JP3407336B2 - Method for purifying aminoethanesulfonic acids - Google Patents

Method for purifying aminoethanesulfonic acids

Info

Publication number
JP3407336B2
JP3407336B2 JP13434393A JP13434393A JP3407336B2 JP 3407336 B2 JP3407336 B2 JP 3407336B2 JP 13434393 A JP13434393 A JP 13434393A JP 13434393 A JP13434393 A JP 13434393A JP 3407336 B2 JP3407336 B2 JP 3407336B2
Authority
JP
Japan
Prior art keywords
aqueous solution
acid
aminoethanesulfonic
salt
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13434393A
Other languages
Japanese (ja)
Other versions
JPH06345717A (en
Inventor
亨 松岡
幸悦 池田
時彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP13434393A priority Critical patent/JP3407336B2/en
Publication of JPH06345717A publication Critical patent/JPH06345717A/en
Application granted granted Critical
Publication of JP3407336B2 publication Critical patent/JP3407336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、1,2−ジクロロエタ
ンと亜硫酸アルカリ金属塩から合成された、アルカリ金
属塩酸塩、1,2−エタンジスルホン酸アルカリ金属塩
(以下、EDSアルカリ金属塩と称す)等を不純物とし
て含む、未精製β−クロロエタンスルホン酸アルカリ金
属塩(以下CESアルカリ金属塩と称す)水溶液を原料
とし、この水溶液をアンモニア、または、N−置換アミ
ン類(以下これらを併せて、単にアミン類と称す)と反
応させて得られる、アミノエタンスルホン酸、またはN
−置換アミノエタンスルホン酸(以下これらを併せてア
ミノエタンスルホン酸類と称す)の精製方法に関する。
The present invention relates to an alkali metal hydrochloride, 1,2-ethanedisulfonic acid alkali metal salt (hereinafter referred to as EDS alkali metal salt), which is synthesized from 1,2-dichloroethane and alkali metal sulfite. ) Or the like as an impurity, an unpurified β-chloroethanesulfonic acid alkali metal salt (hereinafter referred to as CES alkali metal salt) aqueous solution is used as a raw material, and this aqueous solution is ammonia or N-substituted amines (hereinafter, these are combined, Aminoethanesulfonic acid, or N, obtained by reacting with amines)
-A method for purifying a substituted aminoethanesulfonic acid (hereinafter collectively referred to as aminoethanesulfonic acids).

【0002】前記、アミン類がアンモニアである場合に
得られるアミノエタンスルホン酸はタウリンと称される
医薬原体である。またアミン類がメチルアミンである場
合に得られるメチルアミノエタンスルホン酸をアルカリ
金属水酸化物の存在下、脂肪酸クロライド等と反応させ
ると、アシル化物が得られ、このアシル化物はIgep
on Tの名称で、古くから知られる界面活性剤であ
り、耐硬水性の人体に害のない優れたアミノ酸系洗浄剤
として利用されている。
The aminoethanesulfonic acid obtained when the amine is ammonia is a drug substance called taurine. When methylaminoethanesulfonic acid obtained when the amine is methylamine is reacted with a fatty acid chloride or the like in the presence of an alkali metal hydroxide, an acylated product is obtained, and the acylated product is Igep.
It is a surfactant that has been known for a long time under the name of on T, and is used as an excellent amino acid-based detergent that is hard and water resistant and does not harm the human body.

【0003】[0003]

【従来の技術】従来、アミノエタンスルホン酸の精製方
法として、(1) エチルアルコールを媒体とする抽出法
(Ind.&Eng. chem.,39 906〜9
(1947)) (2) 水を媒体とする晶析法(ドイツ特許第112254
0号) が知られている。
2. Description of the Related Art Conventionally, as a purification method of aminoethanesulfonic acid, (1) an extraction method using ethyl alcohol as a medium (Ind. & Eng. Chem., 39 906-9.
(1947)) (2) Crystallization method using water as a medium (German Patent 112254)
No. 0) is known.

【0004】(1) の方法は、式に示すように、精製C
ESナトリウムを大過剰のアミン類と反応させ、過剰ア
ミン類を蒸留により除去した後、式に示すように、塩
酸を加え、アミノエタンスルホン酸類とし、この水溶液
を蒸発乾固した後、大量の95%hotエチルアルコー
ルを加え、アミノエタンスルホン酸類を抽出し、このア
ミノエタンスルホン酸類を抽出したアルコール性水溶液
を冷却して、アミノエタンスルホン類を晶出させて、固
−液分離するアミノエタンスルホン酸類結晶の取得方法
である。
The method (1) is carried out by using purified C
After sodium ES was reacted with a large excess of amines and excess amines were removed by distillation, hydrochloric acid was added to give aminoethanesulfonic acids as shown in the formula, and the aqueous solution was evaporated to dryness, and then a large amount of 95% was added. % Hot ethyl alcohol is added to extract aminoethane sulfonic acids, and the alcoholic aqueous solution from which the aminoethane sulfonic acids have been extracted is cooled to crystallize the aminoethane sulfones and to perform solid-liquid separation. This is a method of obtaining crystals.

【0005】ClC24SO3Na+nRNH2 → RNHC24SO3RNH3+NaCl (R=水素、または炭化水素からなるアルキル基。n=
15〜20) RNHC24SO3RNH3+HCl → RNHC24SO3H+RNH3Cl (Rは上記に同じ) 同法をアミノエタンスルホン酸類の商業的精製法として
採用した場合、原料CESナトリウム塩の精製工程を必
要とし、さらに、抽出媒体として用いた大量のアルコー
ルの回収、精製工程を要した上、1回の操作では高純度
品が得られず、高純度品を得るには、上記抽出操作を繰
り返さなければならない。
ClC 2 H 4 SO 3 Na + nRNH 2 → RNHC 2 H 4 SO 3 RNH 3 + NaCl (R = hydrogen or hydrocarbon alkyl group, n =
15-20) RNHC 2 H 4 SO 3 RNH 3 + HCl → RNHC 2 H 4 SO 3 H + RNH 3 Cl (R is the same as above) When this method is adopted as a commercial purification method for aminoethanesulfonic acids, raw material CES sodium In order to obtain a high-purity product, it is not possible to obtain a high-purity product in a single operation because a salt purification process is required, a large amount of alcohol used as an extraction medium is recovered, and a purification process is required. The extraction operation has to be repeated.

【0006】また、不純物として、食塩、アミン類塩化
物をほぼ等化学当量含む固形物を排出するので、これを
廃棄することは環境保全上、好ましくなく、その分離工
程を要する等煩雑な工程となる。
[0006] Further, since solid substances containing salt and amine chloride as equimolar amounts are discharged as impurities, it is not preferable from the viewpoint of environmental protection to dispose of them, which is a complicated process such as a separation process. Become.

【0007】(2) の方法は、式、に示すように、元
来イセチオン酸を原料とする、アミノエタンスルホン酸
類の精製方法であり、EDSアルカリ金属塩の除去は考
慮されていない。
The method (2) is originally a method for purifying aminoethanesulfonic acids using isethionic acid as a raw material as shown in the formula, and removal of EDS alkali metal salt is not considered.

【0008】HOC24SO3Na+nRNH2 → RNHC24SO3Na+H2O RNHC24SO3Na+1/2H2SO4 → RNHC24SO3H+1/2Na2SO4 (R及びnは前記に同じ) 即ち、同法は式で得られたアミノエタンスルホン酸ナ
トリウム塩類水溶液に式に示すように、硫酸、塩酸等
の鉱酸を加え、アミノエタンスルホン酸類に変換した
後、その水溶液を濃縮して、芒硝等の鉱酸ナトリウム塩
を部分的に晶出させ、この晶出鉱酸ナトリウム塩を70
℃以上の温度で固−液分離して得られるろ液を常温に冷
却する事により、アミノエタンスルホン酸類を部分的に
晶出させ、固−液分離により、その結晶を取得する方法
であり、分離液はいまだアミノエタンスルホン酸類を多
量に含んでいるので、回収循環される。
HOC 2 H 4 SO 3 Na + n RNH 2 → RNHC 2 H 4 SO 3 Na + H 2 O RNHC 2 H 4 SO 3 Na + 1 / 2H 2 SO 4 → RNHC 2 H 4 SO 3 H + 1 / 2Na 2 SO 4 (R and n Is the same as above) That is, the method is the same as the aqueous solution of aminoethanesulfonic acid sodium salt obtained by the formula, as shown in the formula, by adding a mineral acid such as sulfuric acid and hydrochloric acid to convert the aminoethanesulfonic acid to the aqueous solution. Is concentrated to partially crystallize a sodium salt of mineral acid such as Glauber's salt.
By cooling the filtrate obtained by solid-liquid separation at a temperature of ℃ or more to room temperature, the aminoethanesulfonic acids are partially crystallized, and the solid-liquid separation is a method of obtaining the crystals, Since the separated liquid still contains a large amount of aminoethanesulfonic acid, it is recovered and circulated.

【0009】本発明者らが検討した結果、同法のように
脱塩濾液を単に冷却したのではその溶解平衡の関係上、
アミノエタンスルホン酸類の晶出に際し、少量ながら鉱
酸ナトリウム塩類が一部晶出するので、高純度アミノエ
タンスルホン酸類の取得は不可能であることが判明し
た。
As a result of the study by the present inventors, if the desalted filtrate was simply cooled as in the same method, in view of its dissolution equilibrium,
It was found that it is impossible to obtain high-purity aminoethanesulfonic acid, since a small amount of sodium salt of mineral acid crystallizes during the crystallization of aminoethanesulfonic acid.

【0010】また、不純物としてEDSアルカリ金属塩
は含まれていないものの、エチレングリコール類のほ
か、ドイツ民主主義共和国特許第219,023号に見
られるように、式の反応にあっては、イセチオン酸塩
が非常に反応性に乏しいので、高温、高圧下の反応条件
下にもかかわらず、その反応を完結することができず、
未反応イセチオン酸塩が残存し、また式の反応は選択
性も良くなく、生成アミノエタンスルホン酸塩がイセチ
オン酸塩と反応し、化学式RN(C24SO3Na)2
N(C24SO3Na)3で示されるアミノエタンジスル
ホン酸塩、アミノトリエタンスルホン酸塩等が含まれて
いる。これらの不純物のうちエチレングリコール、イセ
チオン酸等はアミノエタンスルホン酸類に比し、溶解度
が非常に高く、アミノエタンスルホン酸類の結晶の分離
液に蓄積され、順次粘度の上昇をきたし、濾過性を損ね
るのを防ぐため、この分離液は多量のアミノエタンスル
ホン酸類を含んでいるにもかかわらず、適時放出しなけ
ればならず、これはアミノエタンスルホン酸の収率を著
しく低下させることとなる。
Further, although EDS alkali metal salt is not contained as an impurity, in addition to ethylene glycol, as shown in German Patent No. 219,023, isethionic acid is used in the reaction of the formula. Since the salt has very poor reactivity, the reaction cannot be completed despite the reaction conditions under high temperature and high pressure.
The unreacted isethionate remains, and the reaction of the formula is not very selective, and the formed aminoethanesulfonate reacts with the isethionate, and the chemical formula RN (C 2 H 4 SO 3 Na) 2 ,
It includes aminoethanedisulfonate, aminotriethanesulfonate represented by N (C 2 H 4 SO 3 Na) 3 . Among these impurities, ethylene glycol, isethionic acid, etc. have a much higher solubility than aminoethanesulfonic acids, and they are accumulated in the separated liquid of crystals of aminoethanesulfonic acid, which gradually increases the viscosity and impairs the filterability. In order to prevent the above, the separated liquid must be released in a timely manner even though it contains a large amount of aminoethanesulfonic acid, which significantly reduces the yield of aminoethanesulfonic acid.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、アル
カリ金属塩酸塩、アルカリ金属硫酸塩、EDSアルカリ
金属塩等の不純物を含んだ未精製のCESアルカリ金属
塩を原料として合成されたアミノエタンスルホン酸類の
精製にあたり、水を媒体とし、回収分離液を放出するこ
となく、高収率で、高純度アミノエタンスルホン酸類結
晶を取得する、アミノエタンスルホン酸類の精製方法を
提供するものである。
DISCLOSURE OF THE INVENTION The object of the present invention is to prepare aminoethane synthesized from an unpurified CES alkali metal salt containing impurities such as alkali metal hydrochloride, alkali metal sulfate and EDS alkali metal salt as a raw material. It is intended to provide a method for purifying aminoethanesulfonic acids, which comprises using water as a medium for purifying sulfonic acids and obtaining highly pure aminoethanesulfonic acid crystals in high yield without releasing a recovered separated liquid.

【0012】[0012]

【課題を解決するための手段】本発明の要旨は、商業的
に、大量安価に生産されている、1,2−ジクロロエタ
ンと亜硫酸アルカリ金属塩あるいはビニルクロライドと
重亜硫酸アルカリ金属塩から製造される、未精製CES
アルカリ金属塩を原料とし、式,,に示すよう
に、これをアミン類等と反応させて得られる、アミノエ
タンスルホン酸類の精製方法にあり、以下その詳細につ
いて説明する。
DISCLOSURE OF THE INVENTION The gist of the present invention is produced from 1,2-dichloroethane and an alkali metal sulfite or vinyl chloride and an alkali metal bisulfite which are commercially produced in large quantities at low cost. , Unpurified CES
This is a method for purifying aminoethanesulfonic acids obtained by reacting an alkali metal salt as a raw material with amines as shown in the formulas, and its details will be described below.

【0013】ClC24SO3M+nRNH2 → RNHC24SO3RNH3+MCl RNHC24SO3RNH3+MOH → RNHC24SO3M+RNH2+H2O RNHC24SO3M+H+ →RNHC24SO3H+M+ (R:水素、または炭化水素からなるアルキル基、n=
2以上の整数値、M=Na,K等のアルカリ金属、H+
=HCl、H2SO4等の鉱酸)本発明の技術にあって、
式に用いられる未精製CESアルカリ金属塩水溶液に
は、アルカリ金属塩酸塩、アルカリ金属硫酸塩等の無機
塩類のほか、EDSアルカリ金属塩が不純物として含ま
れており、式では大過剰量のアミン類が供給される
が、アミン供給量が少ないと、式,の副反応によ
り、アミノジエタンスルホン酸アミン類塩、アミノトリ
エタンスルホン酸アミン類塩を副生する。
ClC 2 H 4 SO 3 M + nRNH 2 → RNHC 2 H 4 SO 3 RNH 3 + MCl RNHC 2 H 4 SO 3 RNH 3 + MOH → RNHC 2 H 4 SO 3 M + RNH 2 + H 2 O RNHC 2 H 4 SO 3 M + H + → RNHC 2 H 4 SO 3 H + M + (R: hydrogen or an alkyl group consisting of a hydrocarbon, n =
Integer value of 2 or more, M = Na, alkali metal such as K, H +
= Mineral acid such as HCl and H 2 SO 4 ) In the technique of the present invention,
The unpurified CES alkali metal salt aqueous solution used in the formula contains inorganic salts such as alkali metal hydrochloride and alkali metal sulfate as well as EDS alkali metal salt as impurities, and in the formula, a large excess amount of amines is contained. However, when the amine supply amount is small, aminodiethanesulfonic acid amine salts and aminotriethanesulfonic acid amine salts are by-produced by the side reaction of the formula (1).

【0014】 RNHC24SO3RNH3+ClC24SO3M+RNH2 → RN(C24SO3RNH32+MCl NH(C24SO3NH42+ClC24SO3M+NH3 → N(C24SO3NH43+MCl (R,Mは上記に同じ) 従って、本発明で得られるアミノエタンスルホン酸類水
溶液には、大量のアルカリ金属塩酸塩等の無機塩のほ
か、少量のEDSアルカリ金属塩、アミノジエタンスル
ホン酸類、アミノトリエタンスルホン酸類が不純物とし
て含まれている。本発明の方法においては、まず式,
の反応で得られた水溶液を蒸留し、式で過剰に供給
され、式で遊離したアミン類を分離除去する。
RNHC 2 H 4 SO 3 RNH 3 + ClC 2 H 4 SO 3 M + RNH 2 → RN (C 2 H 4 SO 3 RNH 3 ) 2 + MCl NH (C 2 H 4 SO 3 NH 4 ) 2 + ClC 2 H 4 SO 3 M + NH 3 → N (C 2 H 4 SO 3 NH 4 ) 3 + MCl (R and M are the same as above) Therefore, the aminoethanesulfonic acid aqueous solution obtained in the present invention contains a large amount of inorganic metal such as alkali metal hydrochloride. In addition to salts, a small amount of EDS alkali metal salts, aminodiethanesulfonic acids and aminotriethanesulfonic acids are contained as impurities. In the method of the present invention, first,
The aqueous solution obtained in the reaction of (1) is distilled, and the amines supplied in excess by the formula and liberated by the formula are separated and removed.

【0015】次に、本発明者らはEDSアルカリ金属塩
は、その溶解度が温度依存性を有するとともに、アルカ
リ金属塩酸塩,アルカリ金属硫酸塩等の無機塩の存在下
では、さらにその溶解度が低下し、前記無機塩濃度が高
いほど、低温域でのEDSアルカリ金属塩の溶解度は低
下することを見出し、本発明に到達した。
Next, the present inventors have found that the solubility of EDS alkali metal salt is temperature-dependent, and that the solubility thereof further decreases in the presence of inorganic salts such as alkali metal hydrochloride and alkali metal sulfate. However, they have found that the higher the concentration of the inorganic salt, the lower the solubility of the EDS alkali metal salt in the low temperature range, and have reached the present invention.

【0016】即ち、式に示したように塩酸、硫酸等の
鉱酸を加え、pH=4.5〜7.0に調整し、アミノエ
タンスルホン酸類に変換し、この水溶液を大気圧下、も
しくは減圧下に濃縮して、その飽和溶解度液とした水溶
液を、常温以下に冷却し、不純物であるEDSアルカリ
金属塩を晶出させ、晶出固形物をろ過等の固−液分離法
により除去する。この工程の前に、晶出している無機塩
を分離するために、必要に応じて、80℃の高温でろ過
してもよい。
That is, as shown in the formula, pH = 4.5 to 7.0 is adjusted by adding a mineral acid such as hydrochloric acid or sulfuric acid to convert into aminoethanesulfonic acid, and this aqueous solution is treated under atmospheric pressure or The solution obtained by concentrating under reduced pressure to obtain a saturated solubility liquid thereof is cooled to room temperature or lower to crystallize an EDS alkali metal salt as an impurity, and a crystallized solid substance is removed by a solid-liquid separation method such as filtration. . Prior to this step, filtration may be carried out at an elevated temperature of 80 ° C., if necessary, in order to separate out the crystallized inorganic salt.

【0017】このように、アミノエタンスルホン酸類を
晶出させないで、EDSアルカリ金属塩を選択的に晶出
させるには、水溶液部にあって、アミノエタンスルホン
酸類濃度≦38.5%、無機塩濃度≦17.5%の飽和
溶解度水溶液に濃縮した後、常温以下、好ましくは20
℃以下0℃以上に冷却し、EDSアルカリ金属塩を晶析
する。
As described above, in order to selectively crystallize the EDS alkali metal salt without crystallizing the aminoethanesulfonic acid, in the aqueous solution part, the aminoethanesulfonic acid concentration is ≦ 38.5%, the inorganic salt is After concentrating in a saturated aqueous solution having a concentration of ≤17.5%, the temperature is below room temperature, preferably 20
After cooling to below 0 ° C and above 0 ° C, the EDS alkali metal salt is crystallized.

【0018】このEDSアルカリ金属塩を分離した水溶
液は大気圧下、もしくは減圧下で再度濃縮し、今度はア
ルカリ金属塩酸塩等の無機塩類を80℃以上の高温域で
部分的に晶出させ、晶出無機塩を高温下のろ過により固
−液分離し、除去するものである。アミノエタンスルホ
ン酸類の水溶液にあって、これを晶出させず前記無機塩
を選択的に晶出させるには、水溶液部にあってアミノエ
タンスルホン酸濃度≧40%、無機塩類濃度≦17%、
望ましくはアミノエタンスルホン酸濃度=52.5〜5
5%、無機塩類濃度=13.5〜15%に濃縮するのが
良い。
The aqueous solution from which the EDS alkali metal salt has been separated is concentrated again under atmospheric pressure or under reduced pressure. This time, inorganic salts such as alkali metal hydrochloride are partially crystallized in a high temperature range of 80 ° C. or higher, The crystallized inorganic salt is removed by solid-liquid separation by filtration under high temperature. To selectively crystallize the inorganic salt in an aqueous solution of aminoethanesulfonic acid without crystallizing it, in the aqueous solution portion, aminoethanesulfonic acid concentration ≧ 40%, inorganic salt concentration ≦ 17%,
Desirably aminoethane sulfonic acid concentration = 52.5-5
It is good to concentrate to 5% and inorganic salt concentration = 13.5 to 15%.

【0019】次いで、無機塩類を部分的に除去した分離
液に、分離液の3.5%以上30%以下、望ましくは
3.8%以上、5%以下の水を加えて稀釈した後、その
稀釈水溶液を常温、具体的には、約20℃に冷却し、ア
ミノエタンスルホン酸類を部分的に晶出させ、晶出アミ
ノエタンスルホン酸類を常温下にろ過により、固−液分
離して取得するものである。この分離ろ液はいまだ大量
のアミノエタンスルホン酸類を含んでいるので、回収循
環される。この分離ろ液を戻す工程は式によりアミン
類を除去したアミノエタンスルホン酸アルカリ金属塩水
溶液に混合するのが好ましいが、pH調整した後の水溶
液と混合しても良い。
Next, 3.5% or more and 30% or less, preferably 3.8% or more and 5% or less of water of the separated liquid is added to the separated liquid from which inorganic salts have been partially removed, and then diluted. The diluted aqueous solution is cooled to room temperature, specifically about 20 ° C., the aminoethanesulfonic acids are partially crystallized, and the crystallized aminoethanesulfonic acids are obtained by solid-liquid separation by filtration at room temperature. It is a thing. Since the separated filtrate still contains a large amount of aminoethanesulfonic acid, it is recycled. The step of returning the separated filtrate is preferably mixed with an aqueous solution of an aminoethanesulfonic acid alkali metal salt from which amines have been removed according to the formula, but may be mixed with the aqueous solution after pH adjustment.

【0020】このように、本発明の方法においては、ア
ミノエタンスルホン酸類の晶出工程で脱塩ろ液を稀釈す
るのは高純度品を得るためである。すなわち、水で稀釈
しないで無機塩分離ろ液を冷却すると、前述したよう
に、その溶解平衡の関係上、アミノエタンスルホン酸類
とともに、少量ながらアルカリ金属塩酸塩等の無機塩が
晶出し、そのろ過ケーキをいくら水で洗浄しても、アミ
ノエタンスルホン酸類の溶解度が前記無機塩類に比し非
常に高く、アミノエタンスルホン酸類を溶解するのみ
で、これら無機塩を除くことができず、高純度アミノエ
タンスルホン酸類を取得することができない。
As described above, in the method of the present invention, the desalted filtrate is diluted in the crystallization step of aminoethanesulfonic acids in order to obtain a high purity product. That is, when the inorganic salt separation filtrate is cooled without being diluted with water, as described above, due to its dissolution equilibrium, a small amount of an inorganic salt such as an alkali metal hydrochloride is crystallized out together with the aminoethanesulfonic acid, and the filtration thereof is performed. No matter how much water the cake is washed with, the solubility of aminoethanesulfonic acids is extremely higher than that of the above-mentioned inorganic salts, and it is not possible to remove these inorganic salts by only dissolving the aminoethanesulfonic acids. Unable to obtain ethanesulfonic acids.

【0021】そのような稀釈水の添加割合として、無機
塩分離ろ液の3.8〜5.0%量の水を加えるのが望ま
しく、さらに多く水を加えても高純度アミノエタンスル
ホン酸類は得られるが、水の添加量が多くなるほど、そ
の晶出物が少なくなるので望ましくない。
It is desirable to add 3.8 to 5.0% of the amount of the inorganic salt-separated filtrate as an addition ratio of such diluted water, and even if more water is added, high-purity aminoethane sulfonic acids are obtained. Although it can be obtained, the larger the amount of water added, the less the crystallized substance becomes, which is not desirable.

【0022】さらにアミノエタンスルホン酸類の分離ろ
液にあって、式,により、副生したアミノジエタン
スルホン酸類、アミノトリエタンスルホン酸類が蓄積さ
れるが、本発明者らの測定実験によると、これら不純物
の溶解度はアミノエタンスルホン酸類とほぼ同じ程度で
あるが、温度依存性が極めて乏しく、約60℃以上の高
温域ではアミノエタンスルホン酸類より低くなるため、
これが蓄積され、アミノエタンスルホン酸類とほぼ同程
度の濃度となると、前記無機塩類の晶出工程で部分的に
晶出し、平衡となるので、アミノエタンスルホン酸類に
混入することはないことを本発明者らは見出し、本発明
の技術を完成したるものである。
Further, in the separated filtrate of aminoethanesulfonic acids, by-produced aminodiethanesulfonic acids and aminotriethanesulfonic acids are accumulated according to the formula. According to the measurement experiment conducted by the present inventors, The solubility of these impurities is almost the same as that of aminoethanesulfonic acids, but the temperature dependence is extremely poor and becomes lower than that of aminoethanesulfonic acids in a high temperature range of about 60 ° C or higher.
When this is accumulated and the concentration is almost the same as that of aminoethanesulfonic acid, it partially crystallizes in the crystallization step of the inorganic salt and becomes in equilibrium, so that it is not mixed with aminoethanesulfonic acid. The inventors found out and completed the technique of the present invention.

【0023】[0023]

【発明の効果】以上の説明から明らかなように本発明に
よれば、 (1)未精製CESを原料とし、これをアミン類と反応
させて得られた水溶液から精製するので、原料CESの
精製工程が省略できる。
As is apparent from the above description, according to the present invention, (1) since unpurified CES is used as a raw material and is purified from an aqueous solution obtained by reacting this with amines, purification of the raw material CES is performed. The process can be omitted.

【0024】(2)アルコール類等特別の化合物を媒体
とすることなく、水を媒体として用いるので、媒体の回
収、精製工程を必要とせず、また、それらに要するエネ
ルギーも節減できる。
(2) Since water is used as a medium without using a special compound such as alcohol as a medium, the steps of collecting and purifying the medium are not required, and the energy required for them can be saved.

【0025】(3)アミノエタンスルホン酸類の分離ろ
液を一部放出することなく、全量回収循環できるので、
アミノエタンスルホン酸類の損失がなく、収率を高く保
てる。
(3) The whole amount of the separated filtrate of aminoethanesulfonic acids can be recovered and circulated without releasing part of the filtrate,
High yields can be maintained without loss of aminoethanesulfonic acids.

【0026】[0026]

【実施例】以下、本発明を実施例によりさらに詳細に説
明するが、本発明はこれらの実施例に限定されるもので
はない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0027】実施例1 1,2ジクロロエタンと、亜硫酸ソーダから製造された
未精製CESナトリウム塩水溶液と、液化メチルアミン
とを反応させて得られた水溶液に、苛性ソーダを加えた
後、遊離メチルアミンを蒸留により除いたpH=12.
4の表1に示す組成液2650.0gを3リットルのセ
パラブルフラスコに入れ、35%塩酸250.2gを加
えpH=6.0に調整した。
Example 1 1,2 dichloroethane, an unpurified aqueous solution of CES sodium salt produced from sodium sulfite, and liquefied methylamine were added to an aqueous solution obtained by adding caustic soda, and then free methylamine was added. PH removed by distillation = 12.
2650.0 g of the composition liquid shown in Table 1 of 4 was put in a 3 liter separable flask, and 250.2 g of 35% hydrochloric acid was added to adjust the pH to 6.0.

【0028】このフラスコをオイルバスに浸漬して加熱
し、−440mmHgの減圧下で濃縮した。
The flask was immersed in an oil bath, heated, and concentrated under reduced pressure of -440 mmHg.

【0029】蒸発水量が約790mlとなった時点で、
晶出物により液は白濁したがさらに濃縮を続け、蒸発水
量1410mlとなった時点で濃縮を中断した。
When the amount of evaporated water reaches about 790 ml,
The liquid became cloudy due to the crystallized substance, but the concentration was further continued, and the concentration was stopped when the amount of evaporated water reached 1410 ml.

【0030】濃縮液量は1484.9gであり、この濃
縮液を約85℃の温水をジャケットに循環し保温された
遠心ろ過機に注ぎ固−液分離したところ、1235.7
gのろ液を得た。フラスコ内壁に若干の固形物が付着し
ていたので、約10gの水を入れ固形物を溶解し、その
水溶液は遠心ろ過ケーキの洗浄に用い、さらに新しい水
27.4gで遠心ろ過ケーキを洗浄し、洗浄1次塩ケー
キ228.5gと回収水溶液48.1gを得た。これら
洗浄1次塩ケーキ及び洗浄回収水溶液の分析値は表1に
示す通りであった。
The amount of the concentrated liquid was 1484.9 g, and when the concentrated liquid was poured into a centrifugal filter which was kept warm by circulating warm water of about 85 ° C. through a jacket to perform solid-liquid separation, 1235.7.
g of filtrate was obtained. Since some solid matter adhered to the inner wall of the flask, about 10 g of water was added to dissolve the solid matter, and the aqueous solution was used for washing the centrifugal filter cake, and the centrifugal filter cake was washed with 27.4 g of fresh water. , 228.5 g of washed primary salt cake and 48.1 g of a recovered aqueous solution were obtained. The analytical values of the washed primary salt cake and the washed and recovered aqueous solution are shown in Table 1.

【0031】ろ液を1時間かけて20℃まで冷却し、さ
らに、1時間、20℃に保持して、EDSナトリウム塩
を晶出させた後、常温下に遠心ろ過機にかけ固−液分離
した。ろ液量は1165.9gであり、遠心ろ過ケーキ
は前の場合と同様、約7gの水でフラスコを洗い、その
水溶液はケーキの洗浄に用いるとともに、水10.5g
でさらにケーキを洗浄し、洗浄EDSナトリウム塩ケー
キ55.5gと、洗浄回収水溶液25.6gを得た。洗
浄EDSナトリウム塩ケーキ、同洗浄回収水溶液の分析
値は、表1の通りであった。
The filtrate was cooled to 20 ° C. over 1 hour and kept at 20 ° C. for 1 hour to crystallize EDS sodium salt, which was then centrifuged at room temperature for solid-liquid separation. . The filtrate amount is 1165.9 g, the centrifugal filter cake is washed with about 7 g of water as in the previous case, and the aqueous solution is used for washing the cake, and at the same time, 10.5 g of water is used.
The cake was further washed with to obtain 55.5 g of a washed EDS sodium salt cake and 25.6 g of a wash recovery aqueous solution. Table 1 shows the analytical values of the washed EDS sodium salt cake and the washed and recovered aqueous solution.

【0032】EDSナトリウム塩を除去したろ液は再び
オイルバスに浸漬し、−510mmHgの減圧下で水を
蒸発して無機塩を晶出させつつ濃縮した。蒸発水量44
0mlとなった時点で濃縮を止めて濃縮液の計量をした
ところ、濃縮液量は720.3gであった。
The filtrate from which the EDS sodium salt was removed was again immersed in an oil bath, and water was evaporated under reduced pressure of -510 mmHg to concentrate the inorganic salt while crystallizing the inorganic salt. Evaporated water amount 44
When the concentration became 0 ml and the concentration was stopped and the concentrated liquid was measured, the amount of the concentrated liquid was 720.3 g.

【0033】この濃縮液を約85℃の温水を循環し、保
温した遠心ろ過機に注ぎ固−液分離し、562.8gの
ろ液を得た。
This concentrated liquid was circulated in warm water of about 85 ° C., poured into a heat-retaining centrifugal filter, and solid-liquid separated to obtain 562.8 g of a filtrate.

【0034】前の場合と同様、容器に約15gの水を入
れ付着固形物を溶解洗浄し、その水溶液で遠心ケーキを
洗浄するとともに、水24.4gで遠心ケーキを洗浄
し、洗浄2次塩ケーキ149.9gと洗浄回収水44.
6gを得た。これら洗浄2次塩ケーキ、同洗浄回収水の
分析値は表1の通りであった。
As in the previous case, about 15 g of water was placed in a container to dissolve and wash the adhered solid matter, and the centrifugal cake was washed with the aqueous solution, and the centrifugal cake was washed with 24.4 g of water to wash the secondary salt. 149.9 g of cake and 44.
6 g was obtained. The analytical values of the washed secondary salt cake and the recovered water of the washing are shown in Table 1.

【0035】このろ液に19.7gの水を入れ、85℃
に昇温して透明液とした後、1時間かけて20℃に冷却
し、さらに30分間20℃に保ち、メチルアミノエタン
スルホン酸を晶出させた。この晶析液を常温の遠心ろ過
機に注ぎ、固−液分離し、421.8gのろ液を得た。
遠心ケーキは、約8gの水で容器を洗浄した水で洗浄し
た後、さらに15.1gの新しい水で洗浄し、洗浄メチ
ルアミノエタンスルホン酸ケーキ、134.2gと、同
洗浄回収水溶液41.5gを得た。これらの分析値を表
1に示す。
To this filtrate was added 19.7 g of water and the temperature was 85 ° C.
The temperature was raised to 20 ° C. to obtain a transparent liquid, which was then cooled to 20 ° C. over 1 hour and kept at 20 ° C. for 30 minutes to crystallize methylaminoethanesulfonic acid. This crystallization liquid was poured into a centrifugal filter at room temperature and solid-liquid separation was carried out to obtain 421.8 g of a filtrate.
The centrifuge cake was washed with water in which the container was washed with approximately 8 g of water, and then with 15.1 g of fresh water, and 134.2 g of the washed methylaminoethane sulfonic acid cake and 41.5 g of the same washing recovery aqueous solution. Got The analytical values are shown in Table 1.

【0036】さらにこの洗浄メチルアミンエタンスルホ
ン酸ケーキ118.7gを70℃に設定された真空乾燥
機に入れ、約6時間乾燥し、108.8gの粉末を得
た。メチルアミノエタンスルホン酸は液体クロマトグラ
フィーで分析し、EDSナトリウム塩、メチルアミノジ
エタンスルホン酸はイオンクロマトグラフィーで、食
塩、芒硝は滴定法により、水分はカールフィッシャー法
で分析し、メチルアミノエタンスルホン酸=98.71
%,メチルアミノジエタンスルホン酸=0.04%,E
DSナトリウム塩=0.02%,食塩=0.11%,芒
硝=0.00%,水分=1.09%の値を得た。
Further, 118.7 g of the washed methylamine ethanesulfonic acid cake was put into a vacuum dryer set at 70 ° C. and dried for about 6 hours to obtain 108.8 g of powder. Methylaminoethanesulfonic acid was analyzed by liquid chromatography, EDS sodium salt and methylaminodiethanesulfonic acid were analyzed by ion chromatography, salt and sodium sulfate were analyzed by titration method, and water was analyzed by Karl Fischer method. Acid = 98.71
%, Methylaminodiethanesulfonic acid = 0.04%, E
The values of DS sodium salt = 0.02%, common salt = 0.11%, mirabilite = 0.00%, water = 1.09% were obtained.

【0037】[0037]

【表1】 [Table 1]

【0038】実施例2 実施例1で回収した、1次塩洗浄回収水溶液33.0
g、EDSナトリウム塩洗浄回収水10.7g、2次塩
洗浄回収水29.3g、メチルアミノエタンスルホン酸
洗浄回収水溶液23.0g、メチルアミノエタンスルホ
ン酸分離ろ液396.8gと、実施例1で用いたと同一
組成の新しい水溶液1314.7gを3リットルのセパ
ラブルフラスコに入れ、撹拌下、98%の硫酸59.6
gを滴下して、pH=5.98に調整し、フラスコをオ
イルバスに浸漬加熱し、大気圧下で水を蒸発して濃縮し
た。
Example 2 Primary aqueous solution for washing and recovering salt washed in Example 1 33.0
g, 10.7 g of EDS sodium salt washed and recovered water, 29.3 g of secondary salt washed and recovered water, 23.0 g of methylaminoethanesulfonic acid washed and recovered aqueous solution, and 396.8 g of methylaminoethanesulfonic acid separated filtrate. Into a 3 liter separable flask was placed 1314.7 g of a fresh aqueous solution having the same composition as used in 1.
g was added dropwise to adjust the pH to 5.98, the flask was immersed in an oil bath and heated, and water was evaporated and concentrated under atmospheric pressure.

【0039】蒸発水量が約305mlとなった時点で、
晶出により液が白濁したので濃縮を中断し、濃縮液を計
量したところ、1555.4gであった。この濃縮液を
20℃に冷却し、さらに、1時間、20℃に保持した
後、常温で遠心ろ過機に注ぎ固−液分離し、1481.
5gのろ液を得た。
When the amount of evaporated water reaches about 305 ml,
The liquid became cloudy due to crystallization, so the concentration was stopped and the concentrated liquid was weighed to be 1555.4 g. This concentrated liquid was cooled to 20 ° C., and further maintained at 20 ° C. for 1 hour, then poured into a centrifugal filter at room temperature to perform solid-liquid separation, and 1481.
5 g of filtrate was obtained.

【0040】遠心ケーキは、容器を約7.5gの水で洗
った回収水溶液で洗浄するとともに、新しい水11.0
gで洗浄し、60.1gの洗浄EDSナトリウム塩ケー
キと、同回収洗浄水溶液26.9gを得た。これら洗浄
EDSナトリウムケーキと、同回収洗浄水溶液の分析値
は表2に示す通りであった。
The centrifuge cake was washed with a recovered aqueous solution in which the container was washed with about 7.5 g of water, and fresh water was added at 11.0.
It was washed with g to obtain 60.1 g of washed EDS sodium salt cake and 26.9 g of the same recovered washing aqueous solution. The analytical values of these washed EDS sodium cakes and the same recovered washing aqueous solution are shown in Table 2.

【0041】EDSナトリウムを除いたろ液を再び、オ
イルバスに浸漬して加熱し−410mmHgの減圧下に
濃縮し、無機塩を晶出させた。蒸発水量が約495ml
となったところで濃縮を中断し、濃縮液を計量したとこ
ろ、980.5gであった。この濃縮液を実施例1の場
合と同様、85℃の温水をジャケットに循環した遠心ろ
過機に注ぎ、固−液分離し、787.6gのろ液を得
た。遠心ケーキは、まず、約15gの水で容器を洗った
水溶液で洗浄した後、23gの水で洗浄し、洗浄1次塩
ケーキ182.0gと1次塩洗浄回収水溶液43.3g
を得た。洗浄1次塩ケーキの分析値は表2に示す値であ
った。
The filtrate from which EDS sodium had been removed was again immersed in an oil bath, heated and concentrated under a reduced pressure of −410 mmHg to crystallize an inorganic salt. Evaporated water volume is about 495 ml
When the concentration became, the concentration was stopped, and the concentration of the concentrated liquid was measured, and it was 980.5 g. This concentrated liquid was poured into a centrifugal filter in which warm water of 85 ° C was circulated in a jacket and solid-liquid separated in the same manner as in Example 1 to obtain 787.6 g of a filtrate. The centrifuge cake was first washed with an aqueous solution in which the container was washed with about 15 g of water, and then with 23 g of water to obtain 182.0 g of the washed primary salt cake and 43.3 g of the recovered aqueous solution for washing the primary salt.
Got The analytical values of the washed primary salt cake were the values shown in Table 2.

【0042】このろ液と1次塩洗浄回収水溶液を混合
し、容器を再びオイルバスに浸漬加熱し、−510mm
Hgの減圧下に水を蒸発し、無機塩を晶出させつつ濃縮
した。蒸発水量が約195mlとなったところで濃縮を
止め634.3gの濃縮スラリー液を得た。これを再
び、85℃の温水をジャケットに循環した遠心ろ過機に
かけ、固−液分離して564.8gのろ液を得た。ケー
キは約7gの水で容器を洗浄し、その水溶液でケーキを
洗浄した後、水10.4gでさらに洗浄し、洗浄2次塩
ケーキ63.2gと回収洗浄水溶液17.9gを得た。
これらの分析値は表2に示す値であった。
This filtrate was mixed with the primary salt washing and recovery aqueous solution, and the container was again immersed in an oil bath and heated to -510 mm.
The water was evaporated under reduced pressure of Hg, and the inorganic salt was concentrated while crystallizing. When the amount of evaporated water reached about 195 ml, the concentration was stopped to obtain 634.3 g of a concentrated slurry liquid. This was again applied to a centrifugal filter in which warm water of 85 ° C was circulated through a jacket, and solid-liquid separation was performed to obtain 564.8 g of a filtrate. The cake was washed with about 7 g of water, washed with an aqueous solution thereof, and then washed with 10.4 g of water to obtain 63.2 g of a washed secondary salt cake and 17.9 g of a recovered washing aqueous solution.
These analytical values were the values shown in Table 2.

【0043】このろ液に19.8gの水を加え、85℃
に昇温して透明液とした後、20℃まで冷却し、メチル
アミノエタンスルホン酸を晶出させ、さらに20℃で約
1時間保持した後、常温で遠心ろ過し、425.5gの
ろ液を得た。遠心ケーキは約7.5gの水で容器を洗っ
た水溶液で洗浄した後、水11.7gでさらに洗浄し、
洗浄メチルアミノエタンスルホン酸ケーキ135.5g
と同洗浄回収水溶液34.7gを得た。
To this filtrate was added 19.8 g of water and the temperature was 85 ° C.
After heating to 20 ° C to make a transparent liquid, the liquid is cooled to 20 ° C to crystallize methylaminoethanesulfonic acid, further held at 20 ° C for about 1 hour, and then centrifugally filtered at room temperature to obtain 425.5 g of a filtrate. Got The centrifugal cake was washed with an aqueous solution in which the container was washed with about 7.5 g of water, and then further washed with 11.7 g of water,
Washed methylaminoethanesulfonic acid cake 135.5 g
34.7 g of the same washing and recovery aqueous solution was obtained.

【0044】これらの分析値は表2に示す通りであっ
た。
The analytical values are shown in Table 2.

【0045】[0045]

【表2】 [Table 2]

【0046】実施例3 メチルアミノエタンスルホン酸ナトリウム塩と、CES
ナトリウム塩から合成された、メチルアミノエタンスル
ホン酸=0.93%、メチルアミノジエタンスルホン酸
=24.04%,食塩=6.08%を含むpH=10.
65の水溶液497.0gと、実施例1で用いたと同一
組成液1207.5gを3リットルのセパラブルフラス
コに入れて混合し、98%の硫酸80.9gを滴下し、
pH=5.2とした後、容器をオイルバスに浸漬、加熱
し、大気圧下、水を蒸発して濃縮した。
Example 3 Methylaminoethanesulfonic acid sodium salt and CES
Methylaminoethanesulfonic acid = 0.93%, methylaminodiethanesulfonic acid = 24.04%, and salt = 6.08%, which were synthesized from sodium salt, pH = 10.
657.0 of an aqueous solution of 65 and 1207.5 g of the same composition liquid as used in Example 1 were put in a 3 liter separable flask and mixed, and 80.9 g of 98% sulfuric acid was added dropwise.
After adjusting the pH to 5.2, the container was immersed in an oil bath and heated, and water was evaporated and concentrated under atmospheric pressure.

【0047】蒸発水量400mlとなったところで、晶
出物の析出が見られたので、濃縮を中断し、1379.
5gの濃縮液を得た。この濃縮液を実施例2の場合と同
様に冷却して、EDSナトリウム塩を晶出させ、常温で
遠心ろ過機にかけ、固−液分離し、ろ液1335.6g
を得た。遠心ケーキは合計13.2gの水で洗浄し、洗
浄EDSナトリウム塩ケーキ27.1gと同洗浄回収水
溶液22.3gを得た。これらの分析値は表3に示す通
りであった。
When the amount of evaporated water reached 400 ml, precipitation of crystallized substances was observed. Therefore, the concentration was stopped, and 1379.
5 g of concentrated liquid was obtained. This concentrated solution was cooled in the same manner as in Example 2 to crystallize EDS sodium salt, subjected to centrifugal filtration at room temperature, solid-liquid separated, and filtrate 1335.6 g.
Got The centrifugal cake was washed with a total of 13.2 g of water to obtain 27.1 g of washed EDS sodium salt cake and 22.3 g of the same washing recovery aqueous solution. These analytical values were as shown in Table 3.

【0048】ろ液を実施例2の場合と同じように、再び
濃縮し、無機塩を晶出させ、蒸発水量450mlとなっ
たところで濃縮を中断し、883.1gの濃縮スラリー
液を得た。この濃縮液を保温された遠心ろ過機にかけ固
−液分離し、ろ液708.8gを得た。遠心ケーキは3
4.9gの水で洗浄し、洗浄1次塩ケーキ164.6g
と同洗浄回収水溶液35.9gを得た。洗浄塩ケーキの
分析値は表3の通りであった。
The filtrate was concentrated again in the same manner as in Example 2 to crystallize the inorganic salt, and when the amount of evaporated water reached 450 ml, the concentration was discontinued to obtain 883.1 g of a concentrated slurry liquid. This concentrated liquid was subjected to a solid-liquid separation by applying a centrifugal filter which was kept warm, to obtain 708.8 g of a filtrate. Centrifuge cake is 3
Washed with 4.9 g water, washed primary salt cake 164.6 g
The same washing and recovery aqueous solution (35.9 g) was obtained. The analytical values of the washed salt cake are shown in Table 3.

【0049】このろ液と洗浄回収水溶液を混合し、オイ
ルバスに浸し、減圧下に水を約190ml蒸発して濃縮
し、濃縮スラリー液552.2gを得た。濃縮液は保温
遠心ろ過機により固−液分離、467.3gのろ液を得
た。遠心ケーキは実施例2と同様合計21.3gの水で
洗浄し、洗浄2次塩ケーキとして、メチルアミノジエタ
ンスルホン酸を含んだケーキ76.0gと同洗浄回収水
溶液21.3gを得た。これらの分析値は表3の通りで
あった。
This filtrate and the washed and recovered aqueous solution were mixed, immersed in an oil bath, and about 190 ml of water was evaporated under reduced pressure to concentrate the solution to obtain 552.2 g of a concentrated slurry liquid. The concentrate was subjected to solid-liquid separation using a heat-retention centrifugal filter to obtain 467.3 g of a filtrate. The centrifuge cake was washed with a total of 21.3 g of water in the same manner as in Example 2 to obtain 76.0 g of a cake containing methylaminodiethanesulfonic acid and 21.3 g of the same washing recovery aqueous solution as a washing secondary salt cake. The analytical values are shown in Table 3.

【0050】ろ液に17.5gの水を加え、昇温して透
明液とした後20℃に冷却し、メチルアミノエタンスル
ホン酸を晶出させ、常温で遠心ろ過により固−液分離
し、354gのろ液を得、遠心ろ過ケーキは合計17.
8gで洗浄し、洗浄メチルアミノエタンスルホン酸ケー
キ108.7gと、同洗浄回収水溶液32.2gを得
た。これらの分析値は表3に示す値であった。
17.5 g of water was added to the filtrate, and the temperature was raised to a transparent liquid, followed by cooling to 20 ° C. to crystallize methylaminoethanesulfonic acid, and solid-liquid separation was carried out by centrifugal filtration at room temperature. 354 g of filtrate was obtained, and the total of the centrifugal filter cake was 17.
It was washed with 8 g to obtain 108.7 g of washed methylaminoethane sulfonic acid cake and 32.2 g of the same washing recovery aqueous solution. These analytical values were the values shown in Table 3.

【0051】[0051]

【表3】 [Table 3]

【0052】実施例4 実施例3で回収したEDS洗浄回収水溶液=10.5
g、2次塩洗浄回収水溶液=10.9g、メチルアミノ
エタンスルホン酸洗浄回収水溶液=21.5g、メチル
アミノエタンスルホン酸分離ろ液=342.7gと、実
施例1で用いた液と同一組織液=1137.7gを3リ
ットルのセパラブルフラスコに入れ、撹拌下に35%塩
酸107.4gを滴下し、pH=5.2に調整した後、
実施例3と同様の実験を行い、表4に示す実験結果を得
た。
Example 4 EDS cleaning recovery aqueous solution recovered in Example 3 = 10.5
g, secondary salt washing / collection aqueous solution = 10.9 g, methylaminoethanesulfonic acid washing / collecting aqueous solution = 21.5 g, methylaminoethanesulfonic acid separation filtrate = 342.7 g, and the same tissue fluid as the fluid used in Example 1. = 1137.7 g was put into a 3 liter separable flask, 107.4 g of 35% hydrochloric acid was added dropwise with stirring to adjust pH = 5.2, and
The same experiment as in Example 3 was performed, and the experimental results shown in Table 4 were obtained.

【0053】[0053]

【表4】 [Table 4]

【0054】比較例1 実施例1で用いたと同一組成2650.0gを、3リッ
トルセパラブルフラスコに入れ、35%塩酸250.2
gを滴下して、pH=6.0に調整した後、容器をオイ
ルバスに浸漬して、大気圧下に濃縮した。実施例1の場
合と同様、蒸発水量が約790mlとなった時点で、濃
縮液は晶出物により白濁したが、さらに濃縮を続け、蒸
発水量1410mlの時点で濃縮を中断した。濃縮液量
は1485.7gであった。
Comparative Example 1 2650.0 g of the same composition used in Example 1 was placed in a 3 liter separable flask and 35% hydrochloric acid 250.2 was added.
After g was added dropwise to adjust the pH to 6.0, the container was immersed in an oil bath and concentrated under atmospheric pressure. As in Example 1, when the amount of evaporated water reached about 790 ml, the concentrated liquid became cloudy due to crystallized substances, but the concentration was further continued, and the concentration was stopped when the amount of evaporated water was 1410 ml. The concentrated liquid amount was 1485.7 g.

【0055】この濃縮液を冷却しないよう手早く、85
℃の温水をジャケットに循環した遠心ろ過機にかけ固−
液分離し、ろ液1240.8gを得た。遠心ケーキは実
施例2〜4と同様、合計49.0gの水で洗浄して、洗
浄1次塩ケーキ226.3gと、同回収洗浄水溶液5
9.1gを得た。洗浄1次塩ケーキの分析値は、表5の
通りであった。
Promptly, do not cool this concentrate 85
Apply a centrifuge filter that circulates warm water at ℃ in the jacket to solidify.
Liquid separation was performed to obtain 1240.8 g of a filtrate. The centrifugal cake was washed with a total of 49.0 g of water in the same manner as in Examples 2 to 4, and 226.3 g of the washed primary salt cake and the recovered washing aqueous solution 5
9.1 g was obtained. Table 5 shows the analytical values of the washed primary salt cake.

【0056】ろ液と回収洗浄水溶液を混合し、再び容器
をオイルバスに浸漬して、大気圧下で濃縮し、蒸発水量
が約470mlの時点で濃縮を止め、濃縮スラリー液8
26.3gをた。この濃縮液を前の場合と同様、約90
℃の熱水をジャケットに循環した遠心ろ過機にかけ、6
40.9gのろ液を得た。遠心ケーキは合計45.6g
の水で洗浄し、洗浄2次塩ケーキ171.5gと、同洗
浄回収水溶液52.1gを得た。これらの分析値は、表
5に示す値であった。
The filtrate and the recovered washing aqueous solution are mixed, the container is again immersed in an oil bath, and concentrated under atmospheric pressure. When the amount of evaporated water is about 470 ml, the concentration is stopped and the concentrated slurry liquid 8 is added.
26.3 g was obtained. This concentrate is approximately 90% as before.
Apply hot water at ℃ to a centrifugal filter that circulates through a jacket,
40.9 g of filtrate was obtained. Centrifugal cake is 45.6g in total
The washed secondary salt cake (171.5 g) and the same washed recovered aqueous solution (52.1 g) were obtained. These analytical values were the values shown in Table 5.

【0057】ろ液は水を加えることなく、そのままゆっ
くり撹拌しつつ20℃に冷却し、さらに1時間20℃に
冷却し、さらに1時間、20℃に保持して、メチルアミ
ノエタンスルホン酸を晶出させた。このスラリー液を常
温で遠心ろ過機にかけ、ろ液424.0gを得た。遠心
ケーキは合計32.6gの水で洗浄し、洗浄メチルアミ
ノエタンスルホン酸ケーキ180.4gと同洗浄回収水
溶液55.8gを得た。これらの分析値は、表5に示す
値であった。
The filtrate was cooled to 20 ° C. with slow stirring as it was without adding water, further cooled to 20 ° C. for 1 hour, and kept at 20 ° C. for another hour to crystallize methylaminoethanesulfonic acid. I let it out. This slurry liquid was subjected to centrifugal filtration at room temperature to obtain 424.0 g of a filtrate. The centrifugal cake was washed with a total of 32.6 g of water to obtain 180.4 g of the washed methylaminoethanesulfonic acid cake and 55.8 g of the same washing recovery aqueous solution. These analytical values were the values shown in Table 5.

【0058】[0058]

【表5】 [Table 5]

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C07C 309/14 C07C 303/44 CA(STN) REGISTRY(STN)─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) C07C 309/14 C07C 303/44 CA (STN) REGISTRY (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(I)β−クロロエタンスルホン酸アルカ
リ金属塩類水溶液と、アンモニアまたはN−置換アミン
とを反応させて得られるアミノエタンスルホン酸アンモ
ニウム塩またはN−置換アミノエタンスルホン酸N−置
換アミン塩に、アルカリ金属水酸化物を加え、アルカリ
金属塩に変換した後、反応水溶液を蒸留し、(II)得
られた水溶液に鉱酸を加え、pH=4.5〜7.0に調
整し、前記アルカリ金属塩をアミノエタンスルホン酸ま
たはN−置換アミノエタンスルホン酸に変換し、(II
I)得られた水溶液を大気圧下もしくは減圧下に水を蒸
発して濃縮し、その飽和水溶液とした後、この飽和水溶
液を20℃以下に冷却し、晶出した不純物をろ過により
除去し、(IV)得られた水溶液を、再度大気圧下もし
くは減圧下に水を蒸発させ、不純物を部分的に晶出させ
つつ濃縮し、この晶出物を80℃以上の保温下にろ過し
て固−液分離し、(V)得られた分離液に、その水溶液
の3.5%以上30%以下の量の水を加えて稀釈した
後、その稀釈水溶液を常温に冷却して、アミノエタンス
ルホン酸または、N−置換アミノエタンスルホン酸を部
分的に晶出させ、この晶出物を常温下に固−液分離する
工程からなるアミノエタンスルホン酸類の精製方法。
1. An aminoethane sulfonic acid ammonium salt or an N-substituted aminoethanesulfonic acid N-substituted amine obtained by reacting (I) an aqueous solution of a β-chloroethanesulfonic acid alkali metal salt with ammonia or an N-substituted amine. After adding an alkali metal hydroxide to the salt to convert it into an alkali metal salt, the reaction aqueous solution is distilled, and (II) a mineral acid is added to the obtained aqueous solution to adjust the pH to 4.5 to 7.0. Converting the alkali metal salt to aminoethanesulfonic acid or N-substituted aminoethanesulfonic acid, (II
I) The obtained aqueous solution is concentrated by evaporating water under atmospheric pressure or under reduced pressure to obtain a saturated aqueous solution, the saturated aqueous solution is cooled to 20 ° C. or lower, and the crystallized impurities are removed by filtration. (IV) The resulting aqueous solution was concentrated again while evaporating water under atmospheric pressure or reduced pressure to partially crystallize impurities, and the crystallized product was filtered while keeping the temperature at 80 ° C. or higher to obtain a solid. -Liquid separation, (V) After diluting the obtained separated liquid with 3.5% or more and 30% or less of the aqueous solution, the diluted aqueous solution is cooled to room temperature and aminoethane sulfone is added. A method for purifying aminoethanesulfonic acids, which comprises a step of partially crystallizing an acid or N-substituted aminoethanesulfonic acid and subjecting the crystallized product to solid-liquid separation at room temperature.
【請求項2】工程(V)で得られた分離液を工程(I)
で得られる水溶液と混合し、工程(I)から工程(V)
を繰り返すことを特徴とするアミノエタンスルホン酸類
の循環精製方法。
2. The separated liquid obtained in step (V) is added to step (I).
Mixed with the aqueous solution obtained in step (1) to step (V)
A method for circulating and purifying aminoethanesulfonic acids, which comprises repeating
JP13434393A 1993-06-04 1993-06-04 Method for purifying aminoethanesulfonic acids Expired - Fee Related JP3407336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13434393A JP3407336B2 (en) 1993-06-04 1993-06-04 Method for purifying aminoethanesulfonic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13434393A JP3407336B2 (en) 1993-06-04 1993-06-04 Method for purifying aminoethanesulfonic acids

Publications (2)

Publication Number Publication Date
JPH06345717A JPH06345717A (en) 1994-12-20
JP3407336B2 true JP3407336B2 (en) 2003-05-19

Family

ID=15126140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13434393A Expired - Fee Related JP3407336B2 (en) 1993-06-04 1993-06-04 Method for purifying aminoethanesulfonic acids

Country Status (1)

Country Link
JP (1) JP3407336B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1152027T3 (en) 2000-05-04 2004-11-15 Ciba Sc Holding Ag Polyolefin film compositions with permanent anti-fog properties
JP5572292B2 (en) * 2008-06-20 2014-08-13 三菱マテリアル株式会社 Method for producing perfluorobifunctional acid

Also Published As

Publication number Publication date
JPH06345717A (en) 1994-12-20

Similar Documents

Publication Publication Date Title
USRE48238E1 (en) Process for producing taurine from alkali taurinates
US9598360B2 (en) Cyclic process for production of taurine from alkali vinyl sulfonate
US20150183731A1 (en) Cyclic process for the production of taurine from monoethanolamine
CZ303984B6 (en) Purification process of 2-nitro-4-methylsulfonylbenzoic acid
JP3407336B2 (en) Method for purifying aminoethanesulfonic acids
US7750187B2 (en) Crystallization method for benzphetamine
US20050032889A1 (en) Process for producing crystal of benzenesulfonamide derivative, and novel crystal of intermediate therefor and process for producing the same
JP2770512B2 (en) Method for purifying alkali metal salts of aminoethylsulfonic acid
JPH0782237A (en) Purification of sodium beta-chloroethanesulfonate
JP3316917B2 (en) New phenylalanine salt crystals and their production
JPH10316646A (en) Production of high-purity crystalline o-methyliso urea acetate and crystalline o-methylisourea acetate obtained by the same
JP3291841B2 (en) Purification method of sodium β-chloroethanesulfonate
JP2714868B2 (en) Method for producing 2-methylthiosemicarbazide
JPH0579660B2 (en)
SU810675A1 (en) Method of preparing dl-lysine salts
JPH0789927A (en) Purification of aminoethanesulfonic acid alkali metal salts, or n-substituted aminoethanesulfonic acid alkali metal salt
KR810000254B1 (en) Method for purification of saccharine
JPS6327477A (en) Production of oxiracetam
JPH01190661A (en) Purification of 4,4'-dihydroxydiphenylsulfone
SU1117299A1 (en) Method of obtaining 2-aminothiazoline
JPH0797360A (en) Purification of sodium 1,2-ethanedisulfonate
JPH0753503A (en) Method for purifying alkali metallic aminoethanesulfonates or alkyl-n-substituted aminoethanesulfonates
JPS6337105B2 (en)
JPH0153867B2 (en)
JPS622599B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees