular limitation as long as it imparts hydrophobicity. Specific examples include oleic acid, lauric acid, myristic acid and myristic acid. Fatty acids such as isotridecyl, palmitic acid, behenic acid, stearic acid, isostearic acid; amides and bisamides of the above fatty acids; higher alcohols or branched higher alcohols such as stearyl alcohol; higher fatty acid esters of monohydric alcohols and higher fatty acid esters of polyhydric alcohols. Fatty acid ester lubricants such as very long chain esters of Monta wax type or partial hydrolysates thereof; barium stearate, calcium stearate, aluminum stearate, zinc stearate, magnesium stearate or their composites Metal soap-based lubricants and the like; C 16 or liquid paraffin, micro Chris Tan wax, natural paraffin, synthetic paraffin, polyolefin wax and their partial oxide, fluoride, aliphatic, such as chlorides hydrocarbon lubricant; silicone oil, Soybean oil, coconut oil,
Oil agents such as palm kernel oil, linseed oil, rapeseed oil, cottonseed oil, tung oil, castor oil, beef tallow, squalane, lanolin and hydrogenated oil; carboxylates such as N-acyl amino acid salts, alkyl ether carboxylates and acylated peptides Sulfonates such as alkyl sulfonates, alkylbenzene and alkylnaphthalene sulfonates, sulfone succinates, α-olefin sulfonates, N-acyl sulfonates; sulfated oils, alkyl sulfates, alkyl ether sulfates , Sulfuric acid ester salts such as alkyl allyl ether sulfates and alkyl amide sulfates; phosphoric acid ester salts such as alkyl phosphates, alkyl ether phosphates, alkyl allyl ether phosphates; aliphatic amine salts, aliphatic quaternary Ammonium salt, benzalkonium salt, benzethonium chloride, pyridinium salt, Cationic surfactants such as midazolinium salts; amphoteric surfactants such as carboxybetaine type, aminocarboxylic acid salts, imidazolinium betaine, lecithin; polyoxyethylene alkyl ethers, polyoxyethylene secondary alcohol ethers, polyoxyethylene alkyls Phenyl ether, polyoxyethylene sterol ether, polyoxyethylene lanolin derivative, ethylene oxide derivative of alkylphenol formalin condensate, polyoxyethylene polyoxypropylene block polymer, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene glycerin fatty acid ester, poly Oxyethylene castor oil and hydrogenated castor oil, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fat Acid ester, polyethylene glycol fatty acid ester, fatty acid monoglyceride, polyglycerin fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester,
Fatty acid alkanolamide, polyoxyethylene fatty acid ester amide, polyoxyethylene alkylamine,
Examples thereof include nonionic surfactants such as alkylamine oxide; fluorine-based surfactants; reactive surfactants such as polyoxyethylene allyl glycidyl nonyl phenyl ether; and the like, which may be used alone or in combination of two or more kinds. Of these, inexpensive stearic acid is preferable.

【0034】さらに、研磨材である無機粒子粉体に、流
動性助剤として、無機粒子粉体の平均粒子径の1/10
以下の平均粒子径からなり、BET比表面積が10〜8
00m2 /gの微粒子粉体を添加混合することにより、
ブラストマシン内における流動性、ブラスト加工時にお
ける無機粒子粉体の分散性を向上させ、加えて、ブラス
ト加工終了時における該被加工物上への無機粒子粉体の
残留性を低減せしめることができる。流動性助剤の添加
量は、無機粒子粉体に対して0.01〜5重量%の範囲
が好ましく、特に0.1〜4重量%がより好ましい。流
動性助剤を具体的に例示すると、タルク、無水珪酸、ベ
ントナイト、カオリン、酸化マグネシウム、炭酸マグネ
シウム、珪酸マグネシウム、酸化亜鉛、水酸化マグネシ
ウム、コロイダルシリカ、珪藻土、ステアリン酸マグネ
シウム、溶解シリカ粉、ヒュームドシリカ、シリカ、コ
ンスターチ、でん粉、珪酸カルシウム等の超微粉末が挙
げられ、これらは単独で又は2種以上組み合わせて用い
られる。中でも無水珪酸とコロイダルシリカが好まし
い。
Furthermore, 1/10 of the average particle diameter of the inorganic particle powder is added to the inorganic particle powder as the abrasive as a fluidity aid.
It consists of the following average particle sizes and has a BET specific surface area of 10-8.
By adding and mixing fine powder of 00 m 2 / g,
It is possible to improve the fluidity in the blast machine and the dispersibility of the inorganic particle powder at the time of blasting, and in addition, it is possible to reduce the residual property of the inorganic particle powder on the workpiece at the end of the blasting. . The amount of the fluidity aid added is preferably in the range of 0.01 to 5% by weight, more preferably 0.1 to 4% by weight, based on the inorganic particle powder. Specific examples of the fluidity aid are talc, silicic acid anhydride, bentonite, kaolin, magnesium oxide, magnesium carbonate, magnesium silicate, zinc oxide, magnesium hydroxide, colloidal silica, diatomaceous earth, magnesium stearate, dissolved silica powder, and fumes. Examples thereof include ultrafine powders of dosilica, silica, corn starch, starch, calcium silicate, etc. These may be used alone or in combination of two or more kinds. Of these, silicic acid anhydride and colloidal silica are preferable.

【0035】以上のように、本発明の特徴は、例えば、
PDPパネルの隔壁形成工程におけるブラスト加工に際
し、研磨材である無機粒子粉体の材質として該被加工物
底部のガラス等からなる基板表面及び基板上に設けられ
た電極よりモース硬度の低いものを選定し、目的とする
加工ピッチに応じて最大粒子径、平均粒子径、粒子形状
を制御することにより、研磨効率および加工精度の高い
隔壁形成方法を提供することにある。
As described above, the features of the present invention are, for example,
In the blasting process in the partition wall forming step of the PDP panel, a material having a Mohs hardness lower than that of the substrate surface made of glass or the like at the bottom of the workpiece and the electrode provided on the substrate is selected as the material of the inorganic particle powder as the abrasive. Then, by controlling the maximum particle diameter, the average particle diameter, and the particle shape in accordance with the target processing pitch, it is an object of the present invention to provide a partition wall forming method with high polishing efficiency and processing accuracy.

【0036】本発明によりPDPの背面基板部に隔壁を
形成する方法について説明すると、電極が設けられたガ
ラス等の基板上に厚み10〜1000μmからなるブラ
スト性を有する低融点ガラス層を形成し、更に低融点ガ
ラス層の上にストライプ状にマスキングテープを塗布ま
たは印刷を行い、その上方から研磨剤を噴射しマスキン
グテープで保護されていない部分の低融点ガラス層をピ
ッチ50〜800μm、深さ10〜1000μm程度の
範囲で微細な溝を該被加工物底部の電極およびガラス等
からなる基板の表面に達するまで研削し隔壁を形成す
る。
A method of forming partition walls on the rear substrate portion of the PDP according to the present invention will be described. A low-melting glass layer having a blasting property and having a thickness of 10 to 1000 μm is formed on a substrate such as glass provided with electrodes. Further, a masking tape is applied or printed in stripes on the low melting point glass layer, and an abrasive is sprayed from above to form a portion of the low melting point glass layer not protected by the masking tape at a pitch of 50 to 800 μm and a depth of 10. A fine groove is grinded in the range of about 1000 μm to reach the surface of the substrate made of glass or the like at the bottom of the workpiece to form a partition wall.

【0037】PDPは今後さらに高精細化が進むことが
予想され、それにともなって、加工ピッチが小さくなる
が、本発明の方法を用いることにより、該被加工物底部
のガラス等からなる基板上に設けられた電極および基板
の表面性状を損なうことなく、球状で高硬度の研磨材を
用いる方法よりも高精度且つ高効率の隔壁形成方法を提
供することができる。尚、本発明に用いる研磨材は、必
要に応じ、球状で高硬度な研磨材と併用することも可能
である。
It is expected that the PDP will be further refined in the future, and the processing pitch will be reduced accordingly. However, by using the method of the present invention, the PDP can be formed on the substrate made of glass or the like at the bottom of the object to be processed. It is possible to provide a partition wall forming method that is more accurate and highly efficient than a method that uses a spherical and high-hardness abrasive material without impairing the surface properties of the electrodes and the substrate provided. The abrasive used in the present invention can be used in combination with a spherical abrasive having high hardness, if necessary.

【0038】[0038]

【実施例】以下、本発明を更に製造例、実施例に基づい
て具体的に説明するが、本発明の範囲はこれらにより何
ら制限を受けるものではない。
EXAMPLES The present invention will be described in more detail below with reference to production examples and examples, but the scope of the present invention is not limited thereto.

【0039】製造例1 白色糖晶質石灰石を粉砕、分級し、モース硬度3、比重
2.7、最大粒子径74μm、平均粒子径25μm、不
定形を示す指数63%の重質炭酸カルシウムを製造し、
これにステアリン酸(TST:ミヨシ油脂株式会社製)
を重質炭酸カルシウム粒子粉体100重量部に対して
1.3重量%添加し、さらに流動性助剤として、粒子径
の範囲が0.005〜0.05μm、BET比表面積が
100〜150m2 /gのヒュームドシリカ(レオロシ
ールCP−102;トクヤマ製)を重質炭酸カルシウム
粒子粉体100重量部に対して2重量%添加し、ヘンシ
ェルミキサーで加熱混合し、表面処理を行った。
Production Example 1 White sugar crystalline limestone was crushed and classified to produce heavy calcium carbonate having a Mohs hardness of 3, a specific gravity of 2.7, a maximum particle diameter of 74 μm, an average particle diameter of 25 μm, and an index of 63% indicating an indefinite shape. Then
Stearic acid (TST: manufactured by Miyoshi Yushi Co., Ltd.)
1.3% by weight relative to 100 parts by weight of heavy calcium carbonate particle powder, and as a fluidity aid, the particle size range is 0.005 to 0.05 μm, and the BET specific surface area is 100 to 150 m 2. / G of fumed silica (Reorosil CP-102; manufactured by Tokuyama) was added in an amount of 2% by weight based on 100 parts by weight of the heavy calcium carbonate particle powder, and the mixture was heated and mixed by a Henschel mixer for surface treatment.

【0040】製造例2 緻密質石灰石を焙焼、消化、炭酸化し、モース硬度3、
比重2.7、最大粒子径74μm、平均粒子径25μ
m、不定形を示す指数32%のウイスカー状炭酸カルシ
ウムを製造し、これにステアリン酸(TST:ミヨシ油
脂株式会社製)をウイスカー状炭酸カルシウム粒子粉体
100重量部に対して1.3重量%添加し、さらに流動
性助剤として、粒子径の範囲が0.005〜0.05μ
m、BET比表面積が100〜150m2 /gのヒュー
ムドシリカ(レオロシールCP−102;トクヤマ製)
をウイスカー状炭酸カルシウム粒子粉体100重量部に
対して2重量%添加し、ヘンシェルミキサーで加熱混合
し、表面処理を行った。
Production Example 2 Dense limestone was roasted, digested and carbonized to obtain a Mohs hardness of 3,
Specific gravity 2.7, maximum particle size 74μm, average particle size 25μ
m, whisker-like calcium carbonate showing an indefinite shape of 32% was produced, and stearic acid (TST: manufactured by Miyoshi Yushi Co., Ltd.) was added to the whisker-like calcium carbonate particle powder in an amount of 1.3% by weight. In addition, as a fluidity aid, the particle size range is 0.005-0.05μ.
m, BET specific surface area of 100 to 150 m 2 / g fumed silica (Reorosil CP-102; manufactured by Tokuyama)
2% by weight was added to 100 parts by weight of the whisker-like calcium carbonate particle powder, and the mixture was heated and mixed with a Henschel mixer for surface treatment.

【0041】製造例3 緻密質石灰石を焙焼、消化、炭酸化し、不定形を示す指
数95%のバテライト状炭酸カルシウムを製造し、これ
を実施例1で使用した不定形を示す指数63%の炭酸カ
ルシウムと混合して、モース硬度3、比重2.7、最大
粒子径88μm、平均粒子径30μm、不定形を示す指
数86%の炭酸カルシウムを製造し、これにステアリン
酸(TST:ミヨシ油脂株式会社製)を炭酸カルシウム
粒子粉体100重量部に対して1.3重量%添加し、さ
らに流動性助剤として、粒子径の範囲が0.005〜
0.05μm、BET比表面積が100〜150m2
gのヒュームドシリカ(レオロシールCP−102;ト
クヤマ製)を炭酸カルシウム粒子粉体100重量部に対
して2重量%添加し、ヘンシェルミキサーで加熱混合
し、表面処理を行った。
Production Example 3 A dense limestone was roasted, digested and carbonated to produce a vaterite-like calcium carbonate having an index of 95%, which was used in Example 1. By mixing with calcium carbonate, calcium carbonate having a Mohs hardness of 3, a specific gravity of 2.7, a maximum particle diameter of 88 μm, an average particle diameter of 30 μm, and an index of 86% showing an irregular shape is produced, and stearic acid (TST: Miyoshi Oil & Fat Co., Ltd. (Manufactured by the company) is added in an amount of 1.3% by weight with respect to 100 parts by weight of calcium carbonate particle powder, and a particle size range of 0.005 is added as a fluidity aid.
0.05 μm, BET specific surface area 100 to 150 m 2 /
2 g by weight of fumed silica (g) (Reorosil CP-102; manufactured by Tokuyama Corp.) was added to 100 parts by weight of the calcium carbonate particle powder, and the mixture was heated and mixed with a Henschel mixer to perform surface treatment.

【0042】製造例4 緻密質石灰石を焙焼、消化、炭酸化し、不定形を示す指
数95%のバテライト状炭酸カルシウムを製造し、これ
を実施例1で使用した不定形を示す指数63%の炭酸カ
ルシウムと混合して、モース硬度3、比重2.7、最大
粒子径88μm、平均粒子径29μm、不定形を示す指
数73%の炭酸カルシウムを製造し、これにステアリン
酸(TST:ミヨシ油脂株式会社製)を炭酸カルシウム
粒子粉体100重量部に対して1.3重量%添加し、さ
らに流動性助剤として、粒子径の範囲が0.005〜
0.05μm、BET比表面積が100〜150m2
gのヒュームドシリカ(レオロシールCP−102;ト
クヤマ製)を炭酸カルシウム粒子粉体100重量部に対
して2重量%添加し、ヘンシェルミキサーで加熱混合
し、表面処理を行った。
Production Example 4 A dense limestone was roasted, digested and carbonated to produce an amorphous 95% vaterite-like calcium carbonate, which was used in Example 1 with an amorphous 63%. By mixing with calcium carbonate, a calcium carbonate having a Mohs hardness of 3, a specific gravity of 2.7, a maximum particle diameter of 88 μm, an average particle diameter of 29 μm, and an index of 73% showing an irregular shape is produced, and stearic acid (TST: Miyoshi Oil & Fat Co., Ltd. (Manufactured by the company) is added in an amount of 1.3% by weight with respect to 100 parts by weight of calcium carbonate particle powder, and a particle size range of 0.005 is added as a fluidity aid.
0.05 μm, BET specific surface area 100 to 150 m 2 /
2 g by weight of fumed silica (g) (Reorosil CP-102; manufactured by Tokuyama Corp.) was added to 100 parts by weight of the calcium carbonate particle powder, and the mixture was heated and mixed with a Henschel mixer to perform surface treatment.

【0043】製造例5 緻密質石灰石を焙焼、消化、炭酸化し、不定形を示す指
数32%のウイスカー状炭酸カルシウムを製造し、これ
を実施例1で使用した不定形を示す指数63%の炭酸カ
ルシウムと混合して、モース硬度3、比重2.7、最大
粒子径88μm、平均粒子径26μm、不定形を示す指
数45%の炭酸カルシウムを製造し、これにステアリン
酸TST(ミヨシ油脂株式会社製)を炭酸カルシウム粒
子粉体100重量部に対して1.3重量%添加し、さら
に流動性助剤として、粒子径の範囲が0.005〜0.
05μm、BET比表面積が100〜150m2 /gの
ヒュームドシリカ(レオロシールCP−102;トクヤ
マ製)を炭酸カルシウム粒子粉体100重量部に対して
2重量%添加し、ヘンシェルミキサーで加熱混合し、表
面処理を行った。
Production Example 5 Whisker-like calcium carbonate having an index of 32% showing an amorphous form was produced by roasting, digesting and carbonating dense limestone, and used for Example 1, and having an index of 63% showing an amorphous form. By mixing with calcium carbonate, calcium carbonate having a Mohs hardness of 3, a specific gravity of 2.7, a maximum particle diameter of 88 μm, an average particle diameter of 26 μm, and an index of 45% showing an indefinite shape is produced, and stearic acid TST (Miyoshi Oil & Fat Co., Ltd. 1.3% by weight relative to 100 parts by weight of calcium carbonate particle powder, and a particle size range of 0.005 to 0.
2 wt% of fumed silica having a BET specific surface area of 100 to 150 m 2 / g (Rheoroseal CP-102; manufactured by Tokuyama Corporation) was added in an amount of 2 wt% with respect to 100 parts by weight of calcium carbonate particle powder, and mixed by heating with a Henschel mixer. Surface treatment was performed.

【0044】製造例6 白色糖晶質石灰石を粉砕、分級し、モース硬度3、比重
2.7、最大粒子径62.23μm、平均粒子径18μ
m、不定形を示す指数59%の重質炭酸カルシウムを製
造し、これにステアリン酸(TST:ミヨシ油脂株式会
社製)を重質炭酸カルシウム粒子粉体100重量部に対
して1.3重量%添加し、ヘンシェルミキサーで加熱混
合し、表面処理を行った。
Production Example 6 White sugar crystalline limestone was crushed and classified to have a Mohs hardness of 3, a specific gravity of 2.7, a maximum particle diameter of 62.23 μm, and an average particle diameter of 18 μ.
m, a heavy calcium carbonate having an index of 59% showing an irregular shape was produced, and stearic acid (TST: manufactured by Miyoshi Yushi Co., Ltd.) was added thereto in an amount of 1.3% by weight based on 100 parts by weight of the heavy calcium carbonate particle powder. The mixture was added, heated and mixed with a Henschel mixer, and surface-treated.

【0045】製造例7 大崎工業株式会社製重晶石を分級し、モース硬度3.
5、比重4.3、最大粒子径31.11μm、平均粒子
径11μm、不定形を示す指数62%重晶石を製造し、
これに流動性助剤として、粒子径の範囲が0.005〜
0.05μm、BET比表面積が100〜150m2
gのヒュームドシリカ(レオロシールCP−102;ト
クヤマ製)を重晶石粒子粉体100重量部に対して2重
量%添加し、ヘンシェルミキサーで加熱混合を行った。
Production Example 7 Barite produced by Osaki Industry Co., Ltd. was classified to have a Mohs hardness of 3.
5, specific gravity 4.3, maximum particle size 31.11μm, average particle size 11μm, 62% index barite showing an amorphous form,
As the fluidity aid, the range of particle diameter is 0.005
0.05 μm, BET specific surface area 100 to 150 m 2 /
2 g by weight of fumed silica (Rheoroseal CP-102; manufactured by Tokuyama Corp.) of 2 g was added to 100 parts by weight of barite particle powder, and heated and mixed with a Henschel mixer.

【0046】製造例8 大崎工業株式会社製重晶石を分級し、モース硬度3.
5、比重4.3、最大粒子径44μm、平均粒子径20
μm、不定形を示す指数61%重晶石を製造した。
Production Example 8 Barite produced by Osaki Industry Co., Ltd. was classified to have a Mohs hardness of 3.
5, specific gravity 4.3, maximum particle size 44 μm, average particle size 20
μm, an index 61% barite showing an amorphous form was produced.

【0047】製造例9 大崎工業株式会社製重晶石を分級し、モース硬度3.
5、比重4.3、最大粒子径13.08μm、平均粒子
径7μm、不定形を示す指数61%重晶石を製造し、こ
れにステアリン酸(TST:ミヨシ油脂株式会社製)を
重晶石粒子粉体100重量部に対して1.3重量%添加
し、さらに流動性助剤として、粒子径の範囲が0.00
5〜0.05μm、BET比表面積が100〜150m
2 /gのヒュームドシリカ(レオロシールCP−10
2;トクヤマ製)を重晶石粒子粉体100重量部に対し
て2重量%添加し、ヘンシェルミキサーで加熱混合し、
表面処理を行った。
Production Example 9 Barite manufactured by Osaki Industry Co., Ltd. was classified to have a Mohs hardness of 3.
5, specific gravity 4.3, maximum particle size 13.08 μm, average particle size 7 μm, index 61% barite showing an indefinite shape is manufactured, and stearic acid (TST: manufactured by Miyoshi Yushi Co., Ltd.) is barite. 1.3% by weight was added to 100 parts by weight of the particle powder, and the particle size range was 0.00 as a fluidity aid.
5 ~ 0.05μm, BET specific surface area 100 ~ 150m
2 / g fumed silica (Reorosil CP-10
2; manufactured by Tokuyama Co., Ltd.) in an amount of 2% by weight based on 100 parts by weight of barite particle powder, and mixed by heating with a Henschel mixer.
Surface treatment was performed.

【0048】製造例10 大崎工業株式会社製重晶石を分級し、モース硬度3.
5、比重4.3、最大粒子径37μm、平均粒子径15
μm、不定形を示す指数59%重晶石を製造し、これに
ステアリン酸(TST:ミヨシ油脂株式会社製)を重晶
石粒子粉体100重量部に対して1.3重量%添加し、
さらに流動性助剤として、粒子径の範囲が0.005〜
0.05μm、BET比表面積が100〜150m2
gのヒュームドシリカ(レオロシールCP−102;ト
クヤマ製)を重晶石粒子粉体100重量部に対して2重
量%添加し、ヘンシェルミキサーで加熱混合し、表面処
理を行った。
Production Example 10 Barite manufactured by Osaki Industry Co., Ltd. was classified to obtain a Mohs hardness of 3.
5, specific gravity 4.3, maximum particle size 37 μm, average particle size 15
μm, an index 59% barite showing an indefinite shape was produced, and stearic acid (TST: manufactured by Miyoshi Yushi Co., Ltd.) was added thereto in an amount of 1.3% by weight based on 100 parts by weight of the barite particle powder.
Further, as a fluidity aid, the particle size range is 0.005
0.05 μm, BET specific surface area 100 to 150 m 2 /
2 wt% of fumed silica (g) (Rheoroseal CP-102; manufactured by Tokuyama Corporation) was added to 100 parts by weight of barite particle powder, and the mixture was heated and mixed with a Henschel mixer to perform surface treatment.

【0049】製造例11 ノリタケカンパニー株式会社製石膏を分級しモース硬度
3.5、比重3.0、最大粒子径62.23μm、平均
粒子径22μm、不定形を示す指数67%、ステアリン
酸(TST:ミヨシ油脂株式会社製)を石膏粒子粉体1
00重量部に対して1.3重量%添加し、さらに流動性
助剤として、粒子径の範囲が0.005〜0.05μ
m、BET比表面積が100〜150m2 /gのヒュー
ムドシリカ(レオロシールCP−102;トクヤマ製)
を石膏粒子粉体100重量部に対して2重量%添加し、
ヘンシェルミキサーで加熱混合し、表面処理を行った。
Production Example 11 Gypsum manufactured by Noritake Co., Ltd. was classified to obtain a Mohs hardness of 3.5, a specific gravity of 3.0, a maximum particle size of 62.23 μm, an average particle size of 22 μm, an index of 67% indicating an indefinite shape, and stearic acid (TST). : Manufactured by Miyoshi Yushi Co., Ltd.) as gypsum particle powder 1
1.3 wt% was added to 100 parts by weight, and as a fluidity aid, the particle size range was 0.005-0.05μ.
m, BET specific surface area of 100 to 150 m 2 / g fumed silica (Reorosil CP-102; manufactured by Tokuyama)
2% by weight to 100 parts by weight of gypsum particle powder,
The mixture was heated and mixed with a Henschel mixer to perform surface treatment.

【0050】製造例12 ノリタケカンパニー株式会社製石膏を分級しモース硬度
2、比重2.3、最大粒子径104.65μm、平均粒
子径74μm、不定形を示す指数65%、ステアリン酸
(TST:ミヨシ油脂株式会社製)を石膏粒子粉体10
0重量部に対して1.3重量%添加し、さらに流動性助
剤として、粒子径の範囲が0.005〜0.05μm、
BET比表面積が100〜150m2 /gのヒュームド
シリカ(レオロシールCP−102;トクヤマ製)を石
膏粒子粉体100重量部に対して2重量%添加し、ヘン
シェルミキサーで加熱混合し、表面処理を行った。
Production Example 12 Gypsum manufactured by Noritake Co., Ltd. was classified to obtain a Mohs hardness of 2, a specific gravity of 2.3, a maximum particle diameter of 104.65 μm, an average particle diameter of 74 μm, an index of 65% indicating an indefinite shape, and stearic acid (TST: Miyoshi). Oil and fat manufactured by Gypsum Particle Powder 10
1.3% by weight relative to 0 parts by weight, and as a fluidity aid, a particle size range of 0.005 to 0.05 μm,
2 wt% of fumed silica having a BET specific surface area of 100 to 150 m 2 / g (Reorosil CP-102; manufactured by Tokuyama) was added to 100 parts by weight of the gypsum particle powder, and the mixture was heated and mixed with a Henschel mixer for surface treatment. went.

【0051】製造例13 白色糖晶質石灰石を粉砕、分級し、モース硬度3、比重
2.7、最大粒子径418.6μm、平均粒子径52μ
m、不定形を示す指数58%の重質炭酸カルシウムを製
造し、これにステアリン酸(TST:ミヨシ油脂株式会
社製)を重質炭酸カルシウム粒子粉体100重量部に対
して1.3重量%添加し、さらに流動性助剤として、粒
子径の範囲が0.005〜0.05μm、BET比表面
積が100〜150m2 /gのヒュームドシリカ(レオ
ロシールCP−102;トクヤマ製)を重質炭酸カルシ
ウム粒子粉体100重量部に対して2重量%添加し、ヘ
ンシェルミキサーで加熱混合し、表面処理を行った。
Production Example 13 White sugar crystalline limestone was crushed and classified to have a Mohs hardness of 3, a specific gravity of 2.7, a maximum particle diameter of 418.6 μm, and an average particle diameter of 52 μ.
m, heavy calcium carbonate having an index of 58% showing an indefinite form was produced, and stearic acid (TST: manufactured by Miyoshi Yushi Co., Ltd.) was added thereto in an amount of 1.3% by weight based on 100 parts by weight of the heavy calcium carbonate particle powder. In addition, a fumed silica (Rheoroseal CP-102; manufactured by Tokuyama) having a particle diameter range of 0.005 to 0.05 μm and a BET specific surface area of 100 to 150 m 2 / g is added as a fluidity aid. 2% by weight was added to 100 parts by weight of calcium particle powder, and the mixture was heated and mixed with a Henschel mixer to perform surface treatment.

【0052】製造例14 白色糖晶質石灰石を粉砕、分級し、モース硬度3、比重
2.7、最大粒子径4.62μm、平均粒子径1.5μ
m、不定形を示す指数64%の重質炭酸カルシウムを製
造し、これにステアリン酸(TST:ミヨシ油脂株式会
社製)を重質炭酸カルシウム粒子粉体100重量部に対
して1.3重量%添加し、さらに流動性助剤として、粒
子径の範囲が0.005〜0.05μm、BET比表面
積が100〜150m2 /gのヒュームドシリカ(レオ
ロシールCP−102;トクヤマ製)を重質炭酸カルシ
ウム粒子粉体100重量部に対して2重量%添加し、ヘ
ンシェルミキサーで加熱混合し、表面処理を行った。
Production Example 14 White sugar crystalline limestone was crushed and classified to have a Mohs hardness of 3, a specific gravity of 2.7, a maximum particle size of 4.62 μm, and an average particle size of 1.5 μm.
m, heavy calcium carbonate having an index of 64% showing an indefinite shape was produced, and stearic acid (TST: manufactured by Miyoshi Yushi Co., Ltd.) was added thereto in an amount of 1.3% by weight based on 100 parts by weight of the heavy calcium carbonate particle powder. In addition, a fumed silica (Rheoroseal CP-102; manufactured by Tokuyama) having a particle diameter range of 0.005 to 0.05 μm and a BET specific surface area of 100 to 150 m 2 / g is added as a fluidity aid. 2% by weight was added to 100 parts by weight of calcium particle powder, and the mixture was heated and mixed with a Henschel mixer to perform surface treatment.

【0053】製造例15 白色糖晶質石灰石を湿式粉砕、乾燥、分級し、モース硬
度3、比重2.7、最大粒子径11μm、平均粒子径1
μm、不定形を示す指数65%の重質炭酸カルシウムを
製造し、これにステアリン酸(TST:ミヨシ油脂株式
会社製)を重質炭酸カルシウム粒子粉体100重量部に
対して1.3重量%添加し、さらに流動性助剤として、
粒子径の範囲が0.005〜0.05μm、BET比表
面積が100〜150m2 /gのヒュームドシリカ(レ
オロシールCP−102;トクヤマ製)を重質炭酸カル
シウム粒子粉体100重量部に対して2重量%添加し、
ヘンシェルミキサーで加熱混合し、表面処理を行った。
Production Example 15 White sugar crystalline limestone was wet pulverized, dried and classified to obtain a Mohs hardness of 3, a specific gravity of 2.7, a maximum particle size of 11 μm and an average particle size of 1.
μm, a heavy calcium carbonate having an index of 65% showing an irregular shape was produced, and stearic acid (TST: manufactured by Miyoshi Yushi Co., Ltd.) was added thereto in an amount of 1.3% by weight based on 100 parts by weight of the heavy calcium carbonate particle powder. And as a fluidity aid,
Fumed silica having a particle size range of 0.005 to 0.05 μm and a BET specific surface area of 100 to 150 m 2 / g (Rheoroseal CP-102; manufactured by Tokuyama Corporation) is used with respect to 100 parts by weight of heavy calcium carbonate particle powder. 2% by weight,
The mixture was heated and mixed with a Henschel mixer to perform surface treatment.

【0054】製造例16 白色糖晶質石灰石を粉砕、分級し、モース硬度3、比重
2.7、最大粒子径104.65μm、平均粒子径79
μm、不定形を示す指数59%の重質炭酸カルシウムを
製造し、これにステアリン酸(TST:ミヨシ油脂株式
会社製)を重質炭酸カルシウム粒子粉体100重量部に
対して1.3重量%添加し、さらに流動性助剤として、
粒子径の範囲が0.005〜0.05μm、BET比表
面積が100〜150m2 /gのヒュームドシリカ(レ
オロシールCP−102;トクヤマ製)を重質炭酸カル
シウム粒子粉体100重量部に対して2重量%添加し、
ヘンシェルミキサーで加熱混合し、表面処理を行った。
Production Example 16 White sugar crystalline limestone was crushed and classified to have a Mohs hardness of 3, a specific gravity of 2.7, a maximum particle diameter of 104.65 μm and an average particle diameter of 79.
μm, a heavy calcium carbonate having an index of 59% showing an irregular shape was produced, and stearic acid (TST: manufactured by Miyoshi Yushi Co., Ltd.) was added thereto in an amount of 1.3% by weight based on 100 parts by weight of the heavy calcium carbonate particle powder. And as a fluidity aid,
Fumed silica having a particle size range of 0.005 to 0.05 μm and a BET specific surface area of 100 to 150 m 2 / g (Rheoroseal CP-102; manufactured by Tokuyama Corporation) is used with respect to 100 parts by weight of heavy calcium carbonate particle powder. 2% by weight,
The mixture was heated and mixed with a Henschel mixer to perform surface treatment.

【0055】製造例17 緻密質石灰石を焙焼、消化、炭酸化し、モース硬度3、
比重2.7、最大粒子径52.33μm、平均粒子径2
μm、不定形を示す指数22%のウイスカー状炭酸カル
シウムを製造し、これにステアリン酸(TST:ミヨシ
油脂株式会社製)をウイスカー状炭酸カルシウム粒子粉
体100重量部に対して1.3重量%添加し、さらに流
動性助剤として、粒子径の範囲が0.005〜0.05
μm、BET比表面積が100〜150m2 /gのヒュ
ームドシリカ(レオロシールCP−102;トクヤマ
製)をウイスカー状炭酸カルシウム粒子粉体100重量
部に対して2重量%添加し、ヘンシェルミキサーで加熱
混合し、表面処理を行った。
Production Example 17 Dense limestone was roasted, digested and carbonated to obtain a Mohs hardness of 3,
Specific gravity 2.7, maximum particle size 52.33 μm, average particle size 2
μm, whisker-like calcium carbonate having an amorphous shape and an index of 22% was produced, and stearic acid (TST: manufactured by Miyoshi Yushi Co., Ltd.) was added to the whisker-like calcium carbonate particle powder in an amount of 1.3% by weight. As a fluidity aid, the particle size range is 0.005 to 0.05.
2% by weight of fumed silica having a particle size of 100 μm and a BET specific surface area of 100 to 150 m 2 / g (Rheoroseal CP-102; manufactured by Tokuyama Corporation) was added to 100 parts by weight of whisker-like calcium carbonate particle powder, and heated and mixed with a Henschel mixer. Then, the surface treatment was performed.

【0056】製造例18 緻密質石灰石を焙焼、消化、炭酸化し、モース硬度3、
比重2.7、最大粒子径5.5μm、平均粒子径2μ
m、不定形を示す指数96%のバテライト状炭酸カルシ
ウムを製造し、これにステアリン酸TST(ミヨシ油脂
株式会社製)をバテライト状炭酸カルシウム粒子粉体1
00重量部に対して1.3重量%添加し、さらに流動性
助剤として、粒子径の範囲が0.005〜0.05μ
m、BET比表面積が100〜150m2 /gのヒュー
ムドシリカ(レオロシールCP−102;トクヤマ製)
をバテライト状炭酸カルシウム粒子粉体100重量部に
対して2重量%添加し、ヘンシェルミキサーで加熱混合
し、表面処理を行った。
Production Example 18 Dense limestone was roasted, digested and carbonated to obtain a Mohs hardness of 3,
Specific gravity 2.7, maximum particle size 5.5 μm, average particle size 2 μ
m, vaterite-like calcium carbonate having an index of 96% showing an indefinite shape, and stearic acid TST (manufactured by Miyoshi Yushi Co., Ltd.) were added to the vaterite-like calcium carbonate particle powder 1
1.3 wt% was added to 100 parts by weight, and as a fluidity aid, the particle size range was 0.005-0.05μ.
m, BET specific surface area of 100 to 150 m 2 / g fumed silica (Reorosil CP-102; manufactured by Tokuyama)
2% by weight was added to 100 parts by weight of the vaterite-like calcium carbonate particle powder, and the mixture was heated and mixed with a Henschel mixer for surface treatment.

【0057】製造例19 タルク(SP−50A:富士タルク工業株式会社製)を
分級し、モース硬度1、比重2.7、最大粒子径12
4.45μm、平均粒子径25μm、不定形を示す指数
33%のタルクを製造し、これにステアリン酸(TS
T:ミヨシ油脂株式会社製)を研磨材であるタルク粒子
粉体100重量部に対して1.3重量%添加し、ヘンシ
ェルミキサーで加熱混合し、表面処理を行った。
Production Example 19 Talc (SP-50A: manufactured by Fuji Talc Industry Co., Ltd.) was classified to have a Mohs hardness of 1, a specific gravity of 2.7 and a maximum particle diameter of 12.
Talc with an average particle size of 4.45 μm and an average particle size of 25 μm and an index of 33% indicating an indefinite shape was produced, and stearic acid (TS
(T: manufactured by Miyoshi Yushi Co., Ltd.) was added at 1.3% by weight to 100 parts by weight of the talc particle powder as an abrasive, and the mixture was heated and mixed with a Henschel mixer for surface treatment.

【0058】製造例20 タルク(SP−50A:富士タルク工業株式会社製)を
分級し、モース硬度1、比重2.7、最大粒子径74.
00μm、平均粒子径19μm、不定形を示す指数45
%のタルクを製造し、これに流動性助剤として粒子径の
範囲が0.005〜0.05μm、BET比表面積が1
00〜150m2 /gのヒュームドシリカ(レオロシー
ルCP−102:トクヤマ製)を流動性助剤として研磨
材であるタルク粒子粉体100重量部に対して2重量%
添加し、ヘンシェルミキサーで加熱混合を行った。
Production Example 20 Talc (SP-50A: manufactured by Fuji Talc Industry Co., Ltd.) was classified to have a Mohs hardness of 1, a specific gravity of 2.7 and a maximum particle diameter of 74.
00 μm, average particle diameter 19 μm, index 45 indicating irregular shape
% Talc was produced, and a particle size range of 0.005 to 0.05 μm and a BET specific surface area of 1 were used as a fluidity aid.
2 wt% of 100 to 100 parts by weight of talc particle powder which is an abrasive with a fumed silica of 0.000 to 150 m 2 / g (Rheoroseal CP-102: manufactured by Tokuyama Corporation) as a fluidity aid.
The mixture was added and heated and mixed with a Henschel mixer.

【0059】製造例21 モース硬度6.5、平均粒子径25μm、比重2.5、
最大粒子径52.33μm、不定形を示す指数98%の
株式会社ユニオン製のガラスビーズを使用した。
Production Example 21 Mohs hardness 6.5, average particle diameter 25 μm, specific gravity 2.5,
Glass beads manufactured by Union Co., Ltd. having a maximum particle diameter of 52.33 μm and an index of 98% indicating an irregular shape were used.

【0060】製造例22 モース硬度9、比重3.2、平均粒子径25μm、最大
粒子径37μm、不定形を示す指数97%の昭和電工株
式会社製の球状アルミナを使用した。
Production Example 22 Spherical alumina manufactured by Showa Denko KK having a Mohs hardness of 9, a specific gravity of 3.2, an average particle diameter of 25 μm, a maximum particle diameter of 37 μm and an index of 97% indicating an irregular shape was used.

【0061】実施例1〜12、比較例1〜10 上記製造例1〜22で得られた研磨材を用い、PDPの
背面基板部に隔壁を形成した。尚、被研磨物として、下
記の隔壁形成方法に従い、実験用のPDP背面パネルを
使用し、ブラストマシンの噴射圧力、研磨剤の時間あた
りの噴射重量を一定に調節して隔壁形成試験を行い、被
加工物底部のガラス基盤の表面性状および隔壁形状を観
察した。
Examples 1 to 12 and Comparative Examples 1 to 10 Using the abrasives obtained in the above Production Examples 1 to 22, partition walls were formed on the back substrate portion of the PDP. As the object to be polished, a PDP back panel for an experiment was used according to the following method for forming partition walls, and a partition wall formation test was performed by adjusting the spray pressure of the blast machine and the spray weight of the polishing agent per unit time, The surface texture and partition shape of the glass substrate at the bottom of the workpiece were observed.

【0062】隔壁形成方法: (A)実験用PDP背面パネルの製造: ソーダガラス(100×100mm、厚さ3mm)であ
る基板上に、電極を150μm間隔でストライプ状に印
刷形成(電極表面は酸化マグネシウム)し、その上に低
融点ガラスペーストをコーターで塗布し乾燥後、その表
面に耐ブラスト性を有する低融点ガラスペーストを塗布
し、感光材をラミネートした後に露光、現像を行い低融
点ガラスペースト上にパターンを形成した。
Partition wall forming method: (A) Production of experimental PDP back panel: Electrodes are printed and formed in stripes at intervals of 150 μm on a substrate made of soda glass (100 × 100 mm, thickness 3 mm). Magnesium), apply a low melting point glass paste on it with a coater and dry it, then apply a low melting point glass paste with blast resistance to the surface, laminate a photosensitive material, then expose and develop the low melting point glass paste A pattern was formed on top.

【0063】(B)ブラスト加工: 上記の如く製造した実験用PDP背面パネルを使用し、
上記の製造例1〜22の各種研磨材による研削実験を行
った。加工条件としてブラストマシンの設定条件は下記
の通りであり、各種研磨材の隔壁形成時間を測定し、研
磨精度および効率を測定した。 噴射ノズル口径:9mm 研磨材噴射圧力:2.5kg/cm2 研磨材噴射量:10g/min パネルまでの距離:10cm 酸化マグネシウム(MgO)のモース硬度:6〜7 ソーダガラスのモース硬度:5
(B) Blasting: Using the experimental PDP rear panel manufactured as described above,
Grinding experiments were performed using the various abrasives of Production Examples 1 to 22 above. The setting conditions of the blast machine as the processing conditions are as follows, and the partition forming time of various abrasives was measured to measure the polishing accuracy and efficiency. Injection nozzle diameter: 9 mm Abrasive material injection pressure: 2.5 kg / cm 2 Abrasive material injection amount: 10 g / min Distance to panel: 10 cm Mohs hardness of magnesium oxide (MgO): 6 to 7 Mohs hardness of soda glass: 5

【0064】表1に研磨材である無機粒子粉体の組成及
び隔壁形成試験の結果を示す。尚、表1中の研磨材粒子
の特性、研磨精度等の測定方法及び評価は下記の方法で
行った。
Table 1 shows the composition of the inorganic particle powder as the abrasive and the result of the partition formation test. The properties and polishing accuracy of the abrasive particles shown in Table 1 were measured and evaluated by the following methods.

【0065】研磨剤である無機粒子粉体の最大粒子径、
平均粒子径は、日機装株式会社製マイクロトラックFR
Aを使用して測定した。
The maximum particle size of the inorganic particle powder that is an abrasive,
The average particle size is Nikkiso Co., Ltd. Microtrac FR
It was measured using A.

【0066】不定形を示す指数は、電子顕微鏡写真に写
った粒子をランダムに20点選択して測定した値の平均
値を算出した。
As an index indicating an irregular shape, an average value of values measured by randomly selecting 20 points of particles shown in an electron micrograph was calculated.

【0067】隔壁値のばらつきは、研磨後形成された隣
り合うリブ同士の幅をランダムに20点選択して測定し
た値に基づいて、標準偏差を算出した。
Regarding the variation of the partition wall value, the standard deviation was calculated based on a value measured by randomly selecting 20 widths between adjacent ribs formed after polishing.

【0068】研磨効率は、PDP背面パネルの隔壁形成
において、実施例1でかかった所要時間(これをGとす
る)を基準とし、下記式で得られる値で示した。 研磨効率=(G/(研磨時間))×100
The polishing efficiency is shown by a value obtained by the following formula with reference to the time required in Example 1 in forming the partition wall of the PDP back panel (this is referred to as G). Polishing efficiency = (G / (polishing time)) × 100

【0069】表面性状の観察は、電子顕微鏡を用いて、
研磨後のPDP背面パネルの表面の傷、溝やその隅部の
加工形状について目視観察を行い、下記基準により評価
した。 良好:傷がなく、溝の隅部の加工形状が丸みを帯びてい
ない。 やや不良:少し傷がある、及び/又は、溝の隅部の加工
形状が少し丸みを帯びている。 不良:多くの傷がある、及び/又は、溝の隅部の加工形
状が丸みを帯びている。
The surface texture was observed by using an electron microscope.
The scratches on the surface of the back panel of the PDP after polishing, the processed shapes of the grooves and the corners thereof were visually observed and evaluated according to the following criteria. Good: No damage, and the processed shape at the corner of the groove is not rounded. Somewhat bad: There are some scratches and / or the processed shape at the corners of the groove is slightly rounded. Bad: There are many scratches and / or the processed shape of the corner of the groove is rounded.

【0070】[0070]

【表1】 [Table 1]

【0071】 (註) 10≦A≦0.8C 即ち(10≦A≦120) 0.03C≦B≦0.5C 即ち(4.5≦B≦75) 50≦C≦800 30≦D≦95 E2 −3.5≦E1 ≦E2 −0.5 即ち(1.5≦E2 ≦4.5)(Note) 10 ≦ A ≦ 0.8C That is (10 ≦ A ≦ 120) 0.03C ≦ B ≦ 0.5C That is (4.5 ≦ B ≦ 75) 50 ≦ C ≦ 800 30 ≦ D ≦ 95 E 2 −3.5 ≦ E 1 ≦ E 2 −0.5 That is (1.5 ≦ E 2 ≦ 4.5)

【0072】PDP隔壁形成用研磨材には、被加工物底
部の表面性状が傷がなく、溝の隅部の加工形状が丸みを
帯びることなく良好であり、かつ、加工精度に関わる隔
壁値のばらつきが30μm以内、好ましくは20μm以
内、研磨効率が50%以上、好ましくは60%以上であ
ることを同時に満足することが要求される。表1の結果
から明らかな如く、実施例に代表される本発明の隔壁形
成方法ではこれら数値を満足し、被加工物底部の表面性
状を損なうことなく、かつ、加工精度及び研磨効率が頗
る良好である。
The PDP partition wall-forming abrasive has a good surface property at the bottom of the work piece, no damage in the groove corners, and a good partition wall value related to the processing accuracy. At the same time, it is required that the variation is 30 μm or less, preferably 20 μm or less, and the polishing efficiency is 50% or more, preferably 60% or more. As is clear from the results of Table 1, the partition wall forming method of the present invention represented by Examples satisfies these numerical values, does not impair the surface quality of the bottom of the work piece, and has excellent processing accuracy and polishing efficiency. Is.

【0073】[0073]

【発明の効果】叙上のとおり、本発明の隔壁形成方法
は、従来の球状高硬度研磨材を用いる隔壁形成方法に比
べ、被加工物の表面性状を損なうことがなく、しかも加
工効率及び加工精度にすぐれている。
INDUSTRIAL APPLICABILITY As described above, the partition wall forming method of the present invention does not impair the surface properties of the workpiece, and has a higher processing efficiency and processing than the conventional partition wall forming method using the spherical high hardness abrasive. It has excellent accuracy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 曽根 正 東京都江戸川区松江5丁目2番24号 株 式会社不二製作所内 (56)参考文献 特開 平11−133889(JP,A) 特開 平10−69851(JP,A) 特開 平9−274852(JP,A) 特開 平11−138441(JP,A) 特開 平9−109026(JP,A) 特開 平5−266791(JP,A) (58)調査した分野(Int.Cl.7,DB名) B24C 11/00 B24C 1/04 H01J 9/02 H01J 11/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadashi Sone 5-24 Matsue 5-chome, Edogawa-ku, Tokyo Inside Fuji Manufacturing Co., Ltd. (56) Reference JP 11-133889 (JP, A) JP 10-69851 (JP, A) JP-A 9-274852 (JP, A) JP-A 11-138441 (JP, A) JP-A 9-1009026 (JP, A) JP-A 5-266791 (JP , A) (58) Fields investigated (Int.Cl. 7 , DB name) B24C 11/00 B24C 1/04 H01J 9/02 H01J 11/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電極が設けられた基板及びその基板上に
設けられたブラスト性低融点ガラス層をブラスト加工し
て所定の間隔を置いて隔壁を形成するに際し、下記式
(1)、(2)、(3)、(4)及び(5)を共に満足
する無機粒子粉体からなる研磨材を用いることを特徴と
する隔壁の形成方法。 10≦A≦0.8C (1) 0.03C≦B≦0.5C (2) 50≦C≦800 (3) 30≦D≦95 (4) E2 −3.5≦E1 ≦E2 −0.5 (5) 但し、 A:研磨材の最大粒子径(μm) B:研磨材の平均粒子径(μm) C:加工ピッチで隔壁幅d1 +研削溝幅d2 (μm) D:粒子の不定形を示す指数(%)で、粒子投影面積の
外接円に対する面積率を示す。 E1 :研磨材のモース硬度 E2 :基板又は電極のいずれか低い方のモース硬度
1. When blasting a substrate provided with electrodes and a blasting low melting point glass layer provided on the substrate to form partition walls at predetermined intervals, the following formulas (1), (2) ), (3), (4) and (5) are all satisfied, the method of forming partition walls is characterized by using an abrasive made of inorganic particle powder. 10 ≦ A ≦ 0.8C (1) 0.03C ≦ B ≦ 0.5C (2) 50 ≦ C ≦ 800 (3) 30 ≦ D ≦ 95 (4) E 2 −3.5 ≦ E 1 ≦ E 2 -0.5 (5) where A: maximum particle size of abrasive (μm) B: average particle size of abrasive (μm) C: partition width d 1 + grinding groove width d 2 (μm) D at processing pitch : An index (%) indicating an irregular shape of a particle, showing an area ratio of a projected area of a particle to a circumscribed circle. E 1 : Mohs hardness of abrasive material E 2 : Mohs hardness of substrate or electrode, whichever is lower
【請求項2】 無機粒子粉体の比重Fが下記式(15)
を満足する請求項1記載の隔壁の形成方法。 1≦F≦6 (15)
2. The specific gravity F of the inorganic particle powder is represented by the following formula (15).
The method of forming a partition wall according to claim 1, wherein 1 ≦ F ≦ 6 (15)
【請求項3】 無機粒子粉体を0.01〜5重量%の疎
水性を付与する物質で表面処理した請求項1又は2記載
の隔壁の形成方法。
3. The method for forming partition walls according to claim 1, wherein the inorganic particle powder is surface-treated with 0.01 to 5% by weight of a substance that imparts hydrophobicity.
【請求項4】 流動性助剤を無機粒子粉体に対し0.0
1〜5重量%添加した請求項1〜3のいずれか1項に記
載の隔壁の形成方法。
4. A fluidity aid of 0.0 to the inorganic particle powder.
The method for forming partition walls according to claim 1, wherein 1 to 5% by weight is added.
JP18734499A 1999-07-01 1999-07-01 Method of forming partition Expired - Fee Related JP3409284B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18734499A JP3409284B2 (en) 1999-07-01 1999-07-01 Method of forming partition
KR10-2000-0037172A KR100427624B1 (en) 1999-07-01 2000-06-30 Abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18734499A JP3409284B2 (en) 1999-07-01 1999-07-01 Method of forming partition

Publications (2)

Publication Number Publication Date
JP2001009727A JP2001009727A (en) 2001-01-16
JP3409284B2 true JP3409284B2 (en) 2003-05-26

Family

ID=16204365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18734499A Expired - Fee Related JP3409284B2 (en) 1999-07-01 1999-07-01 Method of forming partition

Country Status (2)

Country Link
JP (1) JP3409284B2 (en)
KR (1) KR100427624B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003170603A (en) * 2001-09-26 2003-06-17 Fuji Photo Film Co Ltd Method and apparatus for manufacturing liquid drop jet head
JP6022862B2 (en) * 2012-05-08 2016-11-09 株式会社不二製作所 Hard brittle substrate cutting method and cutting device

Also Published As

Publication number Publication date
JP2001009727A (en) 2001-01-16
KR20010049685A (en) 2001-06-15
KR100427624B1 (en) 2004-04-30

Similar Documents

Publication Publication Date Title
EP2445982B1 (en) Shaped abrasive particles with low roundness factor
CA2747203C (en) Shaped abrasive particles with a sloping sidewall
US20190092991A1 (en) Shaped abrasive particles with low roundness factor
CA2746931C (en) Dish-shaped abrasive particles with a recessed surface
US7923074B2 (en) Method for preparing a vehicle interior material
WO1993018863A1 (en) Abrasive coating remover and process for using same
JP3409284B2 (en) Method of forming partition
JP3881171B2 (en) Method for forming non-straight rib pattern
JPH082913A (en) Alpha-alumina for abrasive and its production
US12104094B2 (en) Phenolic resin composition comprising polymerized ionic groups, abrasive articles and methods
CA2722676A1 (en) Alkaline earth carbonate containing mineral for surface cleaning
JP2002160162A (en) Polishing material
KR20020055439A (en) Abrasives for dry blasting
JP3746962B2 (en) Abrasive material and polishing method using the abrasive material
CN1204221C (en) Grinding material
JP4049848B2 (en) Abrasive
JP2003236759A (en) Deburring material and deburring method
JP2004148413A (en) Metal powder for grinding barrier rib of plasma display panel
WO2021205399A1 (en) Method of finishing a workpiece and finishing vessel having deflecting element
EP4041493A1 (en) Method of modifying a surface of a workpiece
KR20020011867A (en) Abrasive and grinding method using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030204

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees